

test report

Customer:
Complete Solutions d.o.o.

Presernova cesta 55
6310 Izola
Tel.: +386 40 632 596
Slovenia

Human exposure test report

180103-AU01+W03

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

The test result refers exclusively to the model tested.
This test report may not be copied or published in extracts without the written authorization of
EMV **TESTHAUS** GmbH

EMV **TESTHAUS** GmbH

Gustav-Hertz-Straße 35
94315 Straubing
Germany
Tel.: +49 9421 56868-0
Fax: +49 9421 56868-100
Email: info@emv-testhaus.com

Industry Canada test site numbers with registration expiry date:
3472A-1, expiring 2018-11-09
3472A-2, expiring 2018-11-12

Location of Testing:

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

The technical accuracy is guaranteed through the quality management of the
EMV **TESTHAUS** GmbH.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

Table of contents

1	Test regulations	5
2	Summary of test results	6
3	Equipment under test (EUT)	7
4	Photographs of EUT	8
5	Test configuration and mode of operation	10
5.1	Test configuration	10
5.2	Mode of operation	10
6	Test results	11
6.1	RF exposure of non-simultaneous transmission	11
6.2	Multiple transmitters capable of simultaneous transmission	20
7	Measurement uncertainty	20
8	Equipment calibration status	20
9	Revision history	21

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

List of pictures

Picture 1: Front view of EUT	8
Picture 2: Rear view of EUT	8
Picture 3: Front view of power receiver dummy	9
Picture 4: Rear view of power receiver dummy	9
Picture 5: Setup of magnetic field test for charging mode	12
Picture 6: Setup of electric field test for charging mode	12
Picture 7: Setup of magnetic field test for standby mode	13
Picture 8: Setup of electric field test for standby mode	13

List of tables

Table 1: Devices used for testing	10
Table 2: Electric field strength reference levels (see table 3 of Safety Code 6).....	14
Table 3: Magnetic field strength reference levels (see table 4 of Safety Code 6).....	14
Table 4: Limits for Maximum Permissible Exposure (MPE) to RF electromagnetic fields.....	16
Table 5: Test distance versus separation distance	17
Table 6: RF exposure test results according to RSS-102	18
Table 7: RF exposure test results according to KDB 680106 D01	19
Table 8: Measurement uncertainties.....	20
Table 9: Equipment calibration status.....	20

1 Test regulations

Standard	Title
RSS-102 Issue 5 March 2015	Spectrum Management and Telecommunications Radio Standards Specification Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
SPR-002 Issue 1 September 2016	Spectrum Management and Telecommunications Supplementary Procedure Supplementary Procedure for Assessing Compliance with RSS-102 Nerve Stimulation Exposure Limits
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz
IEEE C95.3-2002 (R2008) Approved December 11, 2002 Reaffirmed June 12, 2008	IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz–300 GHz
KDB 680106 D01 May 31, 2013 (published by the Federal Communications Commission FCC)	RF Exposure Considerations for Low Power Consumer Wireless Power Transfer Applications

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

2 Summary of test results

Standard	Result	Remark
<i>RSS-102 Issue 5 for transmitters operating between 3 kHz and 10 MHz</i>	Passed	---
<i>KDB 680106 D01 RF Exposure Considerations for Low Power Consumer Wireless Power Transfer Applications</i>	Passed	Requirements for devices designed for typical desktop applications

Straubing, May 16, 2018

Andreas Menacher
Test engineer
EMV **TESTHAUS** GmbH

Konrad Graßl
Head of Radio department
EMV **TESTHAUS** GmbH

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

3 Equipment under test (EUT)

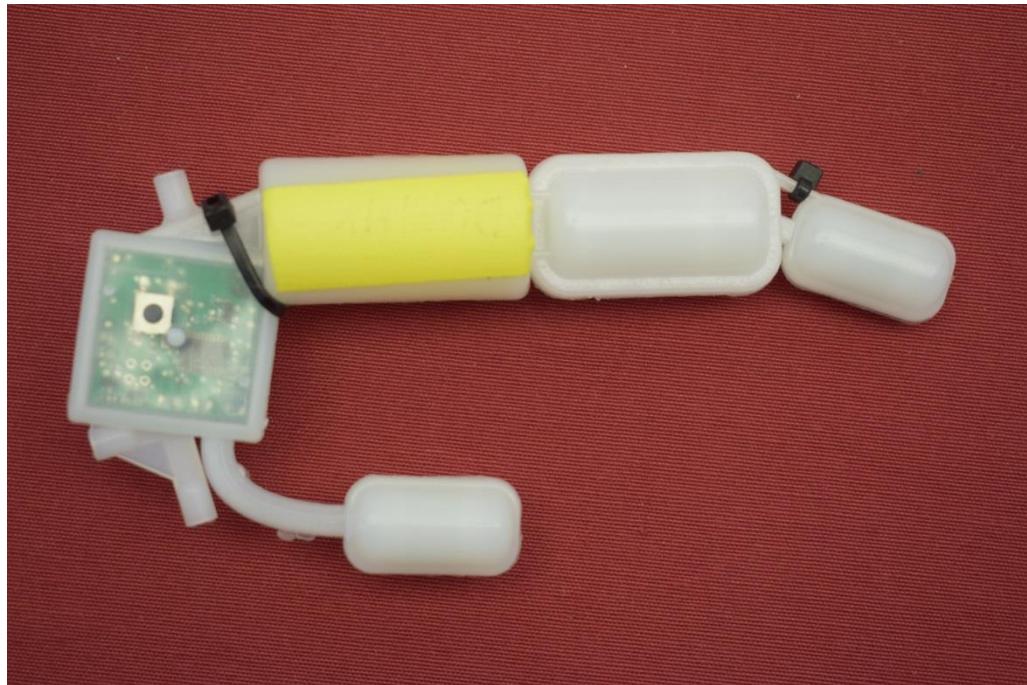
Product type: Wireless Power Transmission System
Model Name: ComeX – Wireless Charger Base
HVIN: CHG01
Applicant: Complete Solutions d.o.o.
Manufacturer: Complete Solutions d.o.o.
Serial number: CHG01
FCC ID: 2AO34-CHG01
IC certification number: 23943-CHG01
Application frequency band: n/a
Frequency range: 117 kHz – 159 kHz
Operating frequency: 117 kHz – 159 kHz
Number of RF-channels: 1
Modulation: ASK
Antenna types: PCB antenna
 detachable not detachable
Power supply: DC supply
nominal: 5.00 V
minimum: 4.75 V
maximum: 5.25 V
Temperature range: + 5 °C to +45°C
Type of device: Body-supported device
 Body-worn (or body-mount) radio
 Limb-Worn device
 other
Separation distance: ≤ 20 cm
 > 20 cm
Evaluated against exposure limits: General public use
 Controlled use
Duty cycle used in evaluation: 100 %

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

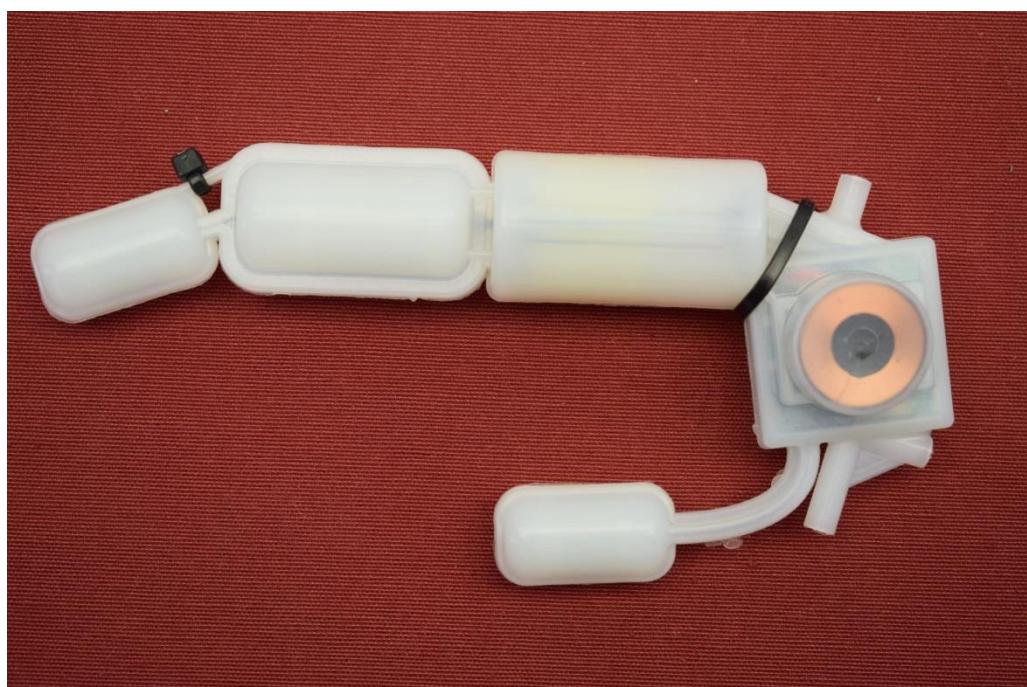
Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

4 Photographs of EUT

Picture 1: Front view of EUT



Picture 2: Rear view of EUT



EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

Picture 3: Front view of power receiver dummy

Picture 4: Rear view of power receiver dummy

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

5 Test configuration and mode of operation

5.1 Test configuration

Device	Type designation	Serial or inventory no.	Manufacturer
Wireless Power Transmission System	ComeX – Wireless Charger Base	CHG01	Complete Solutions d.o.o.
Power Receiver Dummy	Dummy	---	Complete Solutions d.o.o.
Power Supply	EP880 1269-4142.1	2 1 1 4W28126699	SONY®
AC power source (120 V / 60 Hz)	Chroma 616062	E00633	Chroma

Table 1: Devices used for testing

5.2 Mode of operation

The EUT is a Wireless Power Transmission System operating in the frequency range 117 kHz to 159 kHz.

The Measurements were performed in standby and charging mode.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

6 Test results

6.1 RF exposure of non-simultaneous transmission

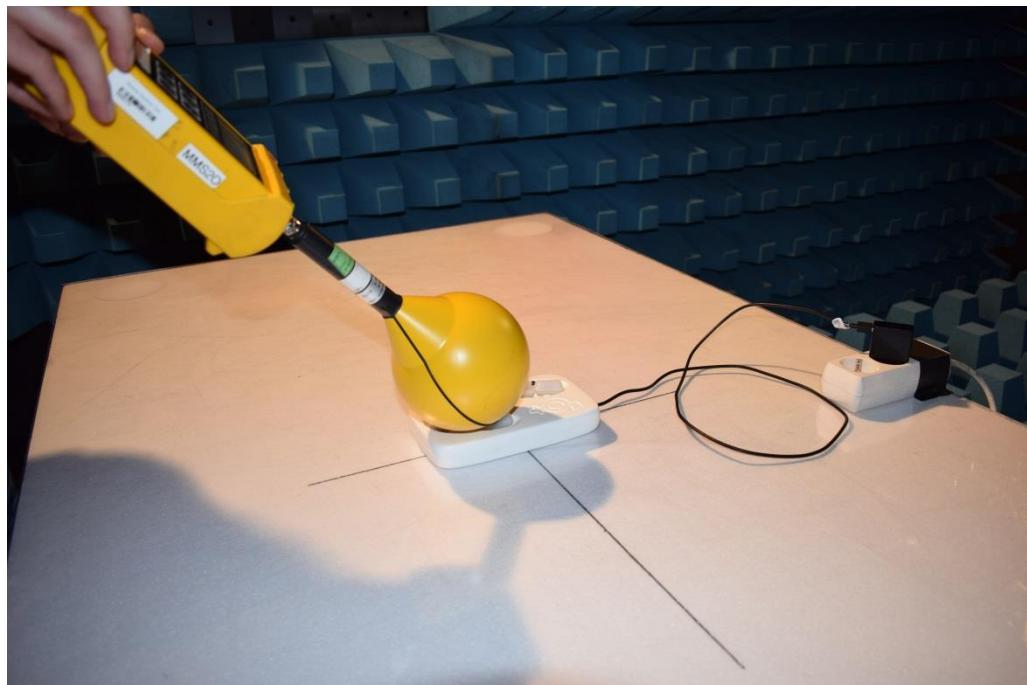
Reference(s): RSS-102
KDB 680106 D01

Test procedure(s): SPR-002
IEEE C95.3

Performed by:	Andreas Menacher	Date of test:	May 16, 2018
Climatic conditions:	Ambient temperature 24.1 °C	Relative humidity 44.3 %	Barometric pressure 97.3 kPa
Result ¹ :	<input checked="" type="checkbox"/> Test passed <input type="checkbox"/> Test not passed		

6.1.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Exposure level tester with magnetic field probe 100 cm ²	ELT-400 with BN 2300/90.10	Narda Safety Test Solutions GmbH	E00276
<input checked="" type="checkbox"/> Broadband field meter	NBM-550	Narda Safety Test Solutions GmbH	E00900
<input type="checkbox"/> Magnetic field probe	HF3061	Narda Safety Test Solutions GmbH	E00901
<input checked="" type="checkbox"/> Electric field probe	EF0691	Narda Safety Test Solutions GmbH	E00902


¹ For information about measurement uncertainties see page 28

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

6.1.2 Test setup

Picture 5: Setup of magnetic field test for charging mode

Picture 6: Setup of electric field test for charging mode

Picture 7: Setup of magnetic field test for standby mode

Picture 8: Setup of electric field test for standby mode

6.1.3 Limits

6.1.3.1 Limits according to RSS-102

According to section 2.5.1 of RSS-102, transmitters operating between 3 kHz and 10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in section 4 of RSS-102. Therefore, these limits apply irrespective of the separation distance between the user or bystanders and the device.

The exposure limits in section 4 of RSS-102 are adopted from Health Canada's Safety Code 6. According to section 2.1 of Safety Code 6, limits for internal electric field strength are intended to prevent the occurrence of nerve stimulation (NS). At frequencies between 3 kHz and 10 MHz, basic restrictions for internal electric field strength in excitable tissues as shown in table 1 of Safety Code 6 (i.e. table 2 of RSS-102) shall not be exceeded. For conditions where the determination of internal electric field strength is not possible or practical (e.g. by measurement or modelling), external unperturbed field strength assessment shall be carried out and the reference levels outlined in section 2.2 of Safety Code 6 shall be respected.

For transmitters operating between 3 kHz and 10 MHz, the requirements of table 4 and table 6 in section 4 of RSS-102 can be found in table 3 and table 4 of Safety Code 6, section 2.2:

Electric Field Strength Reference Levels				
Frequency Range (MHz)	Reference Level Basis	Reference Level (E_{RL}), (V/m, RMS)		Reference Period (minutes)
		Uncontrolled Environment	Controlled Environment	
0.003 – 10	NS	83	170	Instantaneous*
1.1 – 1.29	SAR	$87 / f^{0.5}$	---	6**
1.29 – 10	SAR	$87 / f^{0.5}$	$193 / f^{0.5}$	6**

Note: Frequency, f , is in MHz.

Table 2: Electric field strength reference levels (see table 3 of Safety Code 6)

Magnetic Field Strength Reference Levels				
Frequency Range (MHz)	Reference Level Basis	Reference Level (H_{RL}), (A/m, RMS)		Reference Period (minutes)
		Uncontrolled Environment	Controlled Environment	
0.003 – 10	NS	90	180	Instantaneous*
0.1 – 10	SAR	$0.73 / f$	$1.6 / f$	6**

Note: Frequency, f , is in MHz.

Table 3: Magnetic field strength reference levels (see table 4 of Safety Code 6)

Notes:

- 1 * At no point in time shall the RMS values for electric- and magnetic-fields exceed the reference levels with an instantaneous reference period in table 2 and table 3. In the case of RF fields with amplitude modulation, the RMS value during the maximum of the modulation envelope shall be compared to the reference level.
- 2 ** For exposures shorter than the reference period, field strengths may exceed the reference levels, provided that the time average of the squared value of the electric or magnetic field strength over any time period equal to the reference period shall not exceed E_{RL}^2 or H_{RL}^2 , respectively. For exposures longer than the reference period, including indefinite exposures, the time average of the squared value of the electric or magnetic field strength over any time period equal to the reference period shall not exceed E_{RL}^2 or H_{RL}^2 , respectively.
- 3 Where external electric (at all applicable frequencies) or magnetic (at frequencies at or above 100 kHz) field strengths are spatially non-uniform, comparison to the reference levels shall be made after spatially averaging the field strengths over the vertical extent of the human body. Where comparison is to be made to the reference levels based on NS in table 2 and table 3, spatial averaging is with respect to the sample values of the field strengths. Where comparison is to be made to the reference levels based on SAR in table 2 and table 3, spatial averaging is with respect to the square of the sample values of the field strengths.
- 4 Where external magnetic field strengths are spatially non-uniform and are below 100 kHz, the spatial peak magnetic field strength over the vertical extent of the human body shall be compared to the reference levels in table 3 (i.e. magnetic field strengths shall not be spatially-averaged at frequencies below 100 kHz).
- 5 For simultaneous exposure to multiple frequencies and where comparison is to be made to the reference level based on NS, each of the field strength frequency component amplitudes shall be divided by the corresponding field strength reference level for that frequency, and the sum of all these ratios shall not exceed unity. This may be expressed as $\sum (Ei/E_{RL}) \leq 1$ for electric field strength or $\sum (Hi/H_{RL}) \leq 1$ for magnetic field strength.
- 6 For simultaneous exposure to multiple frequencies and where comparison is to be made to the reference level based on SAR, each of the squares of the field strength frequency component amplitudes shall be divided by the square of the corresponding field strength reference level for that frequency, and the sum of all these ratios shall not exceed unity. This may be expressed as $\sum (Ei/E_{RL})^2 \leq 1$ for electric field strength or $\sum (Hi/H_{RL})^2 \leq 1$ for magnetic field strength.
- 7 For localized exposure of the limbs, the reference levels for magnetic field strength may be exceeded provided that the basic restrictions in table 1 of Safety Code 6 are respected within the limbs.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

6.1.3.2 Limits according to KDB 680106 D01

According to section 3, paragraph 3) of KDB 680106 D01, for devices designed for typical desktop applications, such as wireless charging pads, RF exposure evaluation should be conducted assuming a user separation distance of 10 cm. E and H field strength measurements or numerical modeling may be used to demonstrate compliance. Measurements should be made from all sides and the top of the primary/client pair, with the 10 cm measured from the center of the probe(s) to the edge of the device. Emissions between 100 kHz to 300 kHz should be assessed versus the limits at 300 kHz in table 1 of 47 CFR Part 1, §1.1310 (see table 4): 614 V/m and 1.63 A/m

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
<i>(A) Limits for Occupational/Controlled Exposure</i>				
0.3 - 3.0	614	1.63	*100	6
3.0 - 30	1842/f	4.89/f	*900/f ²	6
30 - 300	61.4	0.163	1.0	6
300 - 1,500			f/300	6
1,500 - 100,000			5	6
<i>(B) Limits for General Population/Uncontrolled Exposure</i>				
0.3 - 1.34	614	1.63	*100	30
1.34 - 30	824/f	2.19/f	*180/f ²	30
30 - 300	27.5	0.073	0.2	30
300 - 1,500			f/1500	30
1,500 - 100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

Table 4: Limits for Maximum Permissible Exposure (MPE) to RF electromagnetic fields

6.1.4 Test procedure

The RF exposure test is performed by the direct measurement method using a Broadband probe as described in clause 6.6.1.1 of the supplementary procedure SPR-002.

To find the worst case emissions, the field probe is moved over all sides of the EUT at the separation distance as noted in Table 6 while observing the display of the field meter. At the worst case position, the final value is measured and recorded.

According to section 3.2 of RSS-102, RF exposure evaluation of devices shall be made in accordance with the latest version of IEEE C95.3. Definition 3.95 in clause 3 of IEEE C95.3 specifies the separation distance applied to the measurement of electric and magnetic fields as the "distance between a source and the nearest point on the probe sensing elements".

According to section 3 of KDB 680106 D01, the test distance is measured from the center of the probe(s) to the edge of the device. To determine the test distance, the separation distance stated for testing according to RSS-102 has to be increased by half of the diameter of the probe(s) used. As long as this test distance is equal to or less than the required test distance of 10 cm, the values measured according to RSS-102 may be used to show compliance with the RF exposure requirements of KDB 680106 D01.

Table 5 shows the relationship between the test distance according to KDB 680106 D01 and the separation distance according to RSS-102 as a function of the probe diameter.

<i>Field probe</i>	<i>Field type</i>	<i>Used with</i>	<i>Diameter</i>	<i>Separation distance (RSS-102)</i>	<i>Test distance (KDB 680106 D01)</i>
100 cm ²	Magnetic field	ELT-400	125 mm	D	D + 6.1 cm
HF3061	Magnetic field	NBM-550	120 mm	D	D + 6.0 cm
EF0691	Electric field	NBM-550	66 mm	D	D + 3.3 cm

Table 5: Test distance versus separation distance

6.1.5 Test results

6.1.5.1 Test results according to RSS-102

For the test result, the maximum field strength value of all probe positions is recorded and used to proof compliance. As the device is intended for general public use, the limits for uncontrolled environment apply.

Electric field strength at a distance of 1 cm						
Reference level frequency range	Reference level basis	Frequency	Operation mode	Measured value	Limit	Result
3 kHz - 10 MHz	NS	159 kHz	Standby	1.37 V/m	83 V/m	Passed
3 kHz - 10 MHz	NS	117 kHz – 151 kHz	Charging	2.90 V/m	83 V/m	Passed
Magnetic field strength at a distance of 1 cm						
Reference level frequency range	Reference level basis	Frequency	Operation mode	Measured value	Limit	Result
3 kHz - 10 MHz	NS	159 kHz	Standby	0.701 A/m	90 A/m	Passed
3 kHz - 10 MHz	NS	117 kHz – 151 kHz	Charging	1.248 A/m	90 A/m	Passed
100 kHz - 10 MHz	SAR	159 kHz	Standby	0.701 A/m	4.591 A/m	Passed
100 kHz - 10 MHz	SAR	117 kHz – 151 kHz	Charging	1.248 A/m	4.834 A/m	Passed

Table 6: RF exposure test results according to RSS-102

Note: Calculation of the SAR based limits:

No SAR based limit for E_{RL} as requirement starts from 1.1 MHz;

Standby:

$$H(159 \text{ kHz}) = 0.73 / 0.159 = 4.591 \text{ A/m}$$

Charging:

$$H_{RL}(130 \text{ kHz}) = 0.73 / 0.117 = 6.239 \text{ A/m};$$

$$H_{RL}(175 \text{ kHz}) = 0.73 / 0.151 = 4.834 \text{ A/m};$$

For the frequency range 117 kHz to 151 kHz, the worst case limit is $H_{RL}(151 \text{ kHz})$.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

6.1.5.2 Test results according to KDB 680106 D01

Table 5 shows the relationship between the test distance according to KDB 680106 D01 and the separation distance according to RSS-102. As long as the test distance is equal to or less than the required test distance of 10 cm, the measured values as listed in table 6 may be used to show compliance with the RF exposure requirements of KDB 680106 D01.

Electric field strength at a test distance of 1 cm					
Reference level frequency range	Frequency	Operation mode	Measured value	Limit	Result
100 kHz - 300 kHz	175 kHz	Standby	1.37 V/m	614 V/m	Passed
100 kHz - 300 kHz	137 kHz – 176 kHz	Charging	2.90 V/m	614 V/m	Passed
Magnetic field strength at a test distance of 1 cm					
Reference level frequency range	Frequency	Operation mode	Measured value	Limit	Result
100 kHz - 300 kHz	175 kHz	Standby	0.701 A/m	1.63 A/m	Passed
100 kHz - 300 kHz	137 kHz – 176 kHz	Charging	1.248 A/m	1.63 A/m	Passed

Table 7: RF exposure test results according to KDB 680106 D01

6.2 Multiple transmitters capable of simultaneous transmission

For wireless power transmission systems, in charging mode the operating frequency depends on the battery charge condition. Therefore, the operating frequency may vary between 117 kHz and 151 kHz. In standby mode, the operating frequency remains at about 159 kHz. Therefore, simultaneous transmission does not apply.

7 Measurement uncertainty

The relative uncertainty is defined as the expanded uncertainty using a confidence interval of 95 % ($k = 2$). For evaluation of compliance, the measured value is compared directly to the applicable limit without any reduction.

Test	Equipment used	Expanded uncertainty	k
Magnetic field (H and B) 1 Hz – 400 kHz	ELT-400 with BN 2300/90.10	-28.07 % +28.07%	2
Electric field (E) 100 kHz to 6 GHz	NBM-550 with EF0691	-27.75 % +31.11 %	2

Table 8: Measurement uncertainties

8 Equipment calibration status

Description	Modell number(s)	Serial number(s)	Inventory number(s)	Last calibration	Next calibration
Exposure level tester with magnetic field probe 100 cm ²	ELT-400 with BN 2300/90.10	B-0087 B-0102	E00276	2017-05	2019-05
Broadband field meter with magnetic field probe	NBM-550 with HF3061	H-0015 D-0595	E00900 E00901	2017-01	2019-01
Broadband field meter with electric field probe	NBM-550 with EF0691	H-0015 H-0318	E00900 E00902	2017-01	2019-01

Table 9: Equipment calibration status

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

9 Revision history

<i>Revision</i>	<i>Date</i>	<i>Issued by</i>	<i>Description of modifications</i>
0	2018-05-16	Andreas Menacher	First edition

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base