

test report

Customer:

Complete Solutions d.o.o

Presernova cesta 55
6310 Izola
Slovenia
Tel.: +386 40 632 596

RF test report

180103-AU01+W02

Complete Solutions d.o.o
Wireless Power Transmission System
ComeX – Wireless Charger Base

The test result refers exclusively to the model
tested.

This test report may not be copied or published
in extracts without the written authorization of
the accreditation agency and/or
EMV **TESTHAUS** GmbH

EMV **TESTHAUS** GmbH

Gustav-Hertz-Straße 35
94315 Straubing
Germany
Tel.: +49 9421 56868-0
Fax: +49 9421 56868-100
Email: info@emv-testhaus.com

Accreditation:

Test Firm Type "accredited": Valid until 2019-05-06
MRA US-EU, FCC designation number: DE0010
BNetzA-CAB-02/21-02/04 Valid until 2018-11-27

Industry Canada test site numbers with registration expiry date:
3472A-1, expiring 2018-11-09
3472A-2, expiring 2018-11-12

Location of Testing:

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

The technical accuracy is guaranteed through the quality management of the
EMV **TESTHAUS** GmbH.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

Table of contents

1	Summary of test results	7
2	Referenced publications	9
3	Equipment under test (EUT)	10
3.1	General information	10
3.2	Radio specifications	11
4	Photo documentation	12
5	Test configuration and mode of operation	12
5.1	Test configuration	12
5.2	Mode of operation	13
5.2.1	Separation distance	13
5.2.2	Orientation	13
5.2.3	Operational modes	13
6	Test procedures	15
6.1	General specifications	15
6.2	AC power-line conducted emissions	15
6.3	Radiated emissions below 30 MHz	17
6.3.1	Extrapolation according to ANSI C63.10	17
6.3.2	Test method according to RSS-216	18
6.3.3	Measuring radiated emissions below 30 MHz	18
6.4	Radiated emissions from 30 MHz to 1 GHz	19
6.5	Radiated emissions above 1 GHz	21
6.5.1	Exploratory radiated emissions measurements	21
6.5.2	Final radiated emissions measurements	22
7	Test results	25
7.1	Restricted bands of operation	26
7.1.1	Test equipment	26
7.1.2	Limits	27
7.1.3	Test procedure	27
7.1.4	Test results	28
7.2	AC power line conducted emissions	33
7.2.1	Test equipment	33
7.2.2	Limits	34
7.2.3	Test procedure	34
7.2.4	Test results	35
7.3	Radiated emissions	45
7.3.1	Radiated emissions below 30 MHz	45

7.3.2 Radiated emissions from 30 MHz to 1 GHz	53
7.4 Bandwidth tests	61
7.4.1 Test equipment.....	61
7.4.2 Limits	62
7.4.3 Test procedure.....	62
7.4.4 Test results	64
8 Equipment calibration status.....	68
9 Measurement uncertainties	69
10 Revision history	70

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

List of figures

Figure 1: Setup for AC power-line conducted emissions test from 9 kHz to 30 MHz.....	16
Figure 2: Setup for radiated emissions test below 30 MHz	19
Figure 3: Setup for radiated emissions test from 30 MHz to 1 GHz	21
Figure 4: Setup for radiated emissions test above 1 GHz.....	24
Figure 5: Chart of restricted bands of operation test for standby mode.....	28
Figure 6: Chart of restricted bands of operation test for charging mode 1.....	30
Figure 7: Chart of restricted bands of operation test for charging mode 2.....	31
Figure 8: Chart of AC power-line conducted emissions test (CISPR 11) on live wire L1 for standby mode.....	36
Figure 9: Chart of AC power-line conducted emissions test (CISPR 11) on neutral wire N for standby mode	37
Figure 10: Chart of AC power-line conducted emissions test (15.207) on live wire L1 for standby mode.....	38
Figure 11: Chart of AC power-line conducted emissions test (15.207) on live wire N for standby mode.....	39
Figure 12: Chart of AC power-line conducted emissions test (CISPR 11) on live wire L1 for charging mode 2	41
Figure 13: Chart of AC power-line conducted emissions test (CISPR 11) on neutral wire N for charging mode 2	42
Figure 14: Chart of AC power-line conducted emissions test (15.207) on live wire L1 for charging mode 2.....	43
Figure 15: Chart of AC power-line conducted emissions test (15.207) on live wire N for charging mode 2	44
Figure 16: Chart of radiated emissions test below 30 MHz according to §15.209 for standby mode	48
Figure 17: Chart of radiated emissions test below 30 MHz according to CISPR 11 for standby mode	49
Figure 18: Chart of radiated emissions test below 30 MHz according to §15.209 for charging mode 2.....	51
Figure 19: Chart of radiated emissions test below 30 MHz according to CISPR 11 for charging mode 2	52
Figure 20: Chart of radiated emissions test 30 MHz to 1 GHz according to §15.209 for standby mode.....	56
Figure 21: Chart of radiated emissions test 30 MHz to 1 GHz according to CISPR 11 for standby mode	57
Figure 22: Chart of radiated emissions test 30 MHz to 1 GHz according to §15.209 for charging mode 2	59
Figure 23: Chart of radiated emissions test below 30 MHz according to CISPR 11 for charging mode 2.....	60
Figure 24: Chart of 20 dB bandwidth of the emission test for standby mode.....	64
Figure 25: Chart of occupied bandwidth (99 %) test for standby mode	65
Figure 26: Chart of 20 dB bandwidth of the emission test for charging mode 2	66
Figure 27: Chart of occupied bandwidth (99 %) test for charging mode 2	67

List of tables

Table 1: Devices used for testing	12
Table 2: Ports of EUT and appropriate cables	12
Table 3: Operational modes of WPT system	14
Table 4: Bandwidth and detector type for AC power-line conducted emissions test.....	16
Table 5: Recalculation factors for extrapolation	17
Table 6: Bandwidth and detector type for radiated emissions test below 30 MHz	18
Table 7: Bandwidth and detector type for radiated emissions test from 30 MHz to 1 GHz	19
Table 8: Bandwidth and trace settings for exploratory radiated emissions test above 1 GHz.....	22
Table 9: Bandwidth and detector type for final radiated emissions test above 1 GHz	22
Table 10: Limits for emissions in restricted bands	27
Table 11: Results of restricted bands of operation test for standby mode	29
Table 12: Results of restricted bands of operation test for charging mode 2.....	32
Table 13: Limits for AC power-line conducted emissions according to §15.207.....	34
Table 14: Limits for AC power-line conducted emissions according to CISPR 11	34
Table 15: General radiated emission limits according to §15.209	46
Table 16: Magnetic field strength limits according to CISPR 11	46
Table 17: Results of radiated emissions test below 30 MHz according to §15.209 for standby mode	48
Table 18: Results of radiated emissions test below 30 MHz according to CISPR 11 for standby mode	49
Table 19: Results of radiated emissions test below 30 MHz according to §15.209 for charging mode 2.....	51
Table 20: Results of radiated emissions test below 30 MHz according to CISPR 11 for charging mode 2.....	52
Table 21: General radiated emission limits according to §15.209	54
Table 22: Electric field strength limits according to CISPR 11.....	54
Table 23: Results of radiated emissions test 30 MHz to 1 GHz according to §15.209 for standby mode	56
Table 24: Results of radiated emissions test 30 MHz to 1 GHz according to CISPR 11 for standby mode	57
Table 25: Results of radiated emissions test 30 MHz to 1 GHz according to §15.209 for charging mode 2.....	59
Table 26: Results of radiated emissions test 30 MHz to 1 GHz according to CISPR 11 for charging mode 2.....	60
Table 27: Results of bandwidth tests for standby mode.....	64
Table 28: Results of bandwidth tests for charging mode 2.....	66

1 Summary of test results

47 CFR part and section	Test	Equivalent IC standard(s)	Page	Result	Note(s)
15.205	Restricted bands of operation	RSS-216, section 6.2.3 / RSS-Gen, section 8.10	26	Passed	1
15.207	AC power line conducted emissions 9 kHz to 30 MHz	RSS-216, section 6.2.2.1 / ICES-001	33	Passed	2
15.209	Radiated emissions 9 kHz to 30 MHz 30 MHz to 1 GHz 1 GHz to 10 th harmonic	RSS-216, section 6.2.2.2 / ICES-001	45 53 ---	Passed Passed Not applicable	3 4
15.215	Emission bandwidth	---	61	Recorded	5
---	Occupied bandwidth	RSS-Gen, section 6.7		Recorded	

Notes (for information about EUT see clause 3):

- 1 Restricted band according to §15.205 close to operating frequency range is 90 kHz to 110 kHz which is identical to the requirements of section 8.10 in RSS-Gen.
- 2 According to §15.207, conducted emission limits are defined for the frequency range 150 kHz to 30 MHz. However, according to section 6.2.2.1 of RSS-216, the mains terminals disturbance voltage limits for induction cooking (group 2) equipment defined for the frequency range 9 kHz to 30 MHz apply, as set out in the CISPR 11 standard referenced in ICES-001.
- 3 Alternate 60 cm loop test method used as set out in the CISPR 11 standard referenced in ICES-001. According to section 6.2.2.2 of RSS-216, it is acceptable to use this method referring to the limits for commercial / industrial and large residential induction cooking appliances even if the WPT device is small and for residential use.
- 4 As the intentional radiator of the WPT system operates below 10 GHz and the tenth harmonic of the highest fundamental frequency is lower than 1 GHz (see 47 CFR Part 15, section 15.33(a)(1)), this measurement needs to be applied only if the digital part of the WPT device generates or uses internal frequencies higher than 108 MHz (see 47 CFR Part 15 section 15.33(b)(1)). RSS-216 specifies limits from 9 kHz to 1 GHz, only.
- 5 Required for intentional radiators operating under the alternative provisions to the general emission limits, only.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

Straubing, May 16, 2018

Andreas Menacher

Andreas Menacher
Test engineer
EMV **TESTHAUS** GmbH

Konrad Graßl

Konrad Graßl
Head of Radio Department
EMV **TESTHAUS** GmbH

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

2 Referenced publications

In this report, any reference to publications without stating the issue date explicitly refers to the versions as listed below.

Publication	Title
47 CFR Part 2:2017-10	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)
47 CFR Part 15:2017-10	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)
ANSI C63.10:2013-06	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
FCC KDB 174176 D01 June 3, 2015	AC power-line conducted emissions Frequently Asked Questions
RSS-216 Issue 2, January 2016	Spectrum Management and Telecommunications Radio Standards Specification Wireless Power Transfer Devices
RSS-Gen Issue 5, April 2018	Spectrum Management and Telecommunications Radio Standards Specification General Requirements and Information for the Certification of Radio communication Equipment
ICES-001 Issue 4, January 2016, Updated November 2014	Spectrum Management and Telecommunications Interference-Causing Equipment Standard Industrial, Scientific and Medical (ISM) Radio Frequency Generators
CAN/CSA-CEI/IEC CISPR 11:04	Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment - Electromagnetic Disturbance Characteristics - Limits and Methods of Measurement
CISPR 11:2003-03 Edition 4.0	Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement

Notes:

- 1 Although not listed explicitly in the Annex to Accreditation Certificate D-PL-12155-01-00, testing according to RSS-216 Issue 2, January 2016, is regarded as to be covered by the scope of accreditation because for all tests performed, this standard refers to ICES-001 and/or RSS-Gen (see clause 1), which both are listed in the Annex to Accreditation Certificate D-PL-12155-01-00.
- 2 CAN/CSA-CEI/IEC CISPR 11:04 is an adoption of the fourth edition of CISPR 11, i.e. CISPR 11:2003-03.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

3 Equipment under test (EUT)

All Information in this clause is declared by customer.

3.1 General information

Product type:	Wireless Power Transmission System		
Model name:	Power transmitter: ComeX – Wireless Charger Base (WPT source device)		
	Power receiver: ComeX (WPT client device)		
Serial number(s):	Power transmitter: CHG01 Power receiver: HPT030001		
HVIN:	CHG01		
FCC ID:	2AO34-CHG01		
IC certification number:	23943-CHG01		
Manufacturer:	Complete Solutions d.o.o.		
Version:	Power transmitter:	Hardware: 01	Software: No SW-Version
	Power receiver:	Hardware: 3.0	Software: 3.2
Short description:	EUT is a Wireless power transmission (WPT) system that has a range of operating frequencies from 117 kHz to 159 kHz.		
Additional modifications:	Ferrite Würth 742 758 12 on USB-cable of power supply. Copper foil was mounted on the main pcb of the charger.		
Power supply:	DC supply Nominal voltage: 5.00 V Minimum voltage: 4.75 V Maximum voltage: 5.25 V		
Supply used for testing:	120 V / 60 Hz		
Temperature range:	+5 °C to +45 °C (Customized)		

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

3.2 Radio specifications

Application(s):	Wireless Power Transfer (WPT)	
Range of operating frequencies:	117 kHz to 159 kHz	
Frequency stability during charging:	<input type="checkbox"/> Fixed frequency	<input checked="" type="checkbox"/> Frequency depending on charge of battery
Secondary frequency ¹ :	<input type="checkbox"/> yes	<input checked="" type="checkbox"/> no
Power transfer management ¹ :	<input checked="" type="checkbox"/> yes	<input type="checkbox"/> no
Modulation:	ASK	
Device type(s) ¹ :	<input checked="" type="checkbox"/> WPT source device: Power transmitter (base station), with additional communication capability to control the charge function, in conjunction with the receiving part <input checked="" type="checkbox"/> WPT client device: Power receiver, which supplies the received energy to a mobile device and performs a control/supervision function for the mobile device status and charge operation. Both parts in combination are able to transmit and receive data in addition to the power transmission mode e.g. to control the mobile device status and to optimize the power transmission mode	
WPT source type ¹ :	<input type="checkbox"/> Type 1 (ISM) <input type="checkbox"/> Type 2 (Category II) <input checked="" type="checkbox"/> Type 3 (Category I)	
Power transfer zone(s) ¹ :	<input checked="" type="checkbox"/> Single fixed power transfer zone, single client <input type="checkbox"/> Multiple fixed power transfer zones, single client <input type="checkbox"/> Multiple non-fixed power transfer zones, single client <input type="checkbox"/> Multiple power transfer zones, multiple clients	
EUT setup for ¹ :	<input checked="" type="checkbox"/> WPT system (source and client(s) together) <input type="checkbox"/> WPT source (marketed independently) <input type="checkbox"/> WPT client (marketed independently)	
Antenna:	Type: Power transmitter: --- Power receiver: --- Size: Power transmitter: 25 mm x 20 mm Power receiver: 19 mm Ø Style: <input checked="" type="checkbox"/> integral <input type="checkbox"/> dedicated Connector: <input type="checkbox"/> external <input type="checkbox"/> internal <input type="checkbox"/> temporary <input checked="" type="checkbox"/> none	

¹ Classification according to RSS-216.

4 Photo documentation

For external photos of the EUT see annex B, for internal ones see annex C. Photos taken during testing including EUT positions can be found in annex A.

5 Test configuration and mode of operation

5.1 Test configuration

EUT			
Device	Type designation	Serial or inventory no.	Manufacturer
Power transmitter	ComeX – Wireless Charger Base	CHG01	Complete Solutions d.o.o.
Peripheral devices			
Device	Type designation	Serial or inventory no.	Manufacturer
Power supply	EP880 1269-4142.1	2 1 1 4W28126699	SONY®
Power receiver	COME-X	HPT030001	Complete Solutions d.o.o.
Power receiver dummy	Dummy	---	Complete Solutions d.o.o.
Support devices			
Device	Type designation	Serial or inventory no.	Manufacturer
AC power source	616062	E00633	Chroma

Table 1: Devices used for testing

Note: The power receiver is used for determining the operating frequency range when charging. For testing at a single frequency, the power receiver dummy is selected. This dummy device is equipped with the same power receiver part as the original power receiver device, but the battery is disconnected and a special load mounted outside the cabinet is used instead. This enables testing the EUT operating in charging mode at a single and stable frequency.

Port	Classification (see note 1)	Cable type	Outdoor cable	Cable length used	Cable length maximum	Note
AC input of power supply of power transmitter	AC power	---	<input type="checkbox"/>	N/A	N/A	
DC input of power transmitter	DC power	Shielded	<input type="checkbox"/>	1.00m	1.00 m	2

Table 2: Ports of EUT and appropriate cables²

² As specified by customer.

Notes:

- 1 Ports of EUT are classified as “AC power”, “DC power”, “DC power connected to dedicated AC/DC power supply”, “Signal/control” or “Wired network”.
- 2 Fixed connection of power supply to power transmitter.
- 3 USB port of power receiver is intended to be used for charging additional peripheral devices. Therefore, a resistive load is connected to simulate appropriate power consumption.

5.2 Mode of operation

5.2.1 Separation distance

For EUTs that are capable of wireless power transfer over a non-zero separation distance between the source and the client devices, testing at zero separation only is not sufficient.

- EUT is not capable of wireless power transfer over a non-zero separation distance:
Testing at zero separation is performed.
- EUT is capable of wireless power transfer over a non-zero separation distance. According to section 6.1.5 of RSS-216, there are two possible approaches:
 - Preliminary exploratory measurements are performed by varying the orientation of the WPT client(s) and its (their) separation distance(s) from the wireless power transfer zone of the WPT source, for finding the configuration that generates the highest levels of emissions. The final compliance measurement is performed on the worst-case EUT configuration. This procedure is used for all EUT emissions.
 - EUT is tested in the following two configurations:
 - With zero separation between the source and client device(s);
 - With maximum separation between the source and client device(s).

5.2.2 Orientation

The EUT is tested in its typical setup configuration, as per the manufacturer's instructions in the user manual. If the device can be operated in various orientations (e.g. tabletop and wall-mount), it is tested in each orientation in which it is intended to be used.

- EUT has one position of use which is selected for testing.
- EUT is tested in three orthogonal orientations.

For photos of EUT positions see annex A.

5.2.3 Operational modes

In table 3 the operational modes of the WPT system are listed.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

<i>Operational mode</i>	<i>Set-up</i>	<i>Function of WPT source</i>	<i>Function of WPT client</i>	<i>Tests performed</i>
Standby mode: WPT source in standby or idle mode	WPT source only	Transmitter	Not applicable	<ul style="list-style-type: none"> • Restricted bands of operation • AC power line conducted emissions • Radiated emissions
Charging mode 1: energy transmission with communication	WPT system alignment with WPT source and standard WPT client	TX and RX	TX and RX	<ul style="list-style-type: none"> • Restricted bands of operation
Charging mode 2: energy transmission with communication on fixed frequency	WPT system alignment with WPT source and power receiver dummy	TX and RX	TX and RX	<ul style="list-style-type: none"> • Restricted bands of operation • AC power line conducted emissions • Radiated emissions

Table 3: Operational modes of WPT system

6 Test procedures

6.1 General specifications

Tabletop devices are placed on a non-conductive table with a height of 0.8 m. In case of AC power-line conducted emissions test, the rear of the EUT is located 40 cm to the vertical wall of the RF-shielded (screened) room which is used as vertical conducting plane. For radiated emission measurements above 1 GHz, tabletop devices are placed at a height of 1.5 m above the floor using a support made of styrene placed on top of the non-conductive table.

Floor-standing devices are placed either directly on the reference ground-plane or on insulating material (see clause 6.3.3 of ANSI C63.4-2014 for more details).

All other surfaces of tabletop or floor-standing EUTs are at least 80 cm from any other grounded conducting surface. This includes the case or cases of one or more LISNs when performing an AC power-line conducted emissions test.

Radiated emission measurements of equipment that can be used in multiple orientations (e.g. portable or handheld devices) are performed with the EUT in each of three orthogonal axis positions.

6.2 AC power-line conducted emissions

AC power-line conducted emissions are measured according to clause 6.2 of ANSI C63.10 over the frequency range from 150 kHz to 30 MHz and clause 5.1 of CISPR 11 from 9 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network. The tests are performed in a shielded room.

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements are made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an “off-the-shelf” unmodified ac power adapter is used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

Frequency (f)	Measurement receiver bandwidth	Step size	Detector type		
			Prescan	Prescan with FFT	Final scan
9 kHz ≤ f < 150 kHz	200 Hz	≤ 100 Hz	Peak, Average	Quasi-peak, Average	Quasi-peak, Average
150 kHz ≤ f < 30 MHz	9 kHz	≤ 4.5 kHz	Peak, Average	Quasi-peak, Average	Quasi-peak, Average

Table 4: Bandwidth and detector type for AC power-line conducted emissions test

The AC power-line conducted emissions test is performed in the following steps:

- The EUT is arranged as tabletop or floor-standing equipment, as applicable, and connected to a line impedance stabilization network (LISN) with 50 μ H / 50 Ω . If required, a second LISN of the same type and terminated by 50 Ω is used for peripheral devices. The EUT is switched on.
- The measurement equipment is connected to the LISN for the EUT and set-up according to the specifications of the test (see table 4). At the LISN, the neutral line is selected to be tested.
- The prescan is performed with both detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescan, but not for final scan.
- When the prescan is completed, maximum levels with less margin than 10 dB or exceeding the limit are determined and collected in a list.
- With the first frequency of the list selected, a frequency zoom over a range of ten times of the measurement receiver bandwidth around this frequency is performed. If the EUT has no significant drift in frequency, the frequency zoom can be skipped.
- For final scan, the emission level is measured and the maximum is recorded.
- Steps e) to f) are repeated for all other frequencies in the list. At least the six highest EUT emissions relative to the limit have to be recorded.
- Steps c) to g) are repeated for all current-carrying conductors of all of the power cords of EUT, i.e. all phase and (if used) neutral line(s).

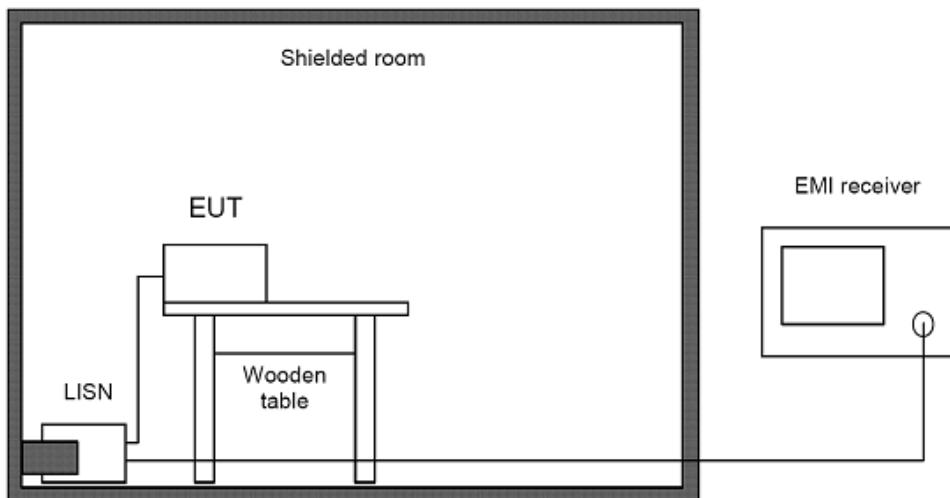


Figure 1: Setup for AC power-line conducted emissions test from 9 kHz to 30 MHz

6.3 Radiated emissions below 30 MHz

Radiated emissions below 30 MHz are measured according to clause 6.4 of ANSI C63.10 and clause 5.2 of CISPR 11 using an inductive shielded loop antenna. As this antenna measures the magnetic field only, its antenna factors are converted to electric field strength values assuming a free space impedance of 377Ω as described in clause 4.3.1 of ANSI C63.10. This results in an additional correction of 51.53 dB.

6.3.1 Extrapolation according to ANSI C63.10

According to clause 6.4.3 of ANSI C63.10, at frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements. In this case, the results are extrapolated to the specified distance by using a recalculation factor determined according to one of the methods described in clause 6.4.4 of ANSI C63.10, provided that the maximum dimension of the device is equal to or less than 0.625 times the wavelength at the frequency being measured. As the minimum wavelength is 10 meters corresponding to the maximum frequency of 30 MHz, this requirement is fulfilled if the maximum dimension of the device is equal to or less than 6.25 meters.

Unless otherwise stated, the recalculation factor is determined according to clause 6.4.4.2 "Extrapolation from the measurement of a single point" of ANSI C63.10:

$$\begin{aligned} d_{\text{near field}} &= 47.77 / f_{\text{MHz}}, \text{ or} \\ f_{\text{MHz}} &= 47.77 / d_{\text{near field}} \end{aligned}$$

The frequency f_{MHz} at which the near field distance is equal to the limit and/or test distance is important for selection of the right formula to determine the recalculation factor:

$$\begin{aligned} f_{\text{MHz}}(300 \text{ m}) &\approx 0.159 \text{ MHz} \\ f_{\text{MHz}}(30 \text{ m}) &\approx 1.592 \text{ MHz} \\ f_{\text{MHz}}(3 \text{ m}) &\approx 15.923 \text{ MHz} \end{aligned}$$

Based on the test distances for the general radiated emission limits as specified in §15.209 of 47 CFR Part 15, the following formulas are used to determine the recalculation factor:

Frequency (f)	d_{limit}	d_{measure}	Formula for recalculation factor
9 kHz \leq f \leq 159 kHz 490 kHz $<$ f \leq 1.592 MHz	300 m 30 m	3 m	$-40 \log(d_{\text{limit}} / d_{\text{measure}})$
159 kHz $<$ f \leq 490 kHz 1.592 MHz $<$ f \leq 15.923 MHz	300 m 30 m	3 m	$-40 \log(d_{\text{near field}} / d_{\text{measure}}) - 20 \log(d_{\text{limit}} / d_{\text{near field}})$
f $>$ 15.923 MHz	30 m	3 m	$-20 \log(d_{\text{limit}} / d_{\text{measure}})$

Table 5: Recalculation factors for extrapolation

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

6.3.2 Test method according to RSS-216

According to section 6.2.2.2 of RSS-216, the preferred test method for WPT devices that may be used in residential environments and that have a maximum dimension of less than or equal to 1.6 m is using the van Veen loop antenna system. However, it is acceptable to use the alternate 60 cm loop test method, as set out in the CISPR 11 standard referenced in ICES 001.

As the limits for commercial / industrial and large residential devices defined for a test distance of 3 meters shall apply even if the WPT device is small and for residential use, extrapolation is not required for magnetic field tests performed according to CISPR 11.

6.3.3 Measuring radiated emissions below 30 MHz

Prescans for radiated measurements below 30 MHz are performed in a fully anechoic room (called "CDC"). The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 6.

Frequency (f)	Measurement receiver bandwidth	Step size	Detector type		
			Prescan	Prescan with FFT	Final scan
9 kHz ≤ f < 150 kHz	200 Hz	≤ 100 Hz	Peak, Average	Peak Quasi-peak, Average	Peak Quasi-peak, Average
150 kHz ≤ f < 30 MHz	9 kHz	≤ 4.5 kHz	Peak, Average	Peak Quasi-peak, Average	Peak Quasi-peak, Average

Table 6: Bandwidth and detector type for radiated emissions test below 30 MHz

Prescans are performed with all detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans. If no limit is specified for certain detectors, final scan measurement with these detectors may be omitted.

The radiated emissions test below 30 MHz is performed in the following steps:

- a) The loop antenna is positioned with its plane perpendicular to the ground with the lowest height of the antenna 1 m above the ground.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the loop antenna and set-up according to the specifications of the test (see table 6).
- d) The EUT is turned to a position likely to get the maximum and the test antenna is rotated to detect the maximum of the fundamental in this EUT position.
- e) Then the EUT is rotated in a horizontal plane through 360° in steps of 45°. Starting at 0°, at each table position the spectrum for the full frequency range is recorded. If the emission at a

certain frequency is higher than the levels already recorded, the current table position is noted as the maximum position.

- f) After the last prescan, the significant maximum emissions and their table positions are determined and collected in a list.
- g) With the test receiver set to the first frequency of the list, the EUT is rotated by $\pm 45^\circ$ around the table position found during prescans while measuring the emission level continuously. For final scan, the worst-case table position is set and the maximum emission level is recorded.
- h) Step g) is repeated for all other frequencies in the list.
- i) Finally, for frequencies with critical emissions the loop antenna is rotated again to find the maximum of emission. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to i) are repeated in two other orthogonal positions. If the EUT may be used in one position only, steps a) to i) are repeated in one orthogonal position.

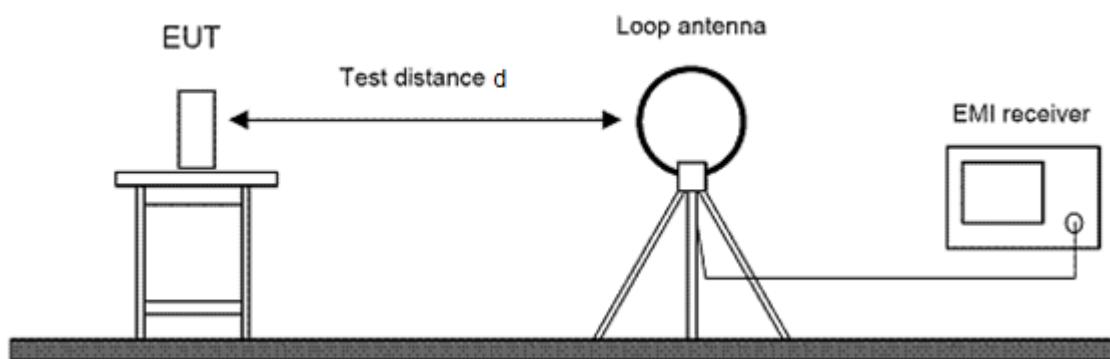


Figure 2: Setup for radiated emissions test below 30 MHz

6.4 Radiated emissions from 30 MHz to 1 GHz

Radiated emissions in the frequency range 30 MHz to 1 GHz are measured according to clause 6.5 of ANSI C63.10 and clause 5.2 of CISPR 11 using a semi-anechoic chamber (SAC) with a ground plane on the floor. The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 7.

Frequency (f)	Measurement receiver bandwidth	Step size	Detector type		
			Prescan	Prescan with FFT	Final scan
30 MHz \leq f \leq 1 GHz	120 kHz	\leq 60 kHz	Peak	Quasi-peak	Quasi-peak

Table 7: Bandwidth and detector type for radiated emissions test from 30 MHz to 1 GHz

The measurement antenna is a combination of a biconical antenna and a logarithmic-periodic dipole array antenna. It is mounted on a support capable of allowing the antenna to be used in either horizontal or vertical polarization and in a height between 1 m and 4 m above the ground plane.

If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans.

The radiated emissions test from 30 MHz to 1 GHz is performed in the following steps:

- a) The measurement antenna is oriented initially for vertical polarization.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the measurement antenna and set-up according to the specifications of the test (see table 7).
- d) The table position is set to 0°.
- e) The antenna height is set to 1 m.
- f) The spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the polarization and height of the measurement antenna as well as the current table position are noted as the maximum position.
- g) The antenna height is increased to 4 m in steps of 50 cm. At each height, step f) is repeated.
- h) The polarization of the measurement antenna is changed to horizontal.
- i) The antenna height is decreased from 4 m to 1 m in steps of 50 cm. At each height, step f) is repeated.
- j) The EUT is rotated in a horizontal plane through 360° in steps of 60°. At each table position, steps e) to i) are repeated.
- k) After the last prescan, the significant maximum emissions with their polarizations and heights of the measurement antenna as well as their table positions are determined and collected in a list.
- l) With the test receiver set to the first frequency of the list, the measurement antenna is set to the polarization and height and the table is moved to the position as determined during prescans.
- m) The antenna is moved by ± 50 cm around this height and the EUT is rotated by ± 60 ° around this table position while measuring the emission level continuously.
- n) For final scan, the worst-case positions of antenna and table are set and the maximum emission level is recorded.
- o) Steps l) to n) are repeated for all other frequencies in the list. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to o) are repeated in two other orthogonal positions.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

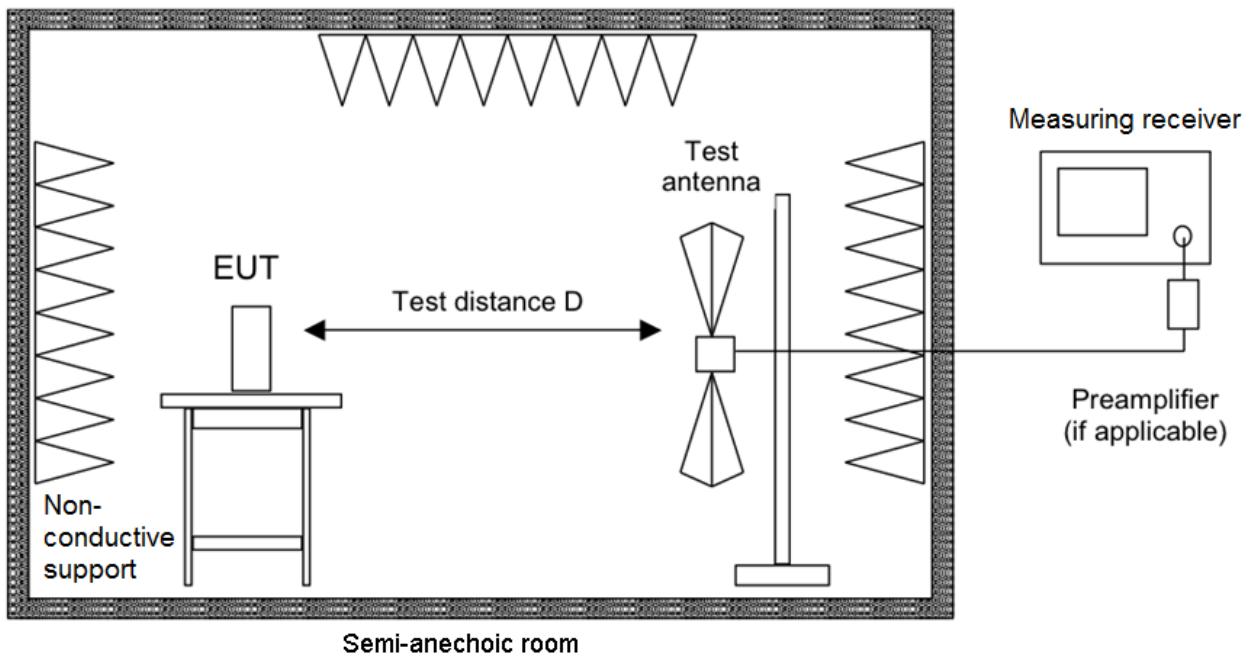


Figure 3: Setup for radiated emissions test from 30 MHz to 1 GHz

6.5 Radiated emissions above 1 GHz

Radiated emissions above 1 GHz are measured according to clause 6.6 of ANSI C63.10 by conducting exploratory and final radiated emission tests. According to clause 6.6.4.1 of ANSI C63.10, measurements may be performed at a distance closer than that specified in the requirements. However, an attempt shall be made to avoid making final measurements in the near field of both the measurement antenna and the EUT.

For measurement of radiated emissions above 1 GHz, horn antennas are used.

6.5.1 Exploratory radiated emissions measurements

Exploratory radiated emissions above 1 GHz are measured in a semi-anechoic chamber with RF absorbing material on the floor or a fully anechoic room. They are performed by moving the receiving antenna over all sides of the EUT at a closer distance (e.g. 0.5 or 1 m) while observing the display of the test receiver to find the emissions to be re-tested during final radiated emission measurements.

According to clause 5.3.3 of ANSI C63.10, when performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an

extrapolation factor of 20 dB/decade of distance (inverse of linear distance for field-strength measurements). To simplify testing and documentation, the limits are increased accordingly instead of decreasing the results.

The emissions of the EUT are displayed and recorded with an EMI test receiver operating in the spectrum analyzer mode using the settings as described in table 8.

Frequency (f)	Resolution bandwidth	Video bandwidth	Sweep time	Trace detector(s)	Trace mode(s)	Test
$f \geq 1 \text{ GHz}$	1 MHz	3 MHz	AUTO	Max Peak, Average	Clear Write	Searching
					Max Hold	Recording

Table 8: Bandwidth and trace settings for exploratory radiated emissions test above 1 GHz

If during exploratory radiated emissions measurements no levels to be re-tested are found, the final radiated emissions measurement may be omitted. In this case, the chart of the exploratory radiated emissions measurements has to be reported.

6.5.2 Final radiated emissions measurements

Final radiated emissions above 1 GHz are measured in a semi-anechoic chamber (SAC) with RF absorbing material on the floor between measurement antenna and EUT. The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 9.

Frequency (f)	Measurement receiver bandwidth	Step size	Detector type	
			Prescan	Final scan
$f \geq 1 \text{ GHz}$	1 MHz	$\leq 500 \text{ kHz}$	Peak, Average	Peak, Average

Table 9: Bandwidth and detector type for final radiated emissions test above 1 GHz

Prescans are performed with both detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans.

The horn antenna is mounted on a support capable of allowing the antenna to be used in either horizontal or vertical polarization and to be moved in a scan height range between 1 m and the scan height upper range defined in clause 6.6.3.3 of ANSI C63.10. When the EUT is manipulated through three different orientations, the scan height upper range for the measurement antenna is limited to 2.5 m above the ground plane or 0.5 m above the top of the EUT, whichever is higher. Otherwise, the scan height upper range is 4 m above the ground plane.

To keep the emission signal within the illumination area of the 3 dB beamwidth of the measurement antenna, the automatic tilt function of the antenna support device is used to point the antenna at an angle toward the source of the emission.

The final radiated emissions test above 1 GHz is performed in the following steps:

- a) The measurement antenna is oriented initially for vertical polarization.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the measurement antenna and set-up according to the specifications of the test (see table 9).
- d) The table position is set to 0°.
- e) The antenna height is set to 1 m.
- f) The spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the polarization and height of the measurement antenna as well as the current table position are noted as the maximum position.
 - g) The antenna height is increased to the scan height upper range in steps of 50 cm. At each height, step f) is repeated.
- h) The polarization of the measurement antenna is changed to horizontal.
- i) The antenna height is decreased from the scan height upper range to 1 m in steps of 50 cm. At each height, step f) is repeated.
- j) The EUT is rotated in a horizontal plane through 360° in steps of 30°. At each table position, steps e) to i) are repeated.
- k) After the last prescan, the significant maximum emissions with their polarizations and heights of the measurement antenna as well as their table positions are determined and collected in a list.
- l) With the test receiver set to the first frequency of the list, the measurement antenna is set to the polarization and height and the table is moved to the position as determined during prescans.
- m) The antenna is moved by ± 50 cm around this height and the EUT is rotated by ± 30 ° around this table position while measuring the emission level continuously.
- n) For final scan, the worst-case positions of antenna and table are set and the maximum emission level is recorded.
- o) Steps l) to n) are repeated for all other frequencies in the list. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to o) are repeated in two other orthogonal positions.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

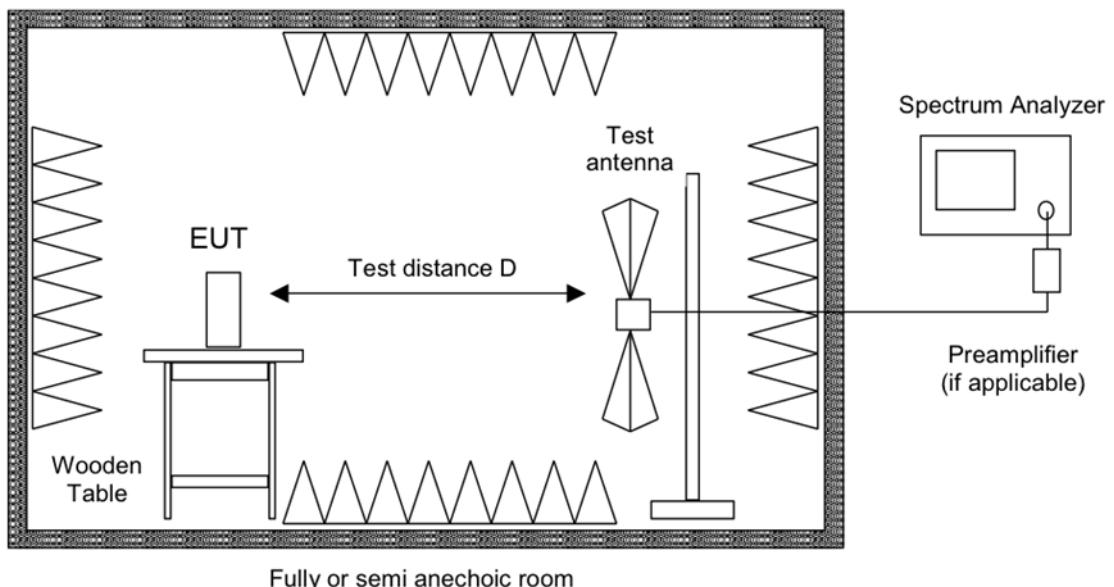


Figure 4: Setup for radiated emissions test above 1 GHz

7 Test results

This clause gives details about the test results as collected in the summary of test results starting on page 7.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

7.1 Restricted bands of operation

Section(s) in 47 CFR Part 15:	Requirement:	15.205
	Reference(s):	ANSI C63.10, clause 6.4
Section(s) in RSS-216:	Requirement:	6.2.3
	Reference(s):	RSS-Gen, section 8.10

Result³:

Test passed

Test not passed

7.1.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
<input type="checkbox"/> Open area test site (OATS)	---	EMV TESTHAUS	E00354
<input type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input checked="" type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Field probe	RF-R 400-1	Langer EMV-Technik	E00270
<input checked="" type="checkbox"/> Loop antenna	HFH2-Z2	Rohde & Schwarz	E00060
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input checked="" type="checkbox"/> Cable set CDC	RF cable(s)	Huber + Suhner AME HF-Technik AME HF-Technik Stabo	E00446 E00920 E00921 E01215
<input type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input checked="" type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

³ For information about measurement uncertainties see page 73.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

7.1.2 Limits

The field strength of any emissions including spurious emissions falling into restricted bands as specified in section 15.205(a) of 47 CFR Part 15 and section 8.10 of RSS-Gen, shall not exceed the general radiated emission limits as specified in section 15.209 of 47 CFR Part 15 and section 8.10 of RSS-Gen. In addition, only spurious emissions are permitted in any of the restricted bands.

Frequency [MHz]	Field strength [μ V/m]	Field strength [dB μ V/m]	Measurement distance [m]
0.009 – 0.490	2400/F(kHz) (266.67 – 4.90)	48.52 – 13.80	300
0.490 – 1.705	24000/F(kHz) (48.98 – 14.08)	33.80 – 22.97	30
1.705 – 30	30	29.54	30
30 – 88	100	40.00	3
88 – 216	150	43.52	3
216 - 960	200	46.02	3
Above 960	500	53.98	3

Table 10: Limits for emissions in restricted bands

In case of measurements are performed at other distances than that specified in the requirements, the limits in the charts and tables reported with the test results are derived from the general radiated emission limits as listed in table 10 using the recalculation factor as described in clause 6.3.1.

7.1.3 Test procedure

Emissions in the restricted bands of operation are measured using the test procedure as described in clause 6.3.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

7.1.4 Test results

7.1.4.1 Test results for standby mode

Performed by:	Andreas Menacher	Date of test:	April 26, 2018
Climatic conditions:	Ambient temperature 20.0 °C	Relative humidity 41.0 %	Barometric pressure 98.2 kPa
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	50 Hz	200 Hz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off
150 kHz – 30 MHz	2.25 kHz	9 kHz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off

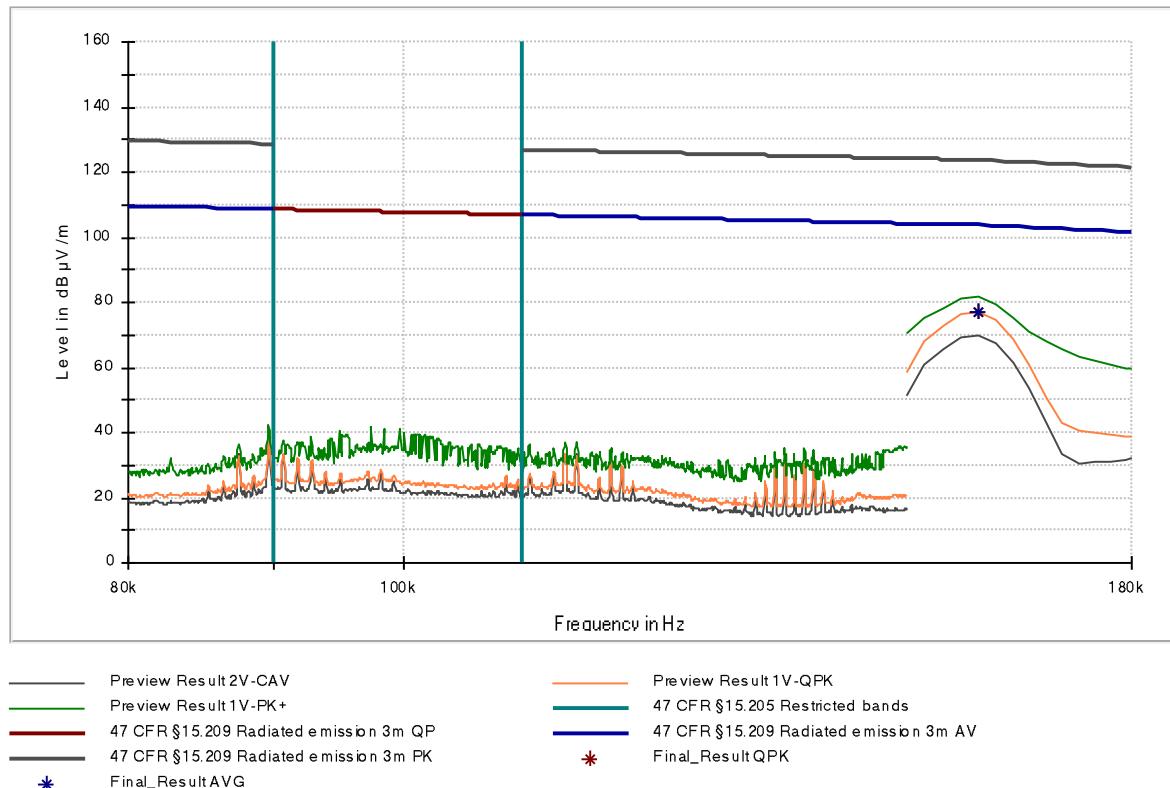
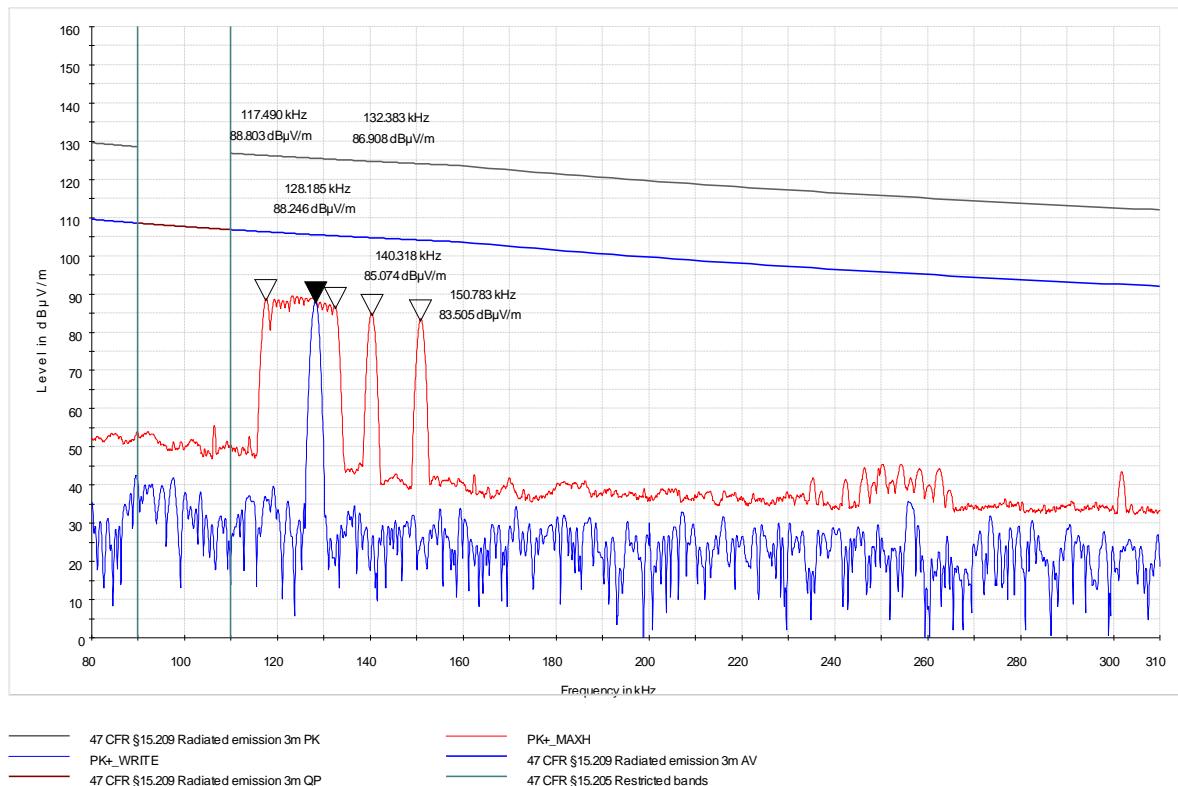


Figure 5: Chart of restricted bands of operation test for standby mode

Frequency (MHz)	De- tector	Measured field strength (dB μ V/m)	Distance referred to limit (m)	Re- calculation factor (dB)	Calcu- lated field strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azi- muth (deg)
0.159	AV	76.89	300	80	-3.11	23.60	26.71	184.0
0.159	PK	77.24	300	80	-2.76	43.60	46.36	184.0

Table 11: Results of restricted bands of operation test for standby mode

Note: The emission within the restricted band from 90 kHz to 110 kHz is a spurious emission for which the quasi-peak limit applies. In standby mode, no power receiver is present, i.e. there is no communication.



EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

7.1.4.2 Test results for charging mode 1

Performed by:	Andreas Menacher	Date of test:	May 7, 2018
Climatic conditions:	Ambient temperature 22.0°C	Relative humidity 34.5 %	Barometric pressure 98.6 kPa
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Note: Figure 6 shows the spectrum of emission when charging an empty WPT client over 6 hours. The EUT starts charging at the lowest frequency. With battery getting charged, the frequency increases. The test is performed with EMI test receiver in spectrum analyzer mode with trace mode set to "maxhold". The emission within the restricted band from 90 kHz to 110 kHz is a spurious emission caused by standby mode for which the quasi-peak limit applies (see figure 5).

7.1.4.3 Test results for charging mode 2

Performed by:	Andreas Menacher	Date of test:	April 26, 2018
Climatic conditions:	Ambient temperature 20.0 °C	Relative humidity 41.0 %	Barometric pressure 98.2 kPa
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	50 Hz	200 Hz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off
150 kHz – 30 MHz	2.25 kHz	9 kHz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off

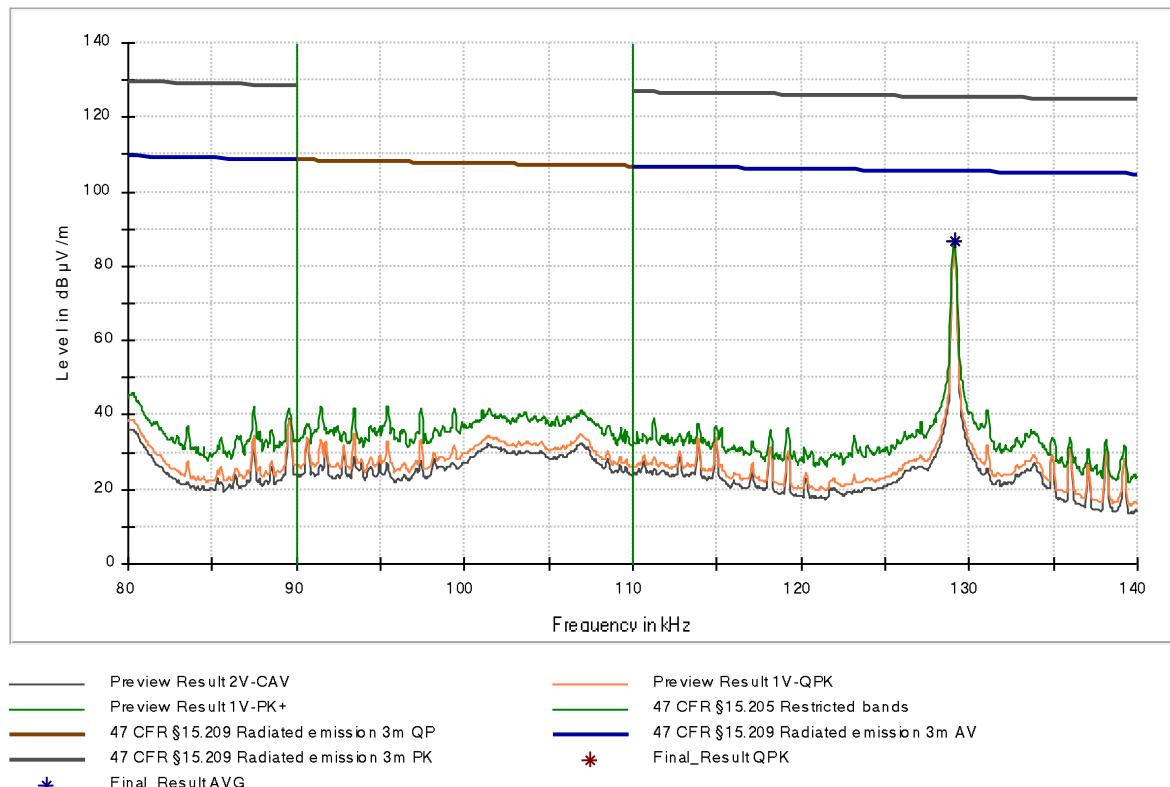


Figure 7: Chart of restricted bands of operation test for charging mode 2

Frequency (MHz)	De- tector	Measured field strength (dB μ V/m)	Distance referred to limit (m)	Re- calculation factor (dB)	Calcu- lated field strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azi- muth (deg)
0.1291	AV	86.54	300	80	6.54	25.41	18.87	186.0
0.1291	PK	86.73	300	80	6.73	45.41	38.68	186.0

Table 12: Results of restricted bands of operation test for charging mode 2

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

7.2 AC power line conducted emissions

Section(s) in 47 CFR Part 15:	Requirement:	15.207
	Reference(s):	ANSI C63.10, clause 6.2
Section(s) in RSS-216:	Requirement:	6.2.2.1
	Reference(s):	ICES-001 CISPR 11, clause 5.1

Result⁴:

Test passed

Test not passed

Remark: The test was performed with a representative power supply

7.2.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Shielded room	P92007	Siemens Matsushita	E00107
<input checked="" type="checkbox"/> EMI test receiver	ESCS 30	Rohde & Schwarz	E00003
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input checked="" type="checkbox"/> Artificial mains network	ESH2-Z5	Rohde & Schwarz	E00004
<input type="checkbox"/> Artificial mains network	ESH2-Z5	Rohde & Schwarz	E00005
<input type="checkbox"/> Artificial mains network	ENV216	Rohde & Schwarz	E00892
<input checked="" type="checkbox"/> Attenuator (10 dB)	50FHB-010-10	JFW Industries	E00471
<input checked="" type="checkbox"/> Cable set (shielded room) no. 1	RF cable(s)	Huber + Suhner	E00741 E00804
<input type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input checked="" type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

⁴ For information about measurement uncertainties see page 73.

7.2.2 Limits

As specified in section 15.207 of 47 CFR Part 15, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in table 13.

Frequency [MHz]	Conducted limit	
	Quasi-peak [dB μ V]	Average [dB μ V]
0.15 – 0.5	66 – 56	56 – 46
0.5 – 5	56	46
5 – 30	60	50

Table 13: Limits for AC power-line conducted emissions according to §15.207

According to section 6.2.2.1 of RSS-216, the mains terminals disturbance voltage limits for induction cooking (group 2) equipment defined for the frequency range 9 kHz to 30 MHz apply, as set out in the CISPR 11 standard referenced in ICES-001 and listed in table 14.

Frequency [MHz]	Conducted limit	
	Quasi-peak [dB μ V]	Average [dB μ V]
0.009 – 0.05	110	---
0.05 – 0.1485	90 – 80	---
0.1485 – 0.5	66 – 56	56 – 46
0.5 – 5	56	46
5 – 30	60	50

Table 14: Limits for AC power-line conducted emissions according to CISPR 11

Therefore, the AC power line conducted emissions test is performed in the frequency range 9 kHz to 30 MHz using the limits according to CISPR 11, as this is the worst-case requirement.

7.2.3 Test procedure

AC power line conducted emissions are measured using the test procedure as described in clause 6.2.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

7.2.4 Test results

7.2.4.1 Test results for standby mode

Performed by:	Andreas Menacher	Date of test:	April 25, 2018
Climatic conditions:	Ambient temperature 21.0 °C	Relative humidity 31.0 %	Barometric pressure 95.9 kPa

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	100 Hz	200 Hz	PK, AV	QP, AV	100 ms	1 s	Off
150 kHz – 30 MHz	4 kHz	9 kHz	PK, AV	QP, AV	10 ms	1 s	Off

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

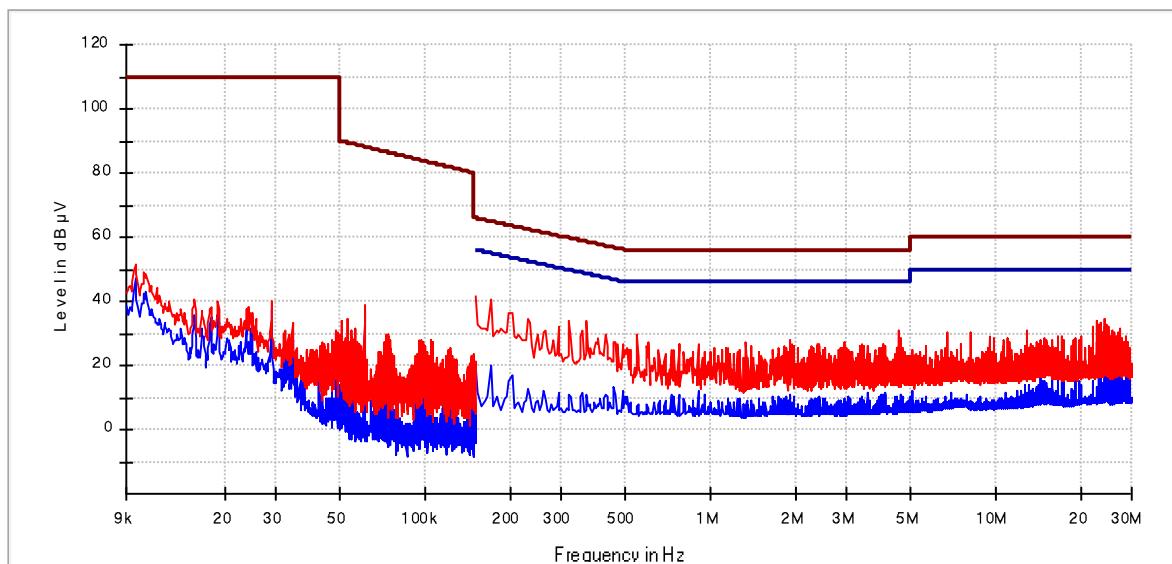


Figure 8: Chart of AC power-line conducted emissions test (CISPR 11) on live wire L1 for standby mode

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

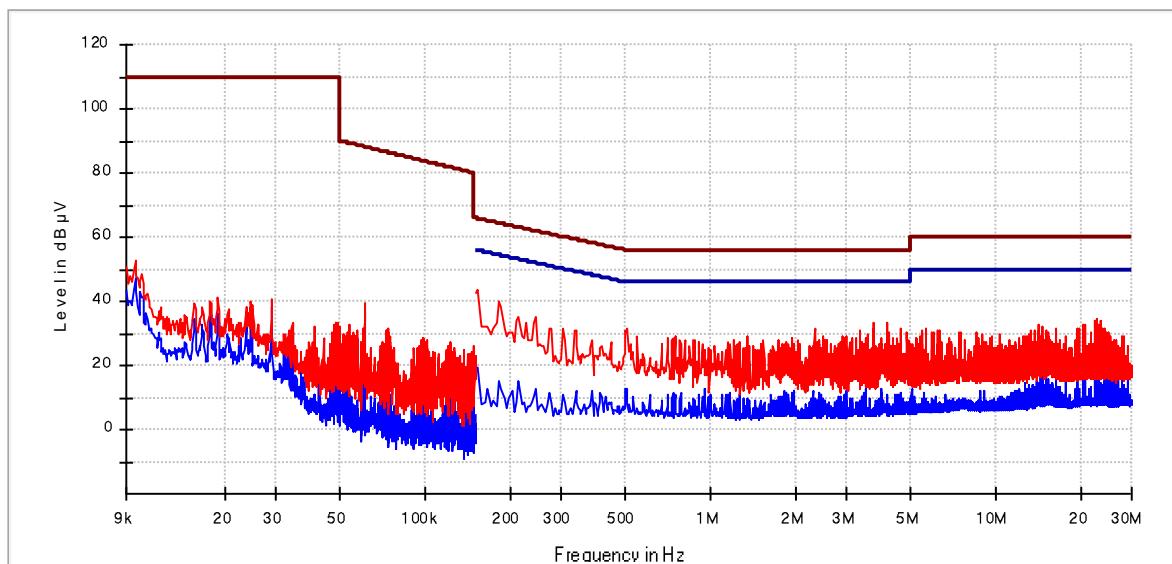


Figure 9: Chart of AC power-line conducted emissions test (CISPR 11) on neutral wire N for standby mode

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

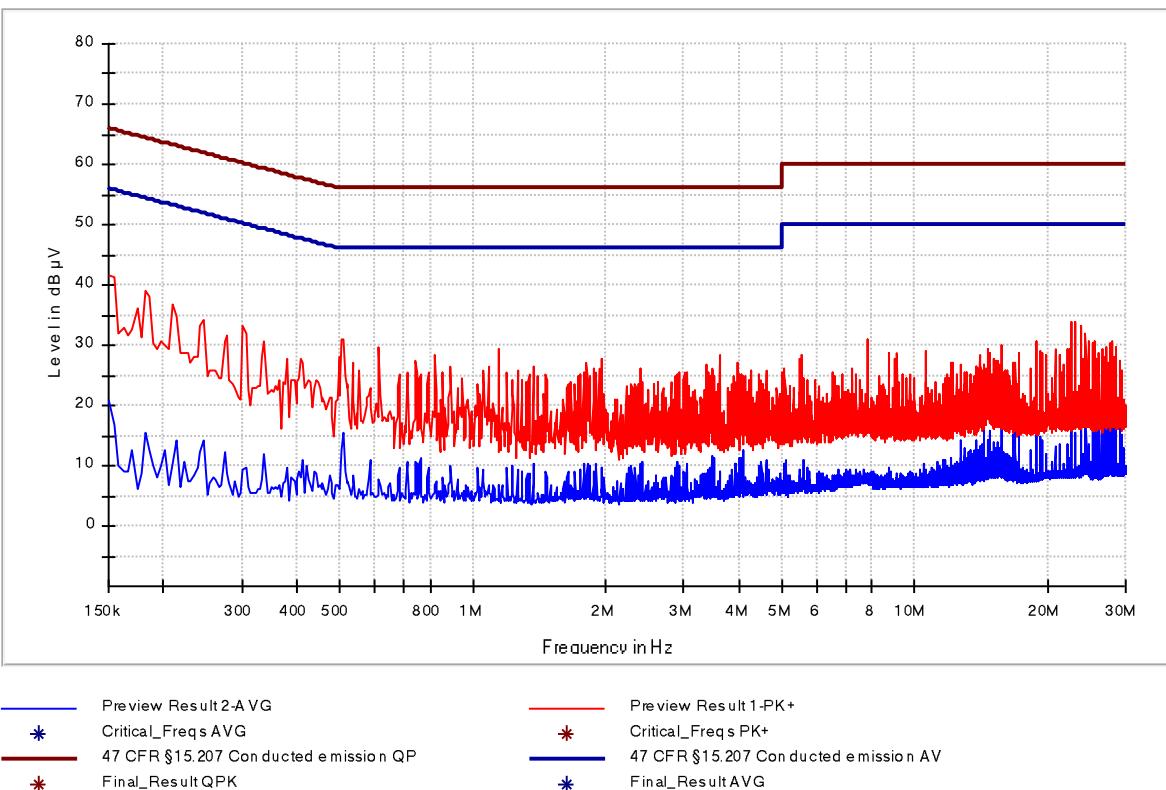


Figure 10: Chart of AC power-line conducted emissions test (15.207) on live wire L1 for standby mode

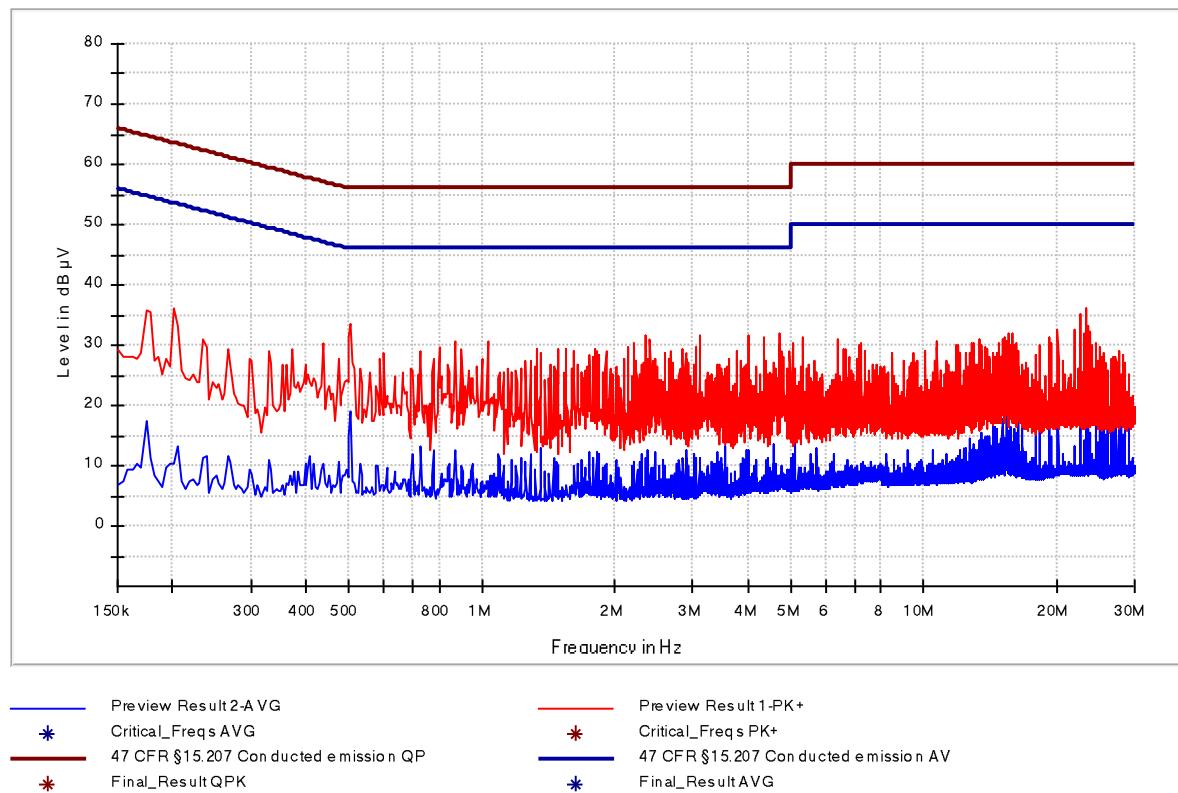


Figure 11: Chart of AC power-line conducted emissions test (15.207) on live wire N for standby mode

7.2.4.2 Test results for charging mode 2

Performed by:	Andreas Menacher	Date of test:	April 25, 2018
Climatic conditions:	Ambient temperature 21.0 °C	Relative humidity 31.0 %	Barometric pressure 95.9 kPa

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	100 Hz	200 Hz	PK, AV	QP, AV	100 ms	1 s	Off
150 kHz – 30 MHz	4 kHz	9 kHz	PK, AV	QP, AV	10 ms	1 s	Off

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

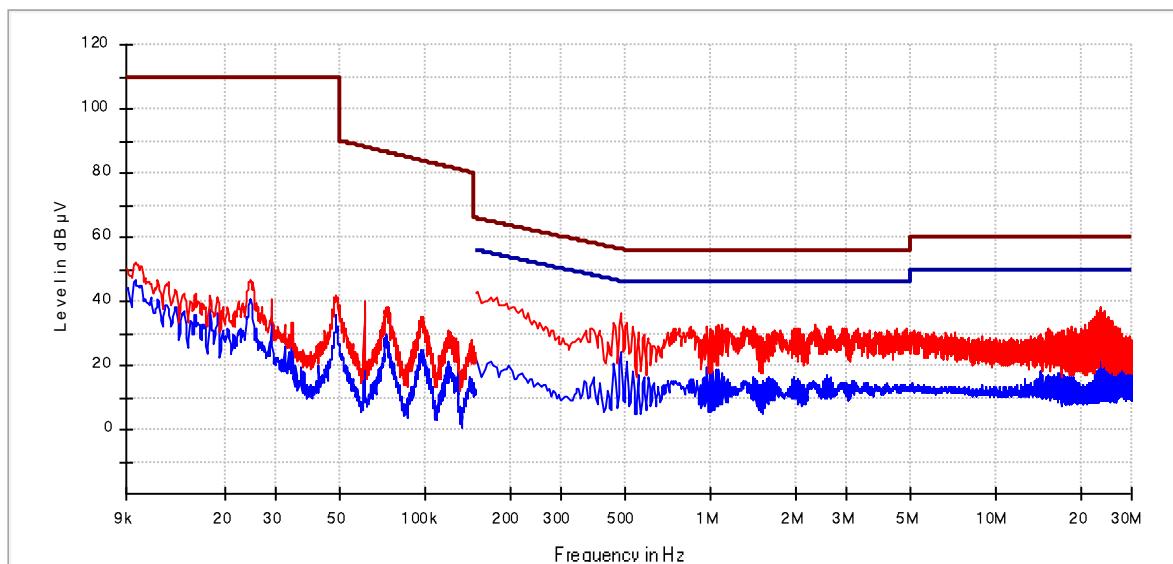


Figure 12: Chart of AC power-line conducted emissions test (CISPR 11) on live wire L1 for charging mode 2

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

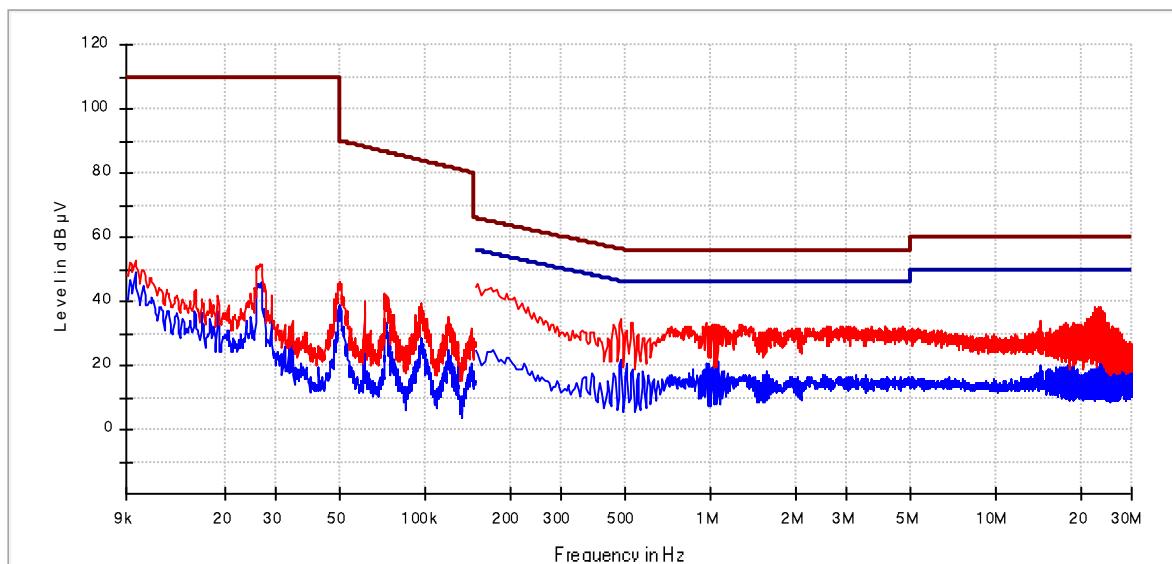


Figure 13: Chart of AC power-line conducted emissions test (CISPR 11) on neutral wire N for charging mode 2

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

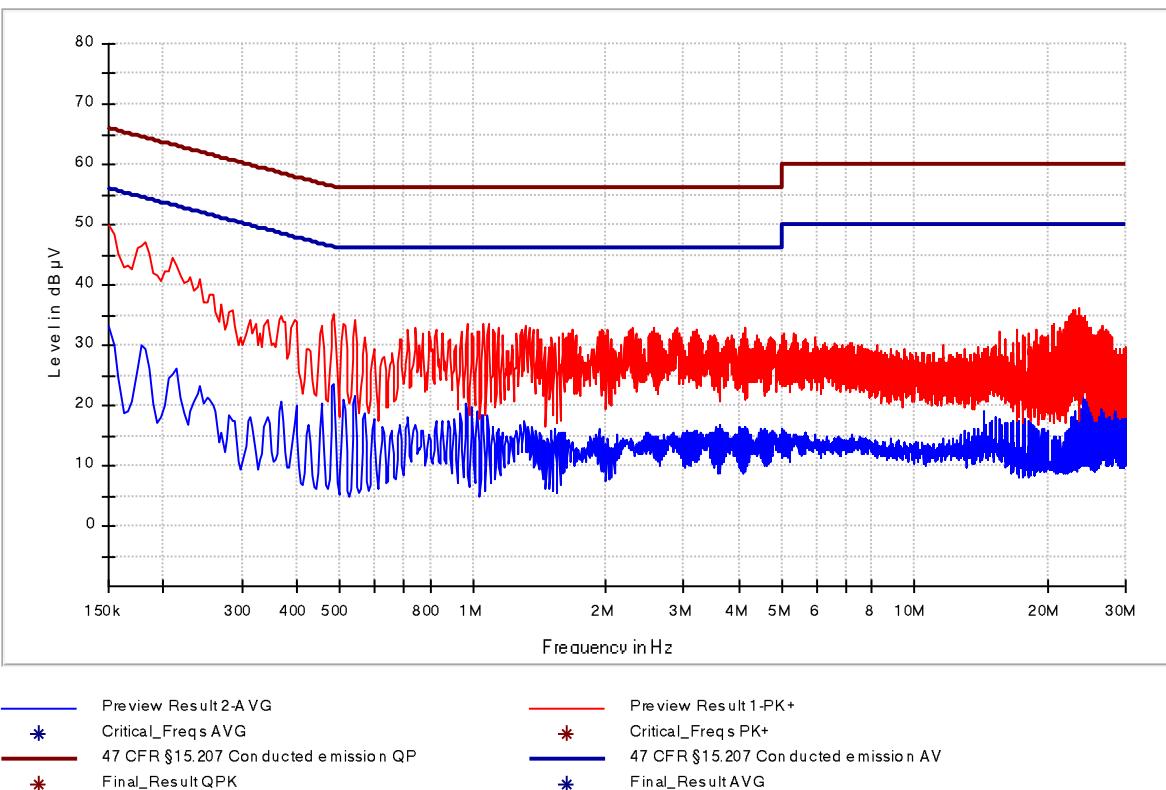


Figure 14: Chart of AC power-line conducted emissions test (15.207) on live wire L1 for charging mode 2

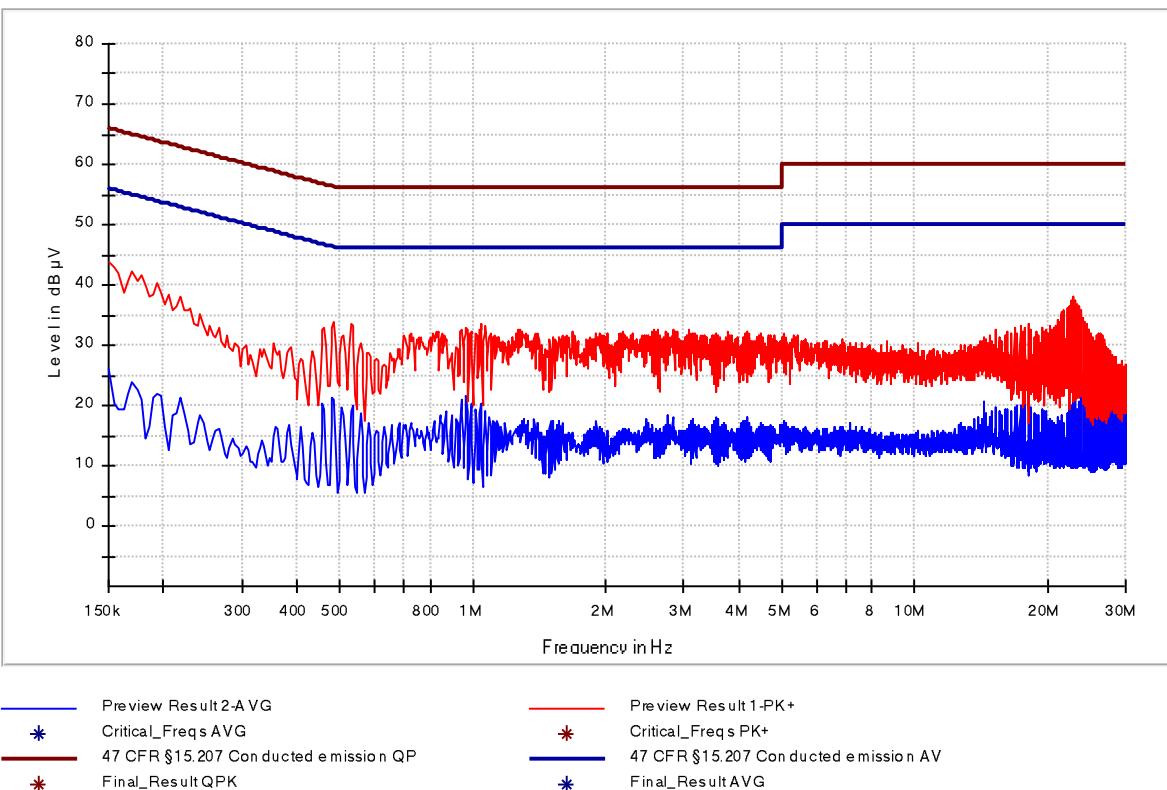


Figure 15: Chart of AC power-line conducted emissions test (15.207) on live wire N for charging mode 2

7.3 Radiated emissions

7.3.1 Radiated emissions below 30 MHz

Section(s) in 47 CFR Part 15:	Requirement:	15.209
	Reference(s):	ANSI C63.10, clause 6.4
Section(s) in RSS-216:	Requirement:	6.2.2.2
	Reference(s):	ICES-001 CISPR 11, clause 5.2

Result⁵: Test passed Test not passed

7.3.1.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
<input type="checkbox"/> Open area test site (OATS)	---	EMV TESTHAUS	E00354
<input type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input checked="" type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Field probe	RF-R 400-1	Langer EMV-Technik	E00270
<input checked="" type="checkbox"/> Loop antenna	HFH2-Z2	Rohde & Schwarz	E00060
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input checked="" type="checkbox"/> Cable set CDC	RF cable(s)	Huber + Suhner AME HF-Technik AME HF-Technik Stabo	E00446 E00920 E00921 E01215
<input type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input checked="" type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

⁵ For information about measurement uncertainties see page 73.

7.3.1.2 Limits

As specified in section 15.209 of 47 CFR Part 15, the emissions from an intentional radiator shall not exceed the field strength levels specified in table 15:

Frequency [MHz]	Field strength [μ V/m]	Field strength [dB μ V/m]	Measurement distance [m]
0.009 – 0.490	2400/F(kHz) (266.67 – 4.90)	48.52 – 13.80	300
0.490 – 1.705	24000/F(kHz) (48.98 – 14.08)	33.80 – 22.97	30
1.705 – 30	30	29.54	30

Table 15: General radiated emission limits according to §15.209

In case of measurements are performed at other distances than that specified in the requirements, the limits in the charts and tables reported with the test results are derived from the general radiated emission limits as listed in table 15 using the recalculation factor as described in clause 6.3.1.

According to section 6.2.2.2 of RSS-216, it is acceptable to use the alternate 60 cm loop test method referring to the limits for commercial / industrial and large residential induction cooking appliances even if the WPT device is small and for residential use. Therefore, the magnetic field strength limits for induction cooking (group 2) equipment defined for the frequency range 9 kHz to 30 MHz apply, as set out in the CISPR 11 standard referenced in ICES-001 and listed in table 16:

Frequency range [MHz]	Limit in 3 m distance Quasi-peak [dB μ A/m]
0.009 – 0.070	69
0.070 – 0.1485	Decreasing linearly with logarithm of frequency from 69 to 39
0.1485 – 4.0	Decreasing linearly with logarithm of frequency from 39 to 3
4.0 – 30	3

Table 16: Magnetic field strength limits according to CISPR 11

7.3.1.3 Test procedure

Radiated emissions below 30 MHz are measured using the test procedure as described in clause 6.3.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

7.3.1.4 Test results

7.3.1.4.1 Test results for standby mode

Performed by:	Andreas Menacher	Date of test:	April 26, 2018
Climatic conditions:	Ambient temperature 20.0 °C	Relative humidity 41.0 %	Barometric pressure 98.2 kPa
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	50 Hz	200 Hz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off
150 kHz – 30 MHz	2.25 kHz	9 kHz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

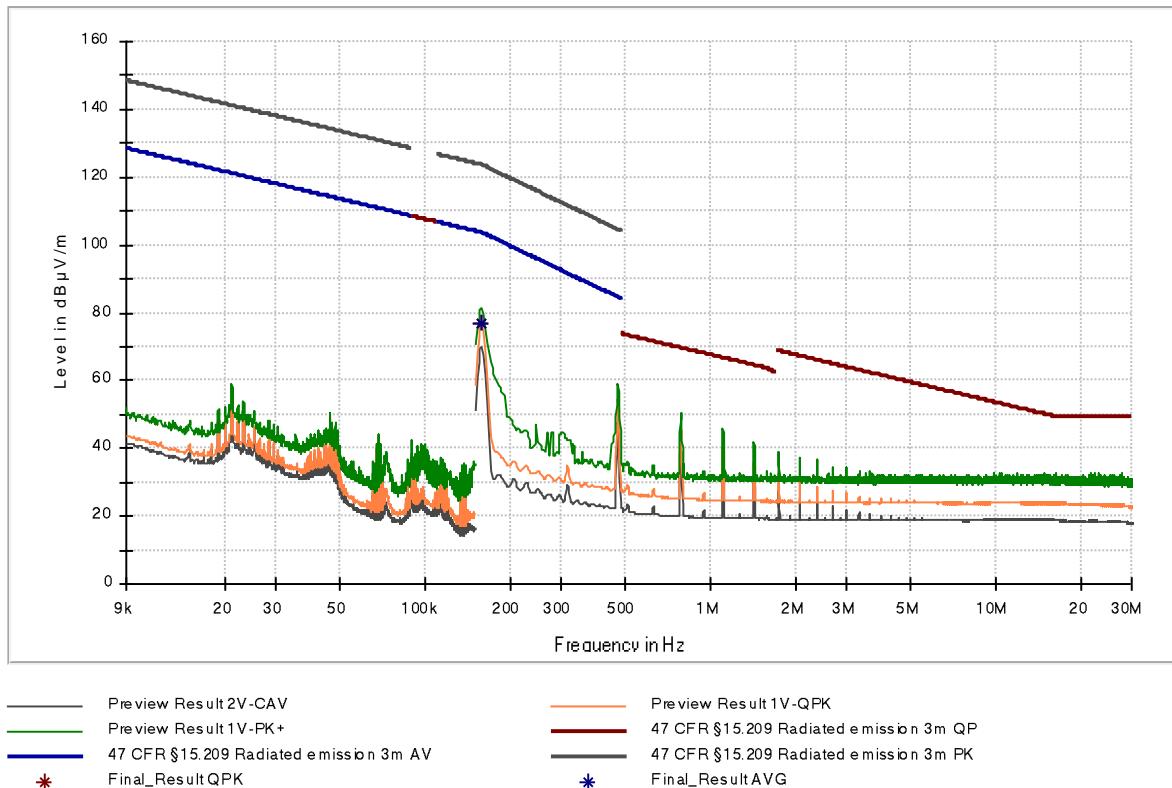


Figure 16: Chart of radiated emissions test below 30 MHz according to §15.209 for standby mode

Frequency (MHz)	Detector	Measured field strength (dB μ V/m)	Distance referred to limit (m)	Recalculation factor (dB)	Calculated field strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (deg)
0.15900	AV	76.89	300	80	-3.11	23.60	26.71	184.0
0.15900	PK	77.24	300	80	-2.76	43.60	46.36	184.0

Table 17: Results of radiated emissions test below 30 MHz according to §15.209 for standby mode

Note: The emission within the restricted band from 90 kHz to 110 kHz is a spurious emission for which the quasi-peak limit applies. In standby mode, no power receiver is present, i.e. there is no communication.

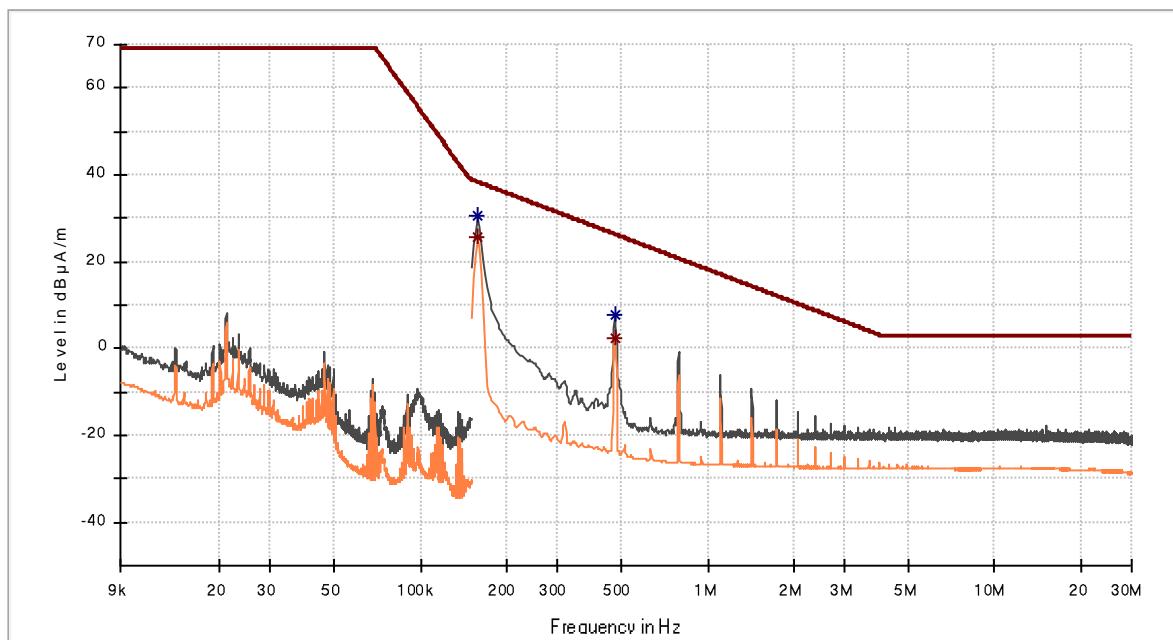


Figure 17: Chart of radiated emissions test below 30 MHz according to CISPR 11 for standby mode

Frequency (MHz)	Detector	Magnetic field strength (dB μ A/m)	Limit (dB μ A/m)	Margin (dB)	Azimuth (deg)
0.15900	QP	25.72	38.25	12.53	177.0
0.47625	QP	2.54	26.26	23.72	178.0

Table 18: Results of radiated emissions test below 30 MHz according to CISPR 11 for standby mode

7.3.1.4.2 Test results for charging mode 2

Performed by:	Andreas Menacher	Date of test:	April 26, 2018
Climatic conditions:	Ambient temperature 20.0 °C	Relative humidity 41.0 %	Barometric pressure 98.2 kPa
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	50 Hz	200 Hz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off
150 kHz – 30 MHz	2.25 kHz	9 kHz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

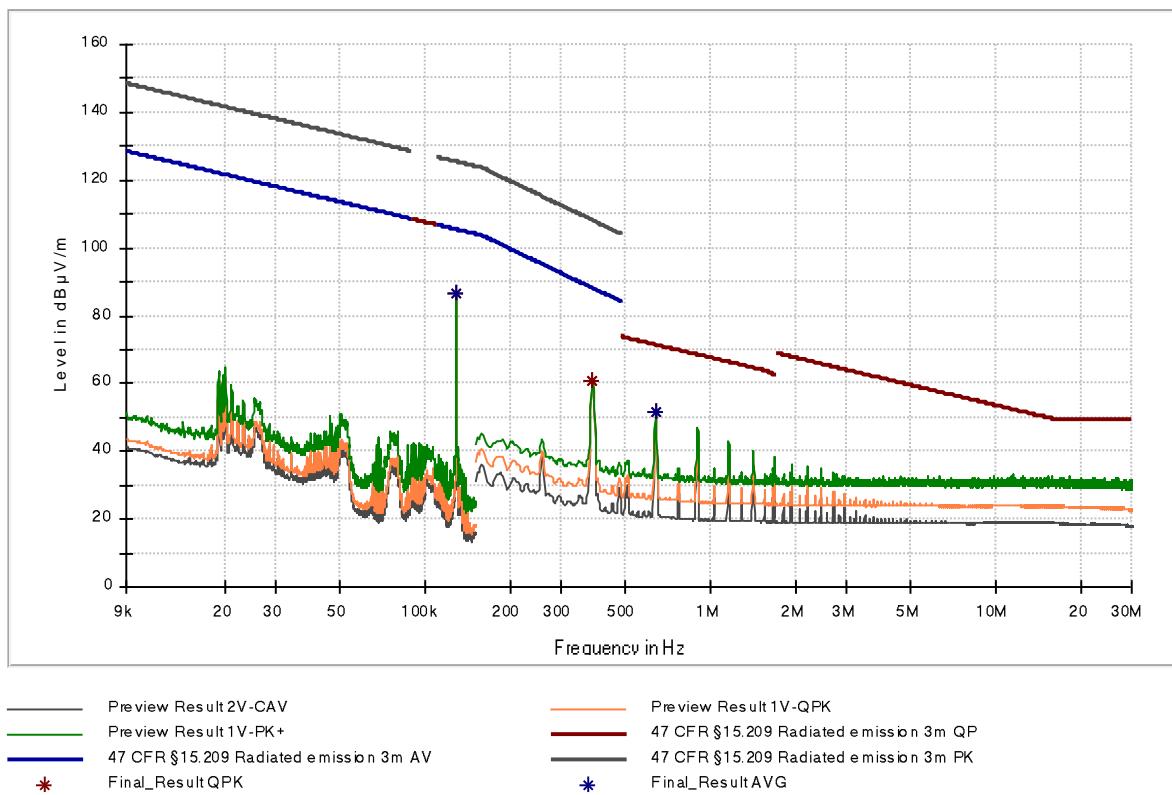


Figure 18: Chart of radiated emissions test below 30 MHz according to §15.209 for charging mode 2

Frequency (MHz)	Detector	Measured field strength (dB μ V/m)	Distance referred to limit (m)	Recalculation factor (dB)	Calculated field strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (deg)
0.129100	AV	86.54	300	80.00	6.54	25.41	18.87	186.0
0.129100	PK	86.73	300	80.00	6.73	45.41	38.68	186.0
0.386250	AV	60.97	300	80.00	-19.03	8.14	27.17	178.0
0.386250	PK	61.03	300	80.00	-18.97	28.14	47.11	178.0
0.645000	QP	51.71	30	40.00	11.71	31.39	19.68	180.0

Table 19: Results of radiated emissions test below 30 MHz according to §15.209 for charging mode 2

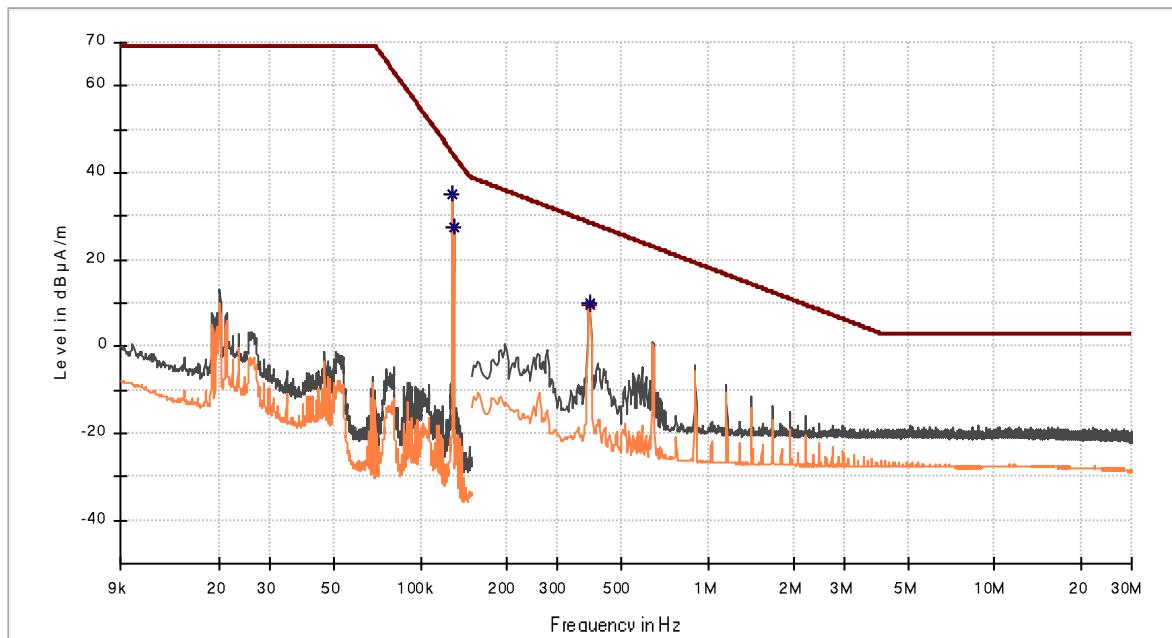


Figure 19: Chart of radiated emissions test below 30 MHz according to CISPR 11 for charging mode 2

Frequency (MHz)	Detector	Magnetic field strength (dB μ A/m)	Limit (dB μ A/m)	Margin (dB)	Azimuth (deg)
0.129100	QP	35.08	44.58	9.51	184.0
0.130150	QP	27.41	44.26	16.85	178.0
0.388500	QP	9.60	28.49	18.89	179.0

Table 20: Results of radiated emissions test below 30 MHz according to CISPR 11 for charging mode 2

7.3.2 Radiated emissions from 30 MHz to 1 GHz

Section(s) in 47 CFR Part 15:	Requirement:	15.209
	Reference(s):	ANSI C63.10, clause 6.5
Section(s) in RSS-216:	Requirement:	6.2.2.2
	Reference(s):	ICES-001 CISPR 11, clause 5.2

Result⁶:

Test passed

Test not passed

7.3.2.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input type="checkbox"/> Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
<input type="checkbox"/> Open area test site (OATS)	---	EMV TESTHAUS	E00354
<input checked="" type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input checked="" type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Field probe	RF-R 400-1	Langer EMV-Technik	E00270
<input type="checkbox"/> Loop antenna	HFH2-Z2	Rohde & Schwarz	E00060
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input checked="" type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input checked="" type="checkbox"/> Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
<input checked="" type="checkbox"/> Test software	EMC32-EB (v10.35)	Rohde & Schwarz	E00777
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

⁶ For information about measurement uncertainties see page 73.

7.3.2.2 Limits

As specified in section 15.209 of 47 CFR Part 15, the emissions from an intentional radiator shall not exceed the field strength levels specified in table 21:

Frequency [MHz]	Field strength [μ V/m]	Field strength [dB μ V/m]	Measurement distance [m]
30 – 88	100	40.00	3
88 – 216	150	43.52	3
216 - 960	200	46.02	3
Above 960	500	53.98	3

Table 21: General radiated emission limits according to §15.209

According to section 6.2.2.2 of RSS-216, the electric field radiated emissions shall comply with the Class B limits for group 2 equipment, as set out in the CISPR 11 standard referenced in ICES-001 and listed in table 22:

Frequency range [MHz]	Quasi-peak level of electric field strength in 10 m distance [dB μ V/m]	Quasi-peak level of electric field strength in 3 m distance [dB μ V/m]
30 – 80.872	30	40
80.872 – 81.848	50	60
81.848 – 134.786	30	40
134.786 – 136.414	50	60
136.414 – 230	30	40
230 – 1000	37	47

Table 22: Electric field strength limits according to CISPR 11

Note: According to clause 5.2.2, class B devices may be tested at distances between 3 m and 10 m. Calculation of limits for 3 m using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements) gives slightly higher limits, but to be consistent with later versions of CISPR 11, the values for 3 m distance as listed in table 22 are selected.

7.3.2.3 Test procedure

Radiated emissions from 30 MHz to 1 GHz are measured using the test procedure as described in clause 6.4.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

7.3.2.4 Test results

7.3.2.4.1 Test results for standby mode

Performed by:	Andreas Menacher	Date of test:	April 25, 2018
Climatic conditions:	Ambient temperature 22.6 °C	Relative humidity 35.3 %	Barometric pressure 97.4 kPa
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
30 MHz – 1 GHz	30 kHz	120 kHz	QP	QP	1 s	1 s	20 dB

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

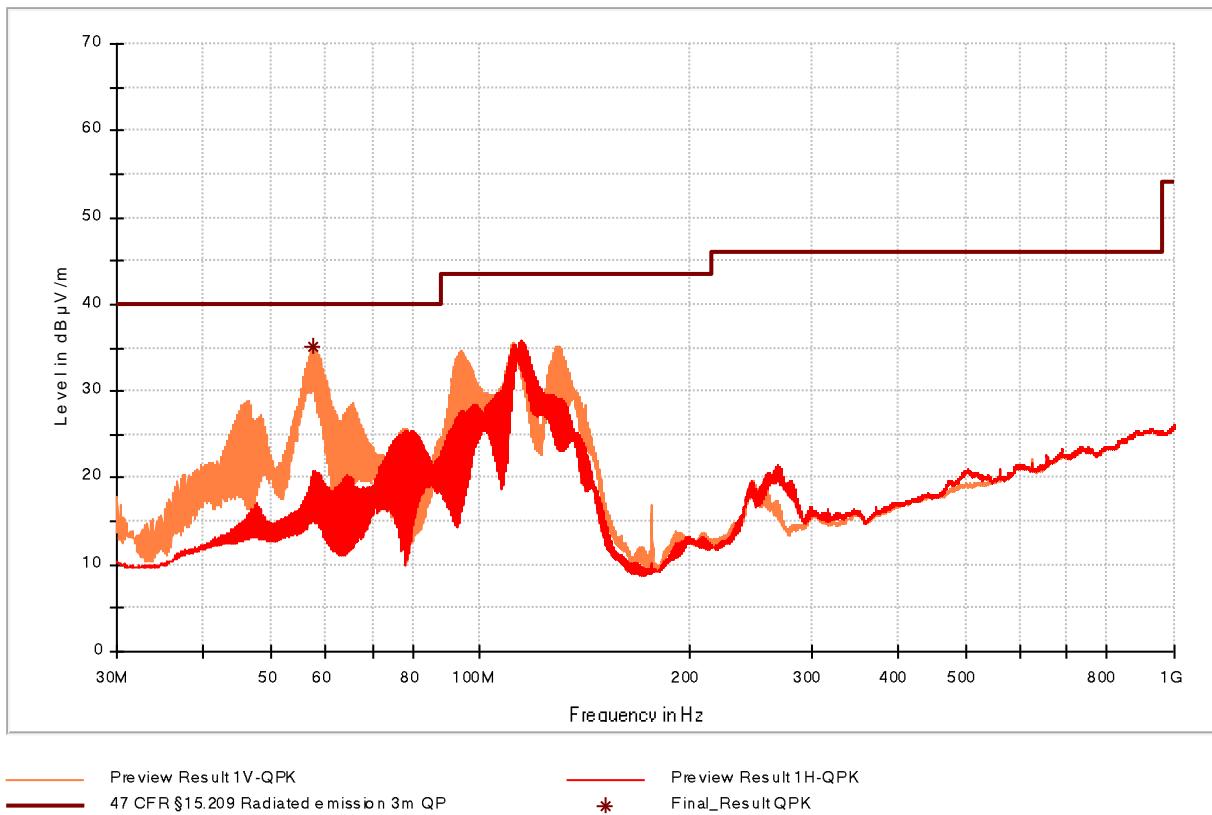


Figure 20: Chart of radiated emissions test 30 MHz to 1 GHz according to §15.209 for standby mode

Frequency (MHz)	Detector	Electric field strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)
57.600000	QP	35.13	40.00	4.87	117.0	V	39.0

Table 23: Results of radiated emissions test 30 MHz to 1 GHz according to §15.209 for standby mode

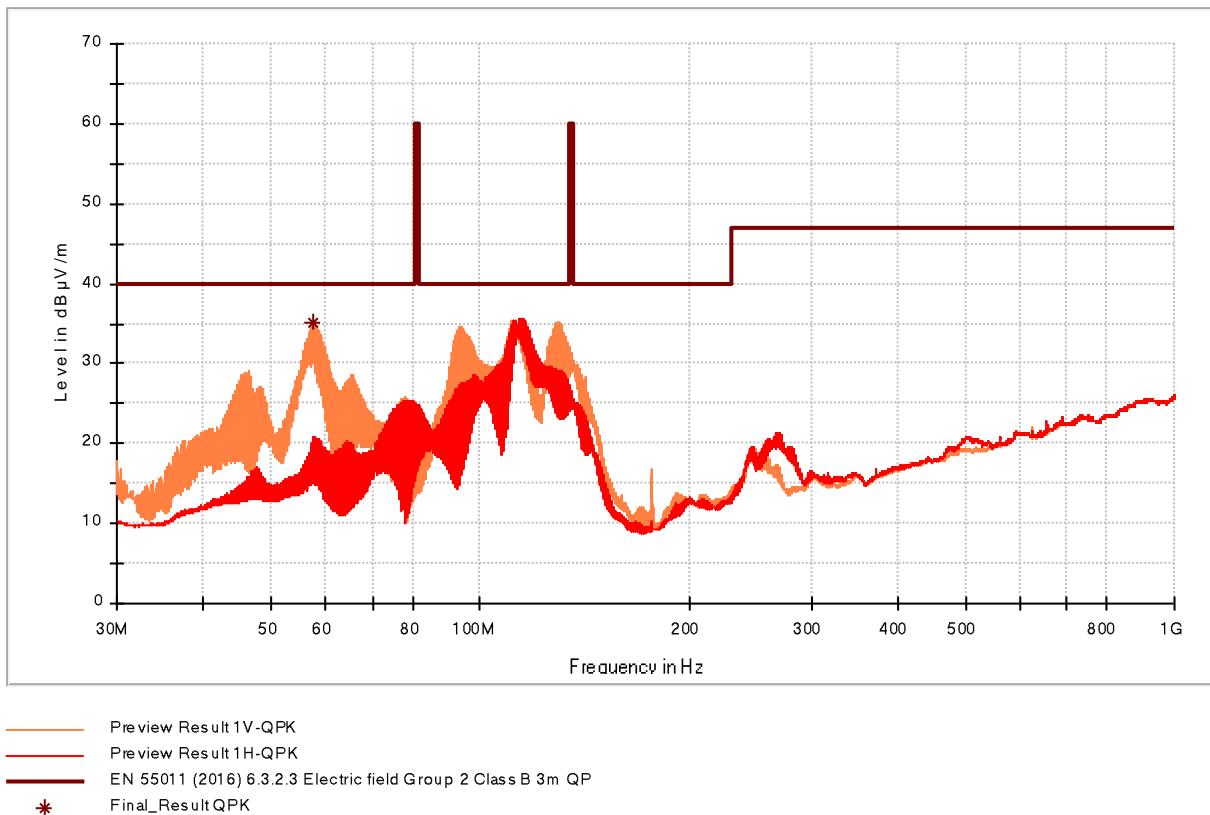


Figure 21: Chart of radiated emissions test 30 MHz to 1 GHz according to CISPR 11 for standby mode

Frequency (MHz)	Detector	Electric field strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)
57.600000	QP	35.13	40.00	4.87	117.0	V	39.0

Table 24: Results of radiated emissions test 30 MHz to 1 GHz according to CISPR 11 for standby mode

7.3.2.4.2 Test results for charging mode 2

Performed by:	Andreas Menacher	Date of test:	April 25, 2018
Climatic conditions:	Ambient temperature 22.6 °C	Relative humidity 35.3 %	Barometric pressure 97.4 kPa
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
30 MHz – 1 GHz	30 kHz	120 kHz	QP	QP	1 s	1 s	20 dB

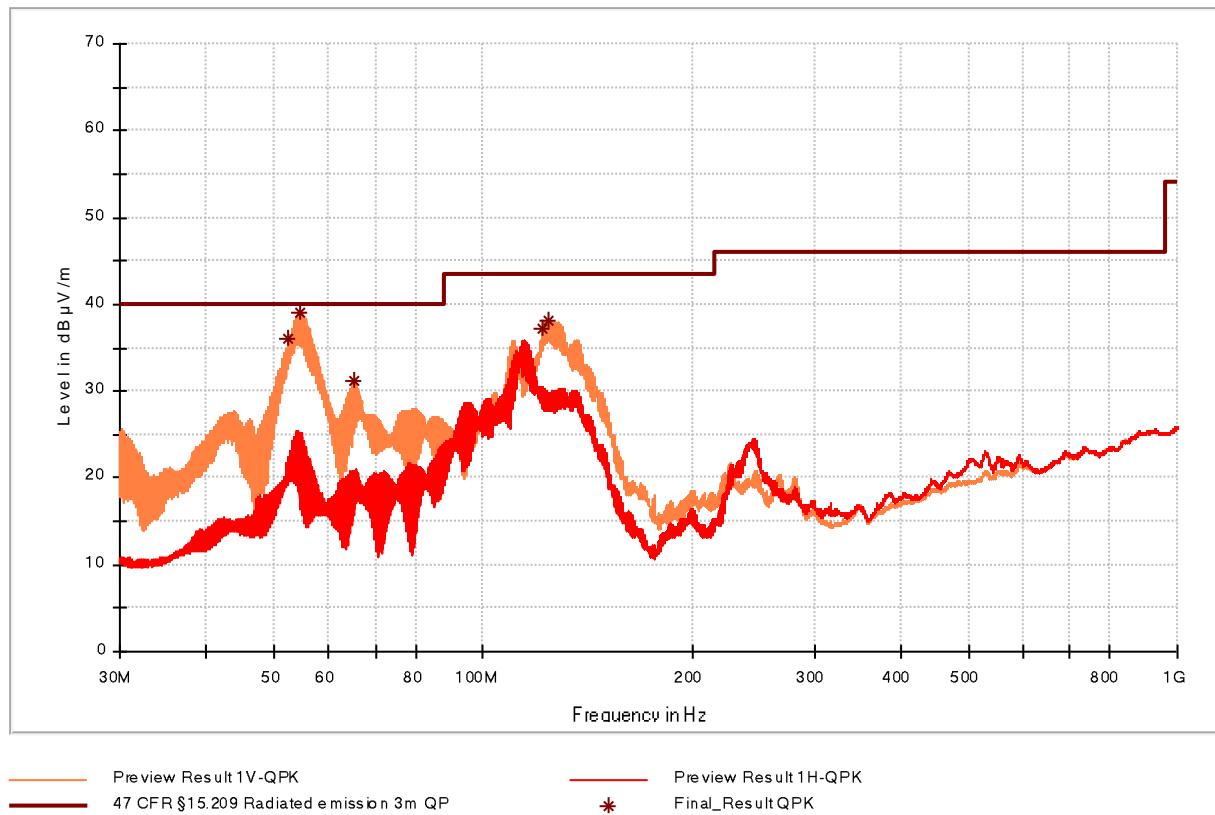


Figure 22: Chart of radiated emissions test 30 MHz to 1 GHz according to §15.209 for charging mode 2

Frequency (MHz)	Detector	Electric field strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)
52.530000	QP	36.08	40.00	3.92	117.0	V	0.0
54.510000	QP	39.14	40.00	0.86	100.0	V	227.0
65.310000	QP	31.25	40.00	8.75	101.0	V	258.0
121.950000	QP	37.22	43.50	6.28	100.0	V	138.0
124.230000	QP	38.18	43.50	5.32	100.0	V	173.0

Table 25: Results of radiated emissions test 30 MHz to 1 GHz according to §15.209 for charging mode 2

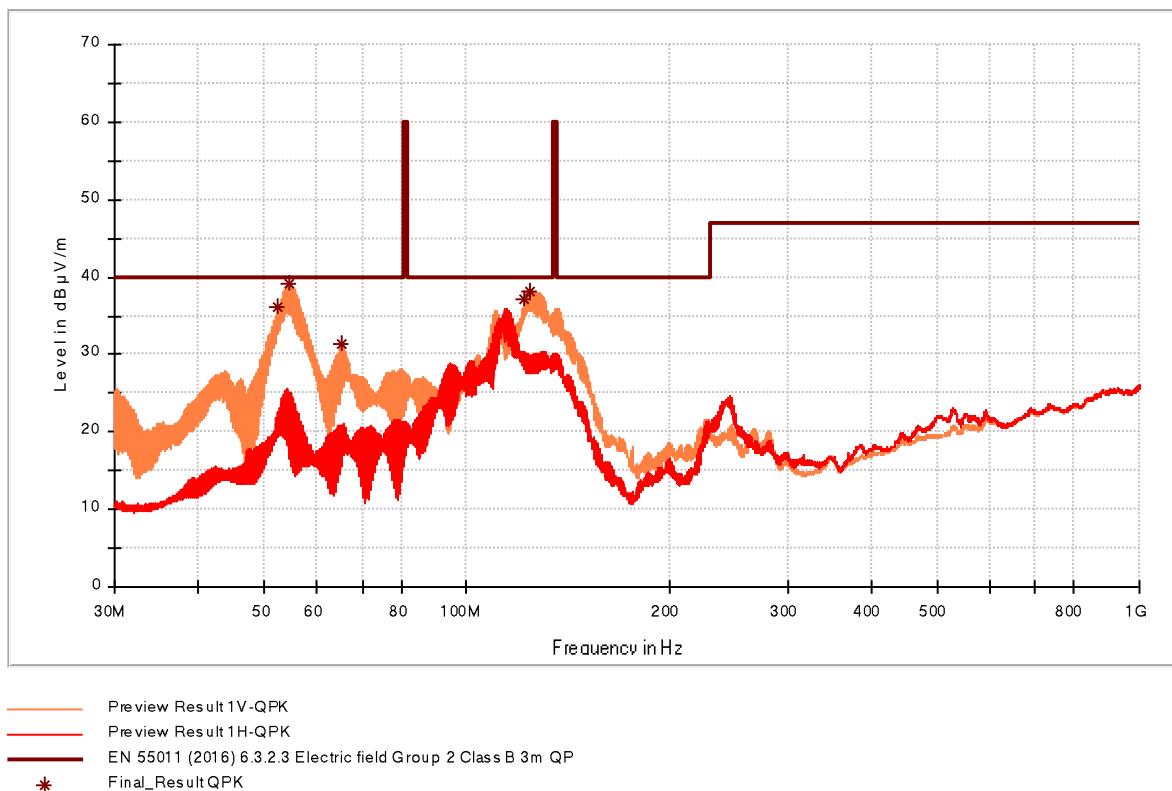


Figure 23: Chart of radiated emissions test below 30 MHz according to CISPR 11 for charging mode 2

Frequency (MHz)	Detector	Electric field strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)
52.530000	QP	36.08	40.00	3.92	117.0	V	0.0
54.510000	QP	39.14	40.00	0.86	100.0	V	227.0
65.310000	QP	31.25	40.00	8.75	101.0	V	258.0
121.950000	QP	37.22	40.00	2.78	100.0	V	138.0
124.230000	QP	38.18	40.00	1.82	100.0	V	173.0

Table 26: Results of radiated emissions test 30 MHz to 1 GHz according to CISPR 11 for charging mode 2

7.4 Bandwidth tests

Section(s) in 47 CFR Part 15:	Requirement:	15.215(c)
	Reference(s):	ANSI C63.10, clause 6.9.2
Section(s) in RSS-216:	Requirement:	5
	Reference(s):	RSS-Gen, section 6.7

Result⁷:

Test passed

Test not passed

7.4.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
<input type="checkbox"/> Open area test site (OATS)	---	EMV TESTHAUS	E00354
<input type="checkbox"/> Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
<input checked="" type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Field probe	RF-R 400-1	Langer EMV-Technik	E00270
<input checked="" type="checkbox"/> Loop antenna	HFH2-Z2	Rohde & Schwarz	E00060
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input checked="" type="checkbox"/> Cable set CDC	RF cable(s)	Huber + Suhner AME HF-Technik AME HF-Technik Stabo	E00446 E00920 E00921 E01215
<input type="checkbox"/> Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
<input type="checkbox"/> Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

⁷ For information about measurement uncertainties see page 73.

7.4.2 Limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of 47 CFR Part 15, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. However, as WPT systems are certified with reference to the general radiated emission limits as specified in §15.209, no limit for the 20 dB bandwidth applies.

The occupied bandwidth is recorded according to section 6.6 of RSS-Gen with no limit applied, as there is no occupied bandwidth limit stated in RSS-216.

7.4.3 Test procedure

Emissions in the restricted bands of operation are measured using the test procedure as described in clause 6.3.

7.4.3.1 Test procedure for 20 dB bandwidth of the emission

The 20 dB bandwidth of the emission is measured according to clause 6.9.2 of ANSI C63.10 as the width of the spectral envelope of the modulated signal, at an amplitude level reduced by a ratio of 20 dB down from the reference value. The reference value is

- the level of the unmodulated carrier, or
- the highest level of the spectral envelope of the modulated signal.

The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer is between two times and five times the 20 dB bandwidth. The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 % to 5 % of the 20 dB bandwidth and the video bandwidth (VBW) shall be approximately three times RBW. The reference level of the instrument is set as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (20 \text{ dB bandwidth}/\text{RBW})]$ below the reference level.

7.4.3.2 Test procedure for 99 % occupied bandwidth

According to section 6.6 of RSS-Gen, the occupied bandwidth (OBW) is defined as the 99 % emission bandwidth. The span of the analyzer is set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth is in the range of 1 % to 5 % of the occupied bandwidth and the video bandwidth is approximately three times the resolution bandwidth. There is no video averaging applied.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

A peak, or peak hold, may be used in place of the sampling detector if the device is not transmitting continuously. This may produce a wider bandwidth than the actual bandwidth (worst-case measurement).

To measure the 99 % emission bandwidth, the OBW function of the test receiver is used with the power bandwidth set to 99 %. This function indicates the lowest frequency (starting from the left side of the span) and the highest frequency (starting from the right side of the span) where 0.5% of the total sum is reached. The difference between the two frequencies is the 99 % occupied bandwidth.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

7.4.4 Test results

7.4.4.1 Test results for standby mode

Performed by:	Andreas Menacher	Date of test:	April 26, 2018
Climatic conditions:	Ambient temperature 20.0 °C	Relative humidity 41.0 %	Barometric pressure 98.2 kPa
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Bandwidth test	Value kHz	Center frequency kHz	Lowest frequency kHz	Highest frequency kHz	Application band kHz	Result
20 dB bandwidth	5.117	158.383	155.733	160.850	---	Recorded
Occupied bandwidth (99 %)	16.967	158.417	148.567	165.533	---	Recorded

Table 27: Results of bandwidth tests for standby mode

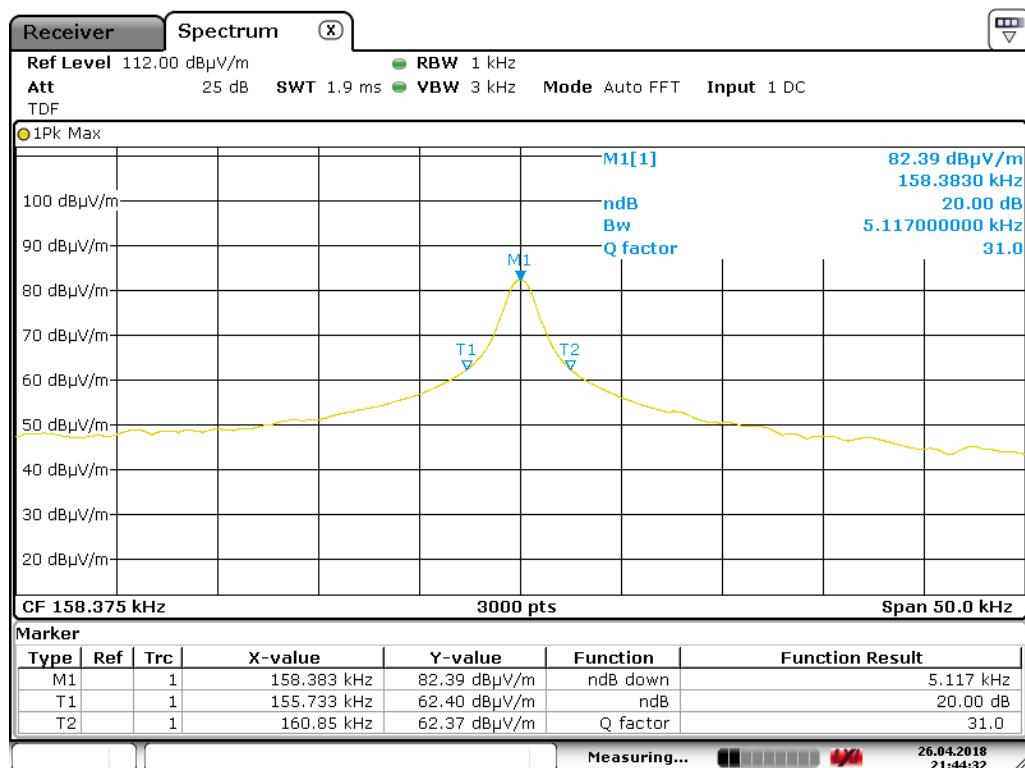


Figure 24: Chart of 20 dB bandwidth of the emission test for standby mode

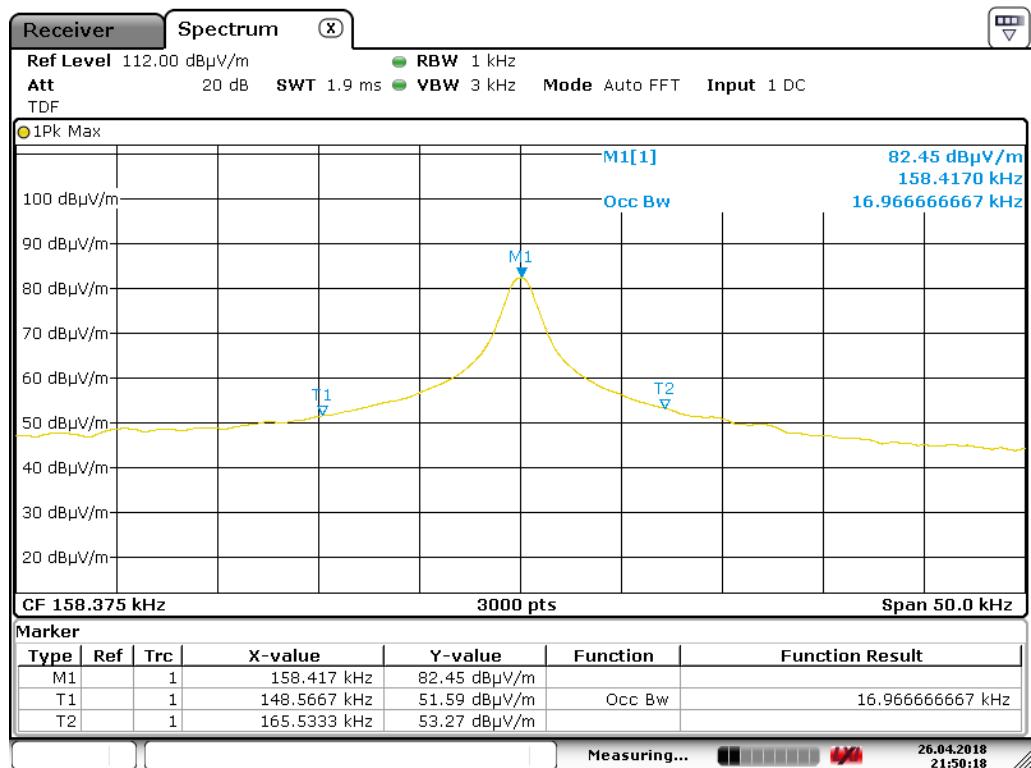


Figure 25: Chart of occupied bandwidth (99 %) test for standby mode

7.4.4.2 Test results for charging mode 2

Performed by:	Andreas Menacher	Date of test:	April 26, 2018
Climatic conditions:	Ambient temperature 20.0 °C	Relative humidity 41.0 %	Barometric pressure 98.2 kPa
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Bandwidth test	Value kHz	Center frequency kHz	Lowest frequency kHz	Highest frequency kHz	Application band kHz	Result
20 dB bandwidth	3.847	121.317	119.837	123.683	---	Recorded
Occupied bandwidth (99 %)	3.193	121.307	120.153	123.347	---	Recorded

Table 28: Results of bandwidth tests for charging mode 2

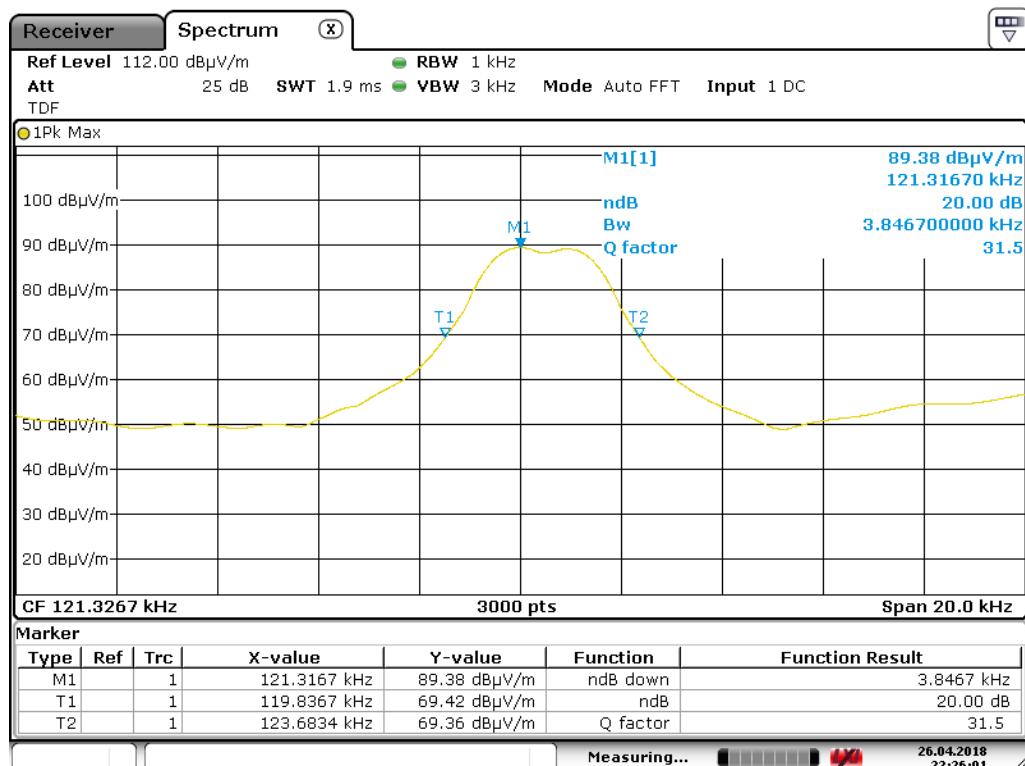


Figure 26: Chart of 20 dB bandwidth of the emission test for charging mode 2

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

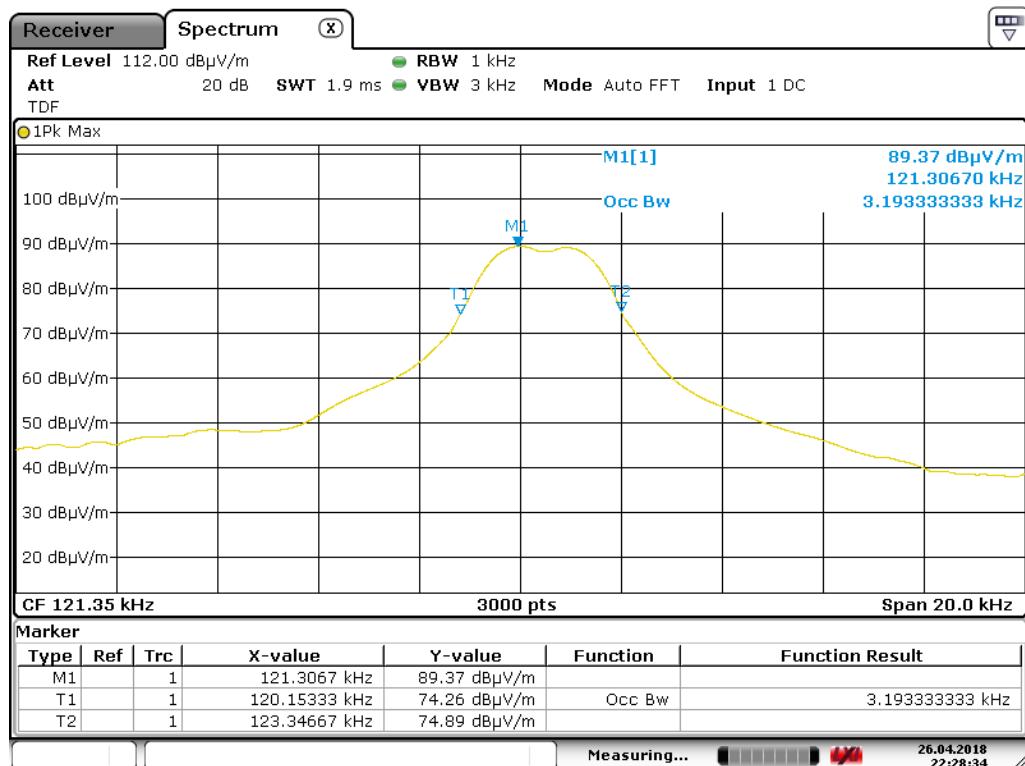


Figure 27: Chart of occupied bandwidth (99 %) test for charging mode 2

8 Equipment calibration status

Description	Modell number	Serial number	Inventory number(s)	Last calibration	Next calibration
EMI test receiver	ESR7	101059	E00739	2018-05	2020-05
EMI test receiver	ESCS30	825442/0002	E00003	2016-04	2018-04 ⁸
Attenuator (10 dB)	50FHB-010-10	---	E00471	2017-02	2019-02
Artificial mains network (AMN)	ESH2-Z5	881362/037	E00004	2016-10	2018-10
Loop antenna	HFH2-Z2	871398/0050	E00060	2016-09	2018-09
TRILOG broadband antenna (SAC)	VULB 9162	9162-041	E00643	2015-11	2018-11
Shielded room	P92007	B 83117 C 1109 T 211	E00107	N/A	
Compact diagnostic chamber (CDC)	VK041.0174	D62128-A502-A69-2-0006	E00026	N/A	
Semi-anechoic chamber (SAC)	SAC3	C62128-A520-A643-x-0006	E00716	See notes 1 and 2	
Cable set shielded room	RG 223/U	---	E00741	2017-02	2019-02
	RG 223/U	---	E00804	2017-02	2019-02
Cable set CDC	RG214/U	---	E00446	2018-01	2020-01
	LMR400	1718020006	E00920	2018-01	2020-01
	RG214 Hiflex	171802007	E00921	2018-01	2020-01
	LCF12-50J	---	E01215	2018-01	2020-01
Cable set SAC	SF104EA/11PC35/11PC35/10000MM	501347/4EA	E00755	2017-12	2019-12
	SF104E/11PC35/11PC35/2000MM	507410/4E	E01033	2017-12	2019-12
	SF104E/11PC35/11PC35/2000MM	507411/4E	E01034	2017-09	2019-09

Note 1: Industry Canada (test sites number 3472A-1 and 3472A-2): 2018-11

Note 2: Expiration date of test firm accreditation for OATS and SAC:
FCC test firm type "accredited": 2019-05

⁸ Calibration valid until 30.04.2018.

9 Measurement uncertainties

Description	Uncertainty	k=
AC power line conducted emissions (with AMN) 9 kHz to 150 kHz 150 kHz to 30 MHz	±3.8 dB ±3.4 dB	2
Radiated emissions in semi-anechoic chamber or open area test site 9 kHz to 30 MHz 30 MHz to 300 MHz 300MHz to 1 GHz	± 4.8 dB ± 5.4 dB ± 4.7 dB	2
Radiated emissions in semi-anechoic chamber with RF absorbing material on the floor or fully anechoic room 1 GHz to 18 GHz	± 4.5 dB	2

Comment: The uncertainty stated is the expanded uncertainty obtained by multiplying the standard uncertainty by the coverage factor k. For a confidence level of 95 % the coverage factor k is 2.

All used test instrument as well as the test accessories are calibrated at regular intervals.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base

10 Revision history

<i>Revision</i>	<i>Date</i>	<i>Issued by</i>	<i>Description of modifications</i>
0	2018-05-16	Andreas Menacher	First edition

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Complete Solutions d.o.o.
Wireless Power Transmission System
ComeX – Wireless Charger Base