

FCC Test Report

Report No: FCS202202125W01

Issued for

Applicant:	Shenzhen Qi Xin Chuang Zhan Technology Co., LTD
Address:	Rm 928, Bldg A, Fengtian Industrial Park, No.308, Qinhu Xuegang Bei Rd., Longhua District, Shenzhen, China
Product Name:	Wireless Voice Transmission
Brand Name:	N/A
Model Name:	ELGT-470
Series Model:	ELGT-470T, ELGT-470R
FCC ID:	2ANVT-ELGT-470

Issued By: Flux Compliance Service Laboratory
Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan
Tel: 769-27280901 Fax: 769-27280901 <http://www.fcs-lab.com>

TEST RESULT CERTIFICATION

Applicant's Name: Shenzhen Qi Xin Chuang Zhan Technology Co., LTD
Address.....: Rm 928, Bldg A, Fengtian Industrial Park, No.308, Qinhu Xuegang Bei Rd., Longhua District,Shenzhen,China
Manufacture's Name: Shenzhen Qi Xin Chuang Zhan Technology Co., LTD
Address.....: Rm 928, Bldg A, Fengtian Industrial Park, No.308, Qinhu Xuegang Bei Rd., Longhua District,Shenzhen,China

Product Description

Product Name: Wireless Voice Transmission
Brand Name: N/A
Model Name.....: ELGT-470
Series Model: ELGT-470T,ELGT-470R
Test Standards: FCC Rules and Regulations Part 15 Subpart C section 15.236
Test Procedure: ANSI C63.10:2013

This device described above has been tested FCS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of FCS, this document may be altered or revised by FCS, personal only, and shall be noted in the revision of the document..

Date of Test.....:

Date (s) of performance of tests : 21 Feb. 2022 ~ 11 Mar. 2022

Date of Issue: 11 Mar. 2022

Test Result: Pass

Tested by

Scott Shen

(Scott Shen)

Reviewed by

Duke Qian

(Duke Qian)

Approved by

Jack Wang

(Jack Wang)

Table of Contents

	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION.....	8
2.1 GENERAL DESCRIPTION OF THE EUT.....	8
2.2 DESCRIPTION OF THE TEST MODES.....	10
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS.....	11
2.4 EQUIPMENTS LIST.....	12
3 MAXIMUM RADIATED POWER.....	13
3.1 LIMIT	13
3.2 TEST PROCEDURE.....	13
3.3 TEST SETUP.....	14
3.4 TEST RESULTS	14
4. OCCUPIED BANDWIDTH	15
4.1 LIMIT	15
4.2 TEST PROCEDURE.....	15
4.3 TEST SETUP.....	15
4.4 TEST RESULTS	16
5 NECESSARY BANDWITH.....	17
5.1 LIMIT	17
5.2 TEST PROCEDURE.....	17
5.3 TEST SETUP.....	17
6. TRANSMITTER UNWANTED EMISSIONS	19
6.1 LIMIT	19
6.2 TEST PROCEDURE	19
6.3 TEST SETUP.....	19
6.4 TEST RESULTS	21
7. FREQUENCY STABILITY.....	28
7.1 LIMIT	28
7.2 TEST PROCEDURE	28
7.3 TEST SETUP.....	28

Table of Contents

	Page
7.4 TEST RESULTS	29
8 CONDUCTED EMISSION MEASUREMENT	32
8.1 LIMIT	32
8.2 TEST PROCEDURE	32
8.3 TEST SETUP	33
8.4 TEST RESULTS	34

Revision History

Rev.	Issue Date	Effect Page	Contents
00	11 Mar. 2022	All	Initial Issue

1. SUMMARY OF TEST RESULTS

FCC Part 15 Subpart C section 15.236			
Standard Section	Test Item	Judgment	Remark
FCC Part 15.236(d)	Maximum Radiated Power	PASS	--
FCC Part 15.236(f)(2)	Occupied Bandwidth	PASS	--
FCC Part 15.236(g)	Necessary bandwidth	PASS	--
FCC Part 15.236(f)(3)	Frequency stability	PASS	--
FCC Part 15.236(g)	Emission within the band and outside this band	PASS	--
FCC Part 207(a)	Conducted Emission	PASS	--

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) All tests are according to ANSI C63.10:2013

1.1 TEST FACTORY

Company Name:	Flux Compliance Service Laboratory
Address:	Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan
Telephone:	+86-769-27280901
Fax:	+86-769-27280901
FCC Test Firm Registration Number:	514908
Designation number:	CN0127
A2LA accreditation number:	5545.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately **95 %**.

No.	Item	Uncertainty
1	RF output power, conducted	± 0.71 dB
2	Unwanted Emissions, conducted	± 2.98 dB
3	Conducted Emission (9KHz-150KHz)	± 4.13 dB
4	Conducted Emission (150KHz-30MHz)	± 4.74 dB
5	All emissions, radiated(<1G) 30MHz-1000MHz	± 3.2 dB
6	All emissions, radiated (1GHz -18GHz)	± 3.66 dB
7	All emissions, radiated (18GHz -40GHz)	± 4.31 dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Wireless Voice Transmission
Date of receipt of test sample	18th Feb. 2022
Number of test sample	2
Sample number	202202125-1, 202202125-2
Brand Name	N/A
Model Name	ELGT-470
Series Model	ELGT-470T,ELGT-470R
Channel List	Please refer to the Note 2.
Operation frequency	Channel: 470MHz- 490MHz
Modulation Type	GFSK
Antenna Type	External Antenna
Antenna Gain (dBi)	1.0
Power Supply	DC 5V
Battery	DC 3.7V
Hardware version number	V1.0
Software version number	V1.0
Connecting I/O Port(s)	Please refer to the User's Manual

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. Channel List

Channel			
Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	470.0	50	480.0
02	470.2	51	480.2
03	470.4	52	480.4
04	470.6	53	480.6
05	470.8	54	480.8
...
...
49	479.8	100	490

Ant.	Atnenna Brand	Antenna Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	FGDX	External Antenna	N/A	1.0	Antenna

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test software:FCC tools

The test software was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table, the following operating modes were applied for the related test items. All test modes were tested, only the result of the worst case was recorded in the report.

Tested mode, channel , information		
Mode	Channel	Frequency (MHz)
Channel	CH 01	470.0
	CH 50	480.0
	CH 100	490.0

Note: that use new battery during the test

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in 『Length』 column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.4 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2022.02.10	2023.02.09
Signal Analyzer	R&S	FSV40-N	FCS-E012	2022.02.10	2023.02.09
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2022.02.10	2023.02.09
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2022.02.10	2023.02.09
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2022.02.10	2023.02.09
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2022.02.10	2023.02.09
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2022.02.10	2023.02.09
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2022.02.10	2023.02.09
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2022.02.10	2023.02.09
Temperature & Humidity	HTC-1	victor	FCS-E005	2022.02.10	2023.02.09
Signal generator	Agilent	E4421B	FCS-E025	2022.02.10	2023.02.09

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2022.02.10	2023.02.09
LISN	R&S	ENV216	FCS-E007	2022.02.10	2023.02.09
LISN	ETS	3810/2NM	FCS-E009	2022.02.10	2023.02.09
Temperature & Humidity	HTC-1	victor	FCS-E008	2022.02.10	2023.02.09

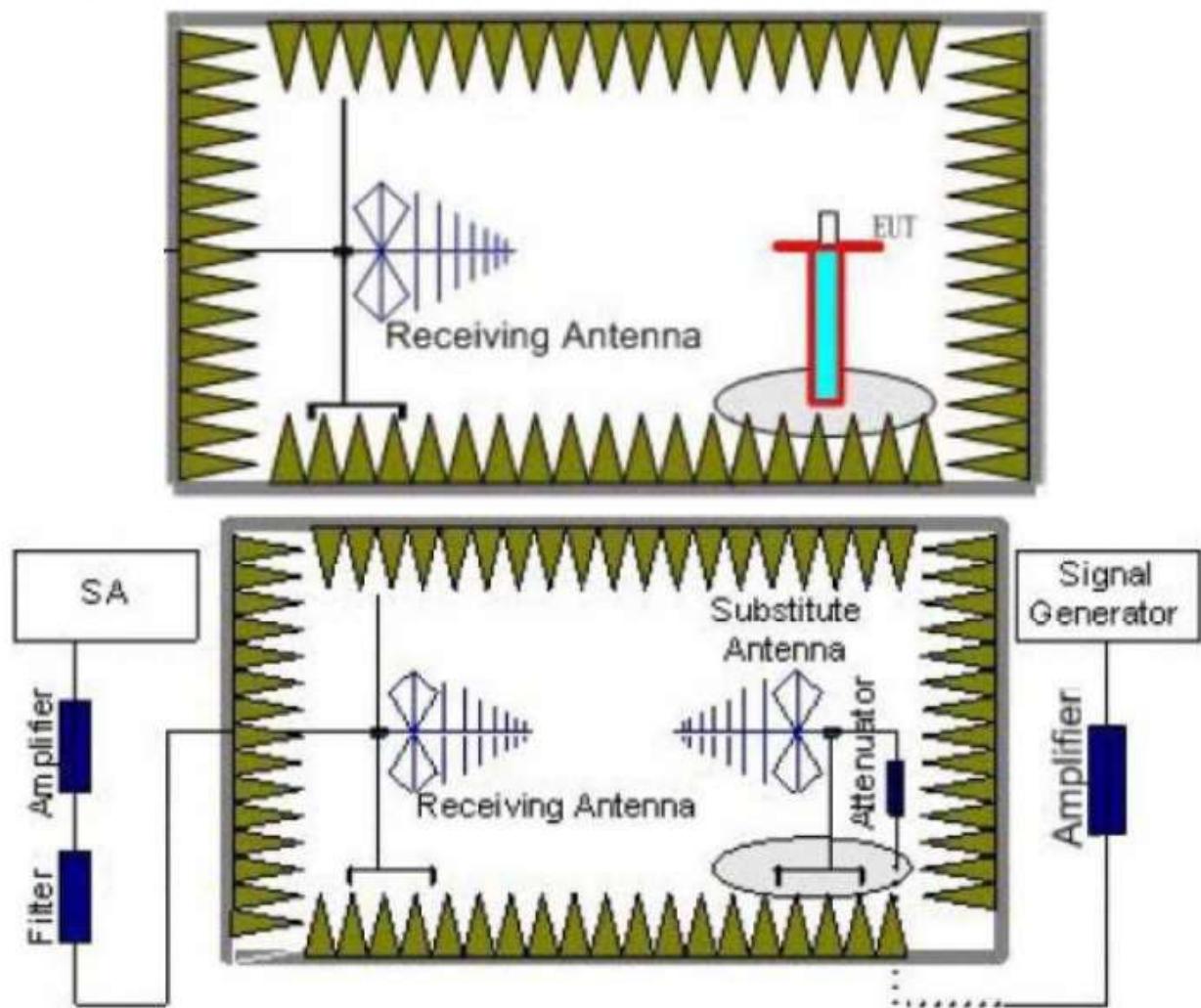
RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
Spectrum Analyzer	Keysight	N9020A	FCS-E015	2022.02.10	2023.02.09
Spectrum Analyzer	Agilent	E4447A	MY50180039	2022.02.10	2023.02.09
Spectrum Analyzer	R&S	FSV-40	101499	2022.02.10	2023.02.09

3 MAXIMUM RADIATED POWER

3.1 LIMIT

The maximum radiated power shall not exceed the following values:


(1) In the bands allocated and assigned for broadcast television and in the 600 MHz service band: 50 mW EIRP

(2) In the 600 MHz guard band and the 600 MHz duplex gap: 20 mW EIRP

3.2 TEST PROCEDURE

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all test transmit frequencies were measured with peak detector.
2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
3. The EUT is then put into continuously transmitting mode at its maximum power level during the test Set Test Receiver or Spectrum RBW=1 MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (Pr).
4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
5. An amplifier may be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pd) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
The measurement results are obtained as described below:
$$\text{POWer(EIRP)} = \text{PMea} + \text{PAg} - \text{Pd} + \text{Ga}$$
6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
7. ERP can be calculated from EIRP by subtracting the gain of the dipole, $\text{ERP} = \text{EIRP} - 2.15\text{dBi}$

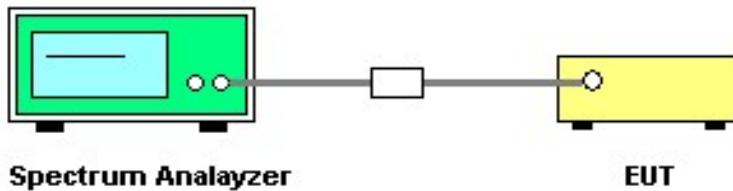
3.3 TEST SETUP

Test Configuration

3.4 TEST RESULTS

Test mode	Channel	Frequency (MHz)	Peak Output Power (dBm)	Cable loss(dB m)	Atnenna Gain (dBi)	EIRP(d Bm)	Limit(dB m)	Verdict
Channel	01	470.0	3.69	1.0	1.0	5.69	16.99	PASS
	50	480.0	3.86	1.0	1.0	5.86		
	100	490.0	4.35	1.0	1.0	6.35		

4. OCCUPIED BANDWIDTH


4.1 LIMIT

One or more adjacent 25KHz segments within the assignable frequencies may be combined to form a channel whose maximum bandwidth shall not exceed 200 kHz. The operating bandwidth shall not exceed 200 kHz

4.2 TEST PROCEDURE

Parameter	Setting
Detector	Peak/AV
Sweep time	Auto
Resolution bandwidth	1 % to 5 % of the occupied bandwidth
Video bandwidth:	3 x resolution bandwidth
Span:	2 x emission bandwidth
Trace mode:	Max. hold
Analyzer function:	99% power occupied bandwidth function
EUT:	Modulated signal with max(FM,2.5kHz tone). frequency deviation

4.3 TEST SETUP

4.4 TEST RESULTS

Test mode	Channel	Frequency (MHz)	99% Bandwidth (KHz)	Limit(KHz)	Verdict
Channel	Low CH	470.0	62.631KHz	200	PASS
	Middle CH	480.0	62.639KHz		
	High CH	490.0	62.624KHz		

5 NECESSARY BANDWIDTH

5.1 LIMIT

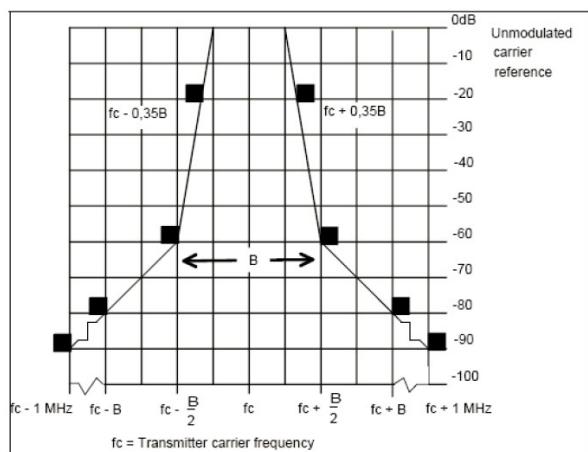
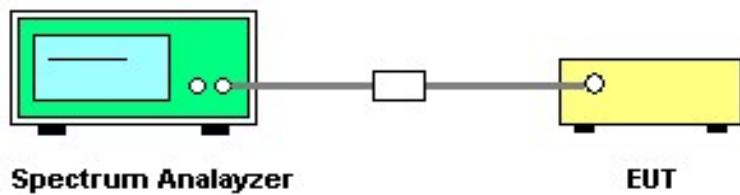
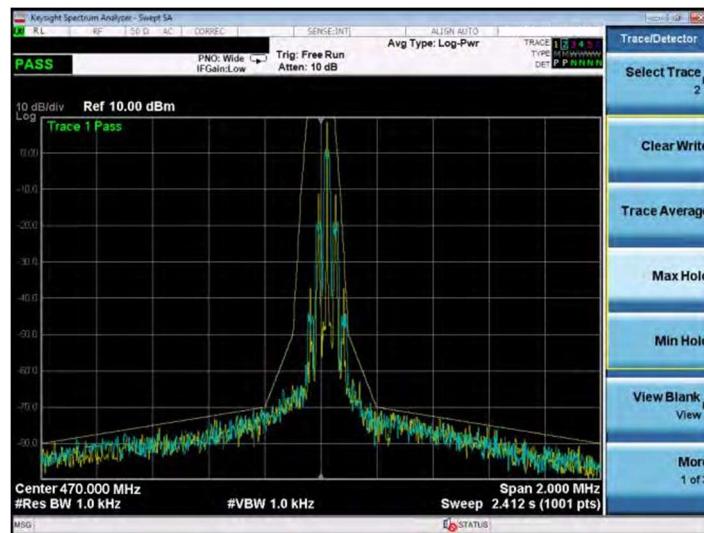
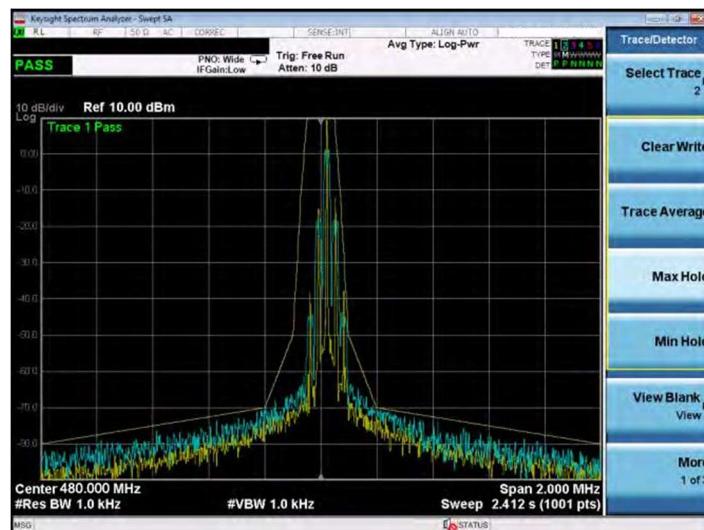



Figure 1: Spectrum mask for analogue systems in all bands

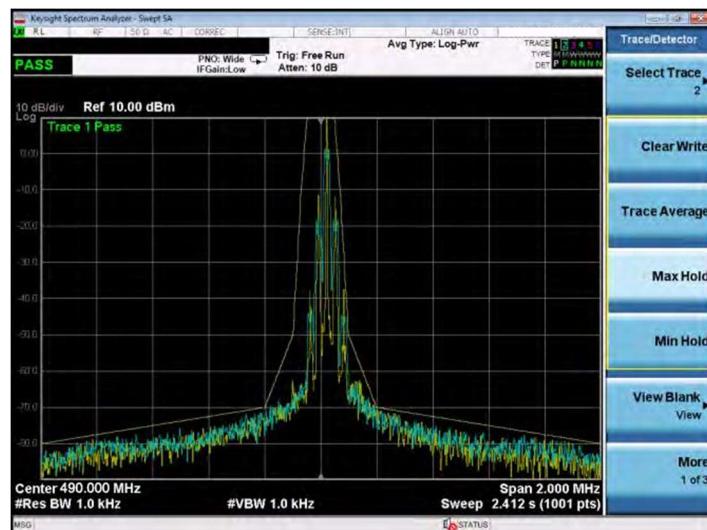
5.2 TEST PROCEDURE


EN300422-1 V1.4.2 Clause 8.3.

5.3 TEST SETUP



5.4 TEST RESULT


Emission Mask
Channel
Low CH

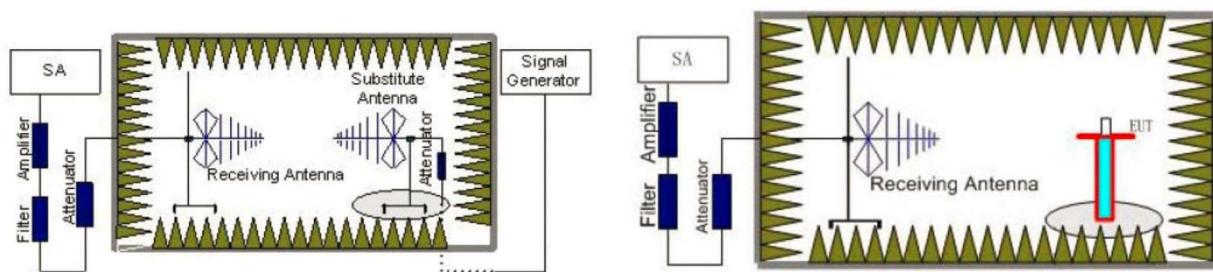
Middle CH

High CH

6. TRANSMITTER UNWANTED EMISSIONS

6.1 LIMIT

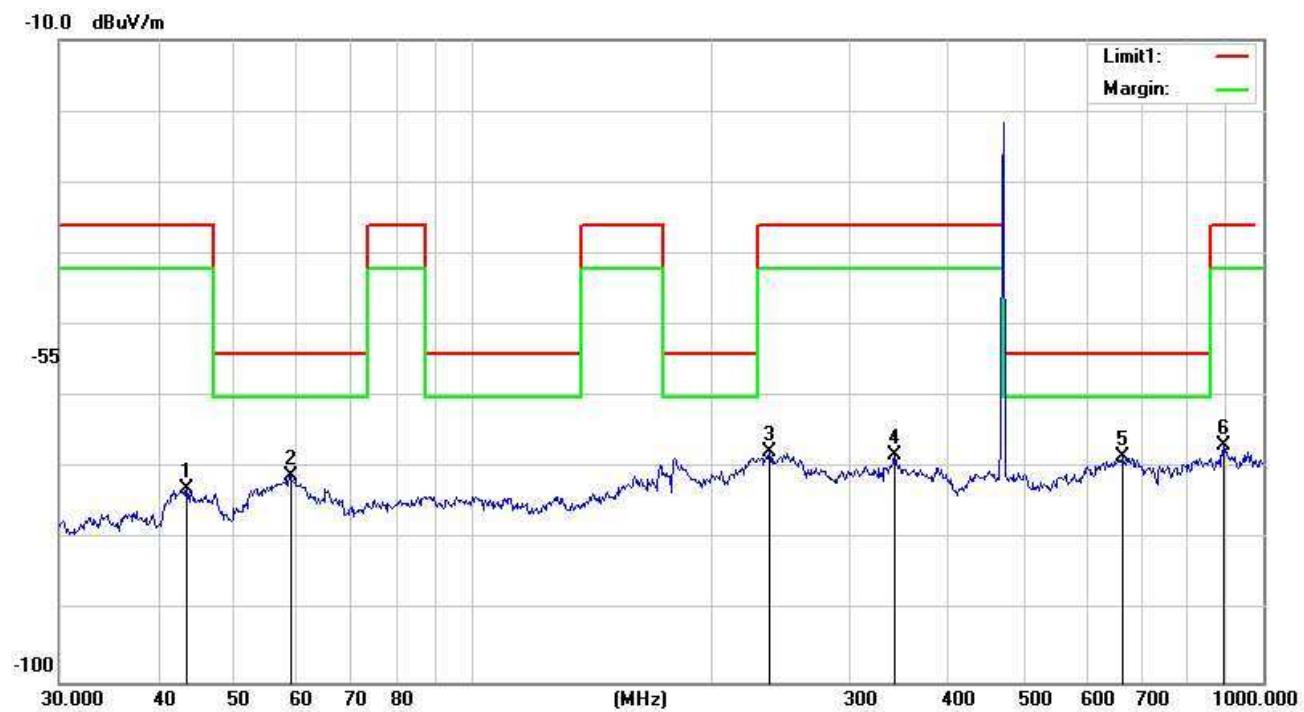
Spurious emissions are emissions outside the frequency range(s) of the equipment. The power of the spurious emissions shall not exceed the limits of table as below:


State	Frequency		
	47MHz to 74MHz, 87.5MHz to 137MHz 174MHz to 230MHz, 470MHz to 862MHz	Other Frequencies below 1000MHz	Frequencies above 1000MHz
Operation	4nW	250nW	1uW
Standby	2nW	2nW	20nW

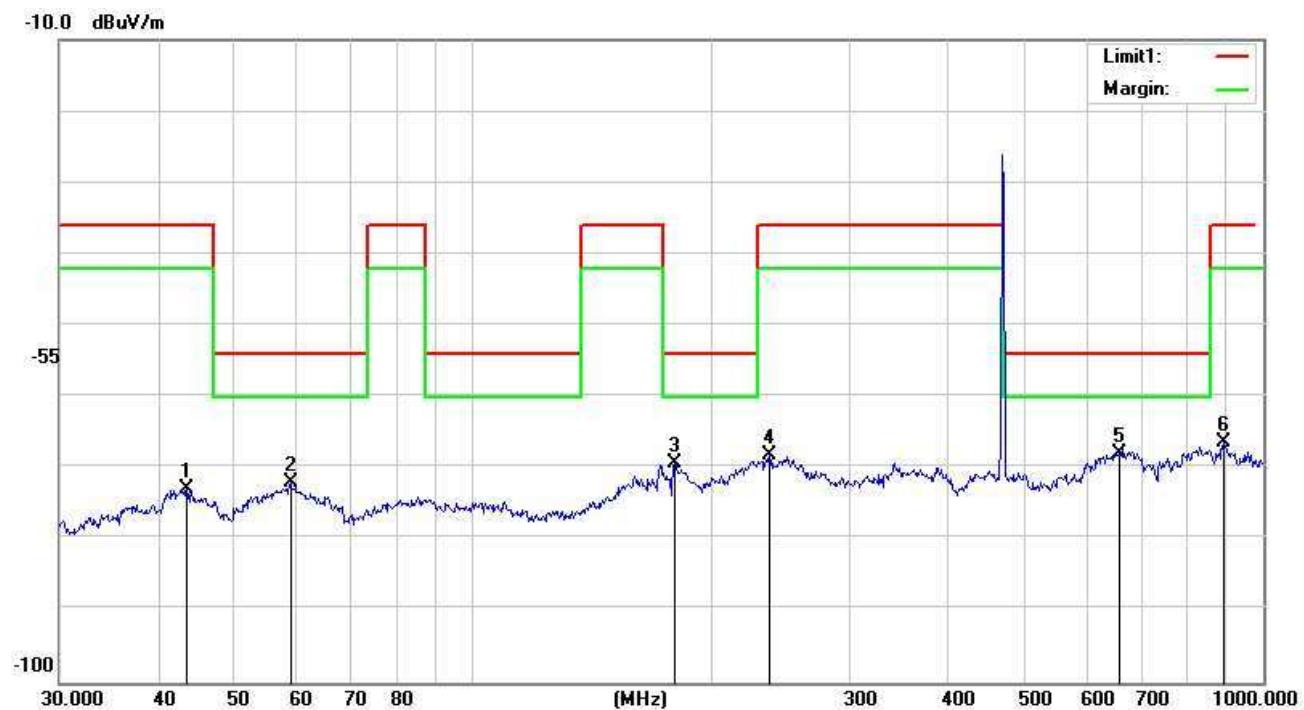
6.2 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 30MHz to 6000MHz with 100 KHz RBW and 300 KHz VBW

1. Please refer to ETSI EN 300 422-1 V1.4.2 (2011-08) clause 6.1 for the test conditions.
2. Please refer to ETSI EN 300 422-1 V1.4.2 (2011-08) clause 8.4.2 for the measurement method.

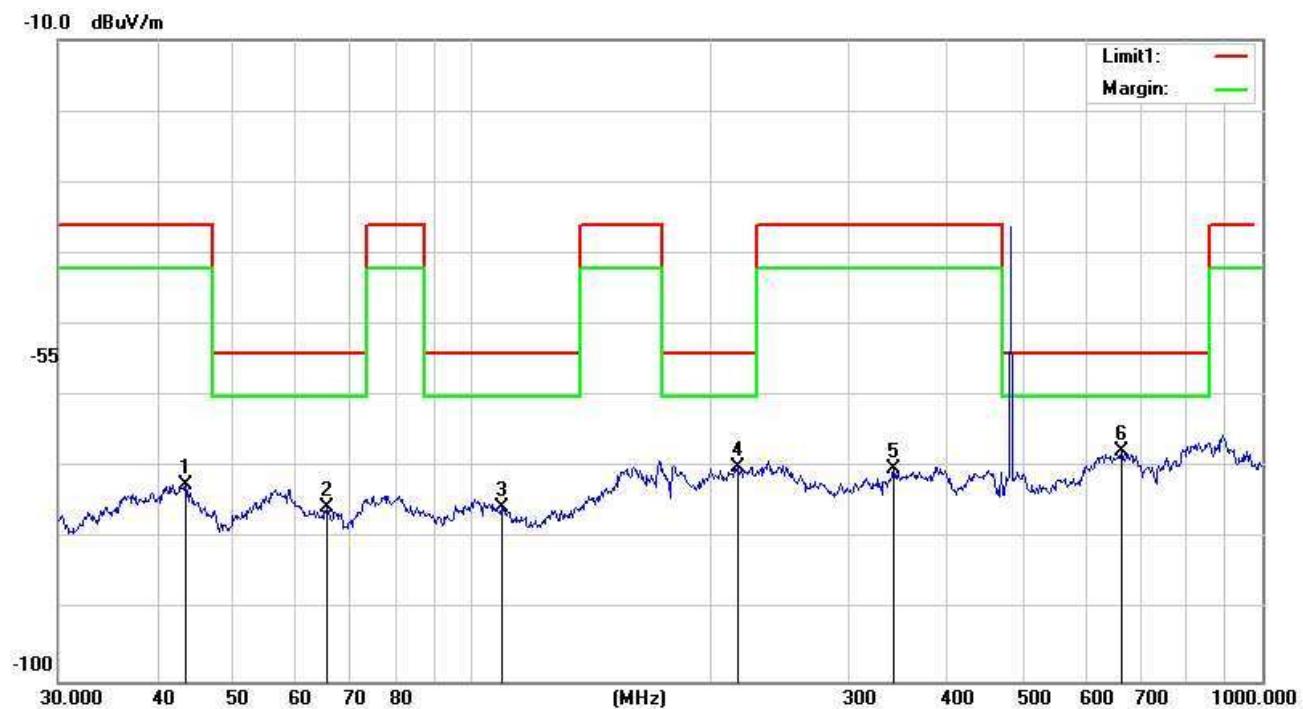

6.3 TEST SETUP

6.4 TEST RESULTS

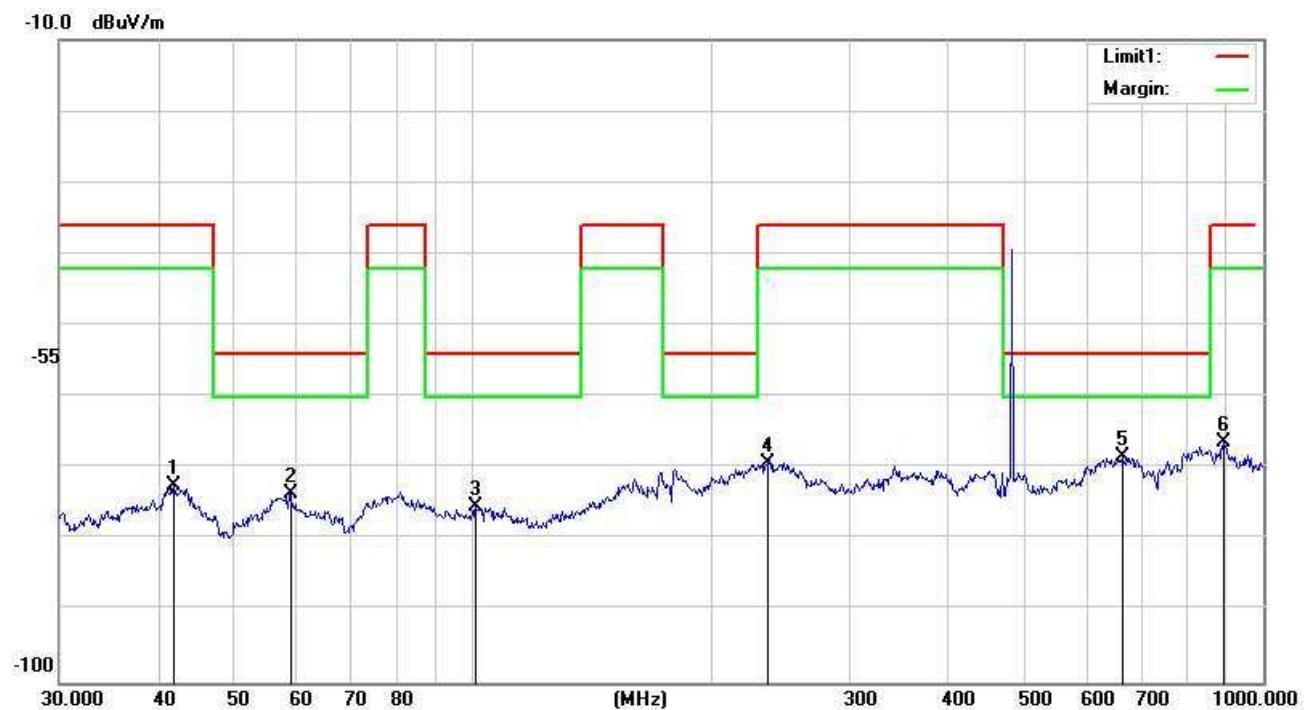

CHANNEL -LOW CH-30MHZ-1000MHZ

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	43.5057	-56.03	-16.89	-72.92	-36.00	-36.92	peak
2	58.8185	-55.18	-16.91	-72.09	-54.00	-18.09	peak
3	180.0165	-49.76	-19.44	-69.20	-54.00	-15.20	peak
4	237.4760	-52.78	-15.34	-68.12	-36.00	-32.12	peak
5	656.5300	-61.21	-6.73	-67.94	-54.00	-13.94	peak
6	890.7278	-62.97	-3.43	-66.40	-36.00	-30.40	peak


Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	43.5056	-56.03	-16.89	-72.92	-36.00	-36.92	peak
2	58.8185	-54.18	-16.91	-71.09	-54.00	-17.09	peak
3	237.4760	-52.28	-15.34	-67.62	-36.00	-31.62	peak
4	341.9786	-55.42	-12.78	-68.20	-36.00	-32.20	peak
5	663.4728	-61.60	-6.71	-68.31	-54.00	-14.31	peak
6	890.7278	-63.47	-3.43	-66.90	-36.00	-30.90	peak

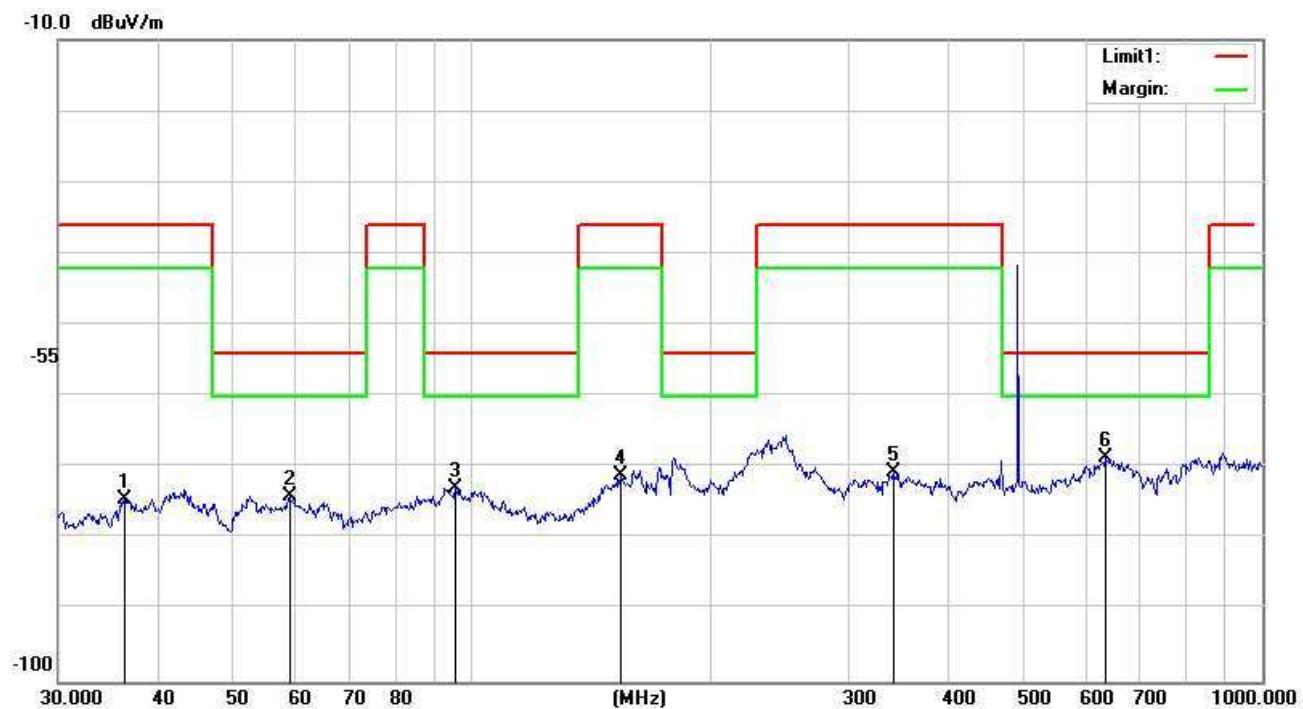

Note :

1. Result = Reading + Corrected Factor Note :
2. The fundamental wave filtered out during the test.

CHANNEL -MIDDLE CH-30MHZ-1000MHZ
Vertical

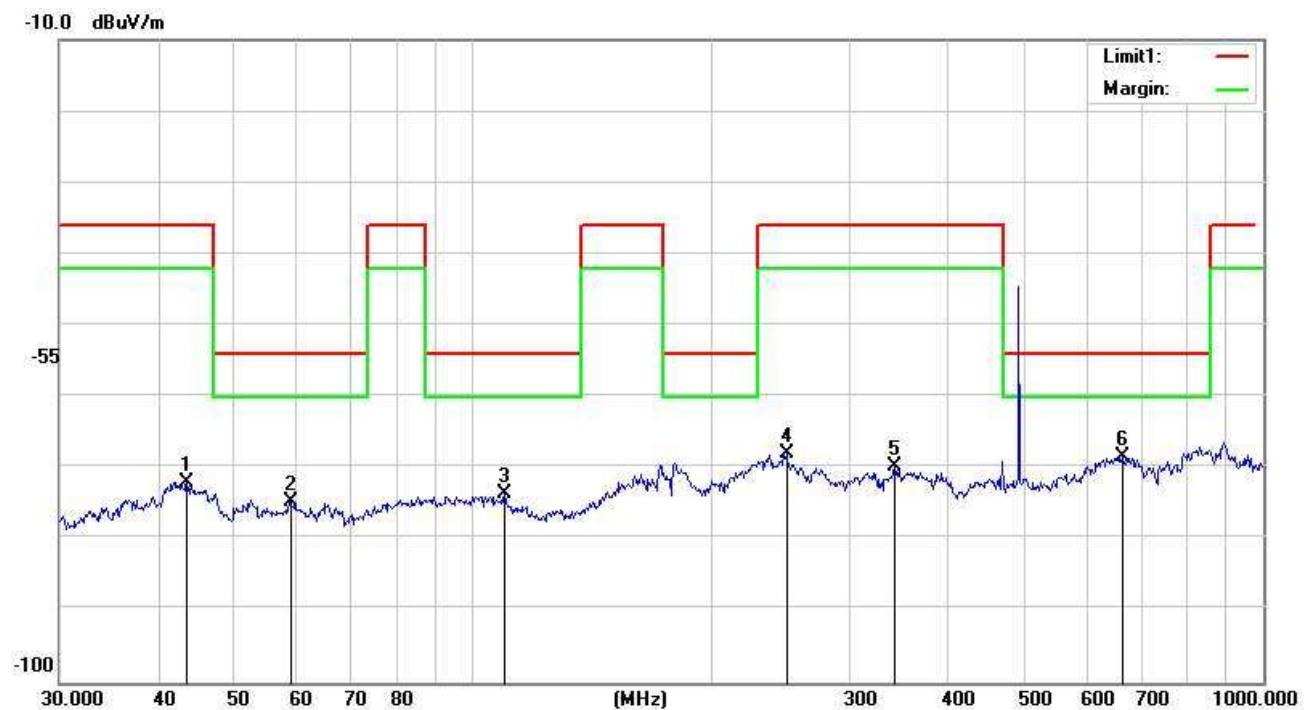
No.	Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	43.5056	-55.53	-16.89	-72.42	-36.00	-36.42	peak
2	65.5725	-56.09	-19.47	-75.56	-54.00	-21.56	peak
3	109.0284	-58.50	-17.00	-75.50	-54.00	-21.50	peak
4	216.7828	-54.45	-15.41	-69.86	-54.00	-15.86	peak
5	341.9786	-57.42	-12.78	-70.20	-36.00	-34.20	peak
6	663.4728	-61.10	-6.71	-67.81	-54.00	-13.81	peak

Horizontal


No.	Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	41.8596	-55.46	-17.04	-72.50	-36.00	-36.50	peak
2	58.8185	-56.68	-16.91	-73.59	-54.00	-19.59	peak
3	100.9340	-57.63	-17.78	-75.41	-54.00	-21.41	peak
4	236.6447	-53.99	-15.34	-69.33	-36.00	-33.33	peak
5	663.4728	-61.60	-6.71	-68.31	-54.00	-14.31	peak
6	890.7278	-62.97	-3.43	-66.40	-36.00	-30.40	peak

Note :

1. Result = Reading + Corrected Factor Note :
2. The fundamental wave filtered out during the test.


CHANNEL -HIGH CH-30MHZ-1000MHZ

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	36.3813	-58.01	-16.50	-74.51	-36.00	-38.51	peak
2	58.8185	-57.18	-16.91	-74.09	-54.00	-20.09	peak
3	95.4270	-53.82	-19.09	-72.91	-54.00	-18.91	peak
4	154.2786	-51.85	-19.28	-71.13	-36.00	-35.13	peak
5	341.9786	-57.92	-12.78	-70.70	-36.00	-34.70	peak
6	633.9071	-61.41	-7.22	-68.63	-54.00	-14.63	peak

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	43.5056	-55.03	-16.89	-71.92	-36.00	-35.92	peak
2	58.8185	-57.68	-16.91	-74.59	-54.00	-20.59	peak
3	109.7960	-56.69	-16.94	-73.63	-54.00	-19.63	peak
4	249.4250	-52.72	-15.28	-68.00	-36.00	-32.00	peak
5	341.9786	-56.92	-12.78	-69.70	-36.00	-33.70	peak
6	663.4728	-61.60	-6.71	-68.31	-54.00	-14.31	peak

Note :

1. Result = Reading + Corrected Factor Note :
2. The fundamental wave filtered out during the test.

CHANNEL 1GHZ-6GHZ

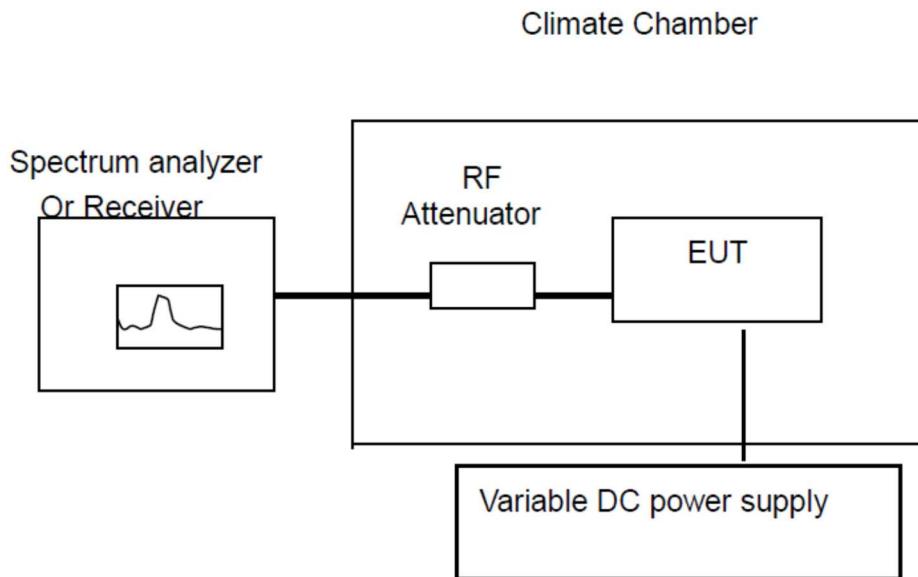
Frequency (MHz)	Reading (dBm)	Correct dB	Result (dBm)	Limit (dBm)	Margin (dB)	Polar
Low Channel-470.0MHz						
940.0	-49.65	7.92	-41.73	-30	-11.73	H
1410.0	-52.36	13.97	-38.39	-30	-8.39	H
940.0	-48.27	7.92	-40.35	-30	-10.35	V
1410.0	-47.69	13.64	-34.05	-30	-4.05	V
Middle Channel-480.0MHz						
960	-53.68	8.27	-45.41	-30	-15.41	H
1440	-52.11	13.73	-38.38	-30	-8.38	H
960	-50.36	8.27	-42.09	-30	-12.09	V
1440	-49.25	13.73	-35.52	-30	-5.52	V
High Channel-490.0MHz						
980	-54.78	8.19	-46.59	-30	-16.59	H
1470	-54.02	13.52	-40.05	-30	-10.05	H
980	-52.34	8.19	-44.15	-30	-14.15	V
1470	-50.11	13.52	-36.59	-30	-6.59	V

Note: all other emissions are attenuated 20dB below the limits, so it does not record in report.

7. FREQUENCY STABILITY

7.1 LIMIT

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.005\%$ of the operating frequency over a temperature variation of -20 degrees to $+50$ degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C


7.2 TEST PROCEDURE

a. The EUT was connected to an external DC power supply and the RF output was connected to a frequency counter via feed through attenuators. The EUT was placed inside the temperature chamber. The DC leads and the RF output cable, exited the chamber through an opening made for that purpose.

After the temperature stabilized the frequency output was recorded from the counter. An external variable DC power supply was connected to the battery terminals of the equipment under test.

b. For hand carried, battery powered equipment primary supply voltage was reduced to the battery operating end point as specified by the manufacturer. The output frequency was recorded for each battery voltage.

7.3 TEST SETUP

7.4 TEST RESULTS

- (1) Frequency stability versus input voltage (Supply Nominal voltage is DC 3V)
- (2) Frequency stability versus input voltage (Supply battery operating end point which shall be specified by the manufacturer DC 1.275V)

Refernce Frequency: 470.0MHz			
Power supply	Environment Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)
DC 2.55V	20	1010	2.15
DC 3V	20	1008	2.14
DC 3.45V	20	1015	2.16

Refernce Frequency: 470.0MHz				
Frequency Deviation measured with time Elapse(30 minutes)				
Environment Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)	Results
50	1021	2.17	50	Pass
40	1008	2.14		
30	1005	2.14		
20	1008	2.14		
10	1007	2.14		
0	1009	2.15		
-10	1008	2.14		
-20	1009	2.15		

Refernce Frequency: 480.0MHz			
Power supply	Environment Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)
DC 2.55V	20	1009	2.10
DC 3V	20	1006	2.10
DC 3.45V	20	1010	2.10

Refernce Frequency: 480.0MHz				
Frequency Deviation measured with time Elapse(30 minutes)				
Environment Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)	Results
50	1011	2.11	50	Pass
40	1006	2.10		
30	1006	2.10		
20	1008	2.10		
10	1007	2.10		
0	1008	2.10		
-10	1008	2.10		
-20	1006	2.11		

Refernce Frequency: 490.0MHz			
Power supply	Environment Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)
DC 2.55V	20	1013	2.07
DC 3V	20	1011	2.06
DC 3.45V	20	1010	2.06

Refernce Frequency: 490.0MHz				
Frequency Deviation measured with time Elapse(30 minutes)				
Environment Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)	Results
50	1010	2.06	50	Pass
40	1005	2.05		
30	1005	2.05		
20	1006	2.05		
10	1007	2.06		
0	1006	2.05		
-10	1007	2.06		
-20	1006	2.05		

8 CONDUCTED EMISSION MEASUREMENT

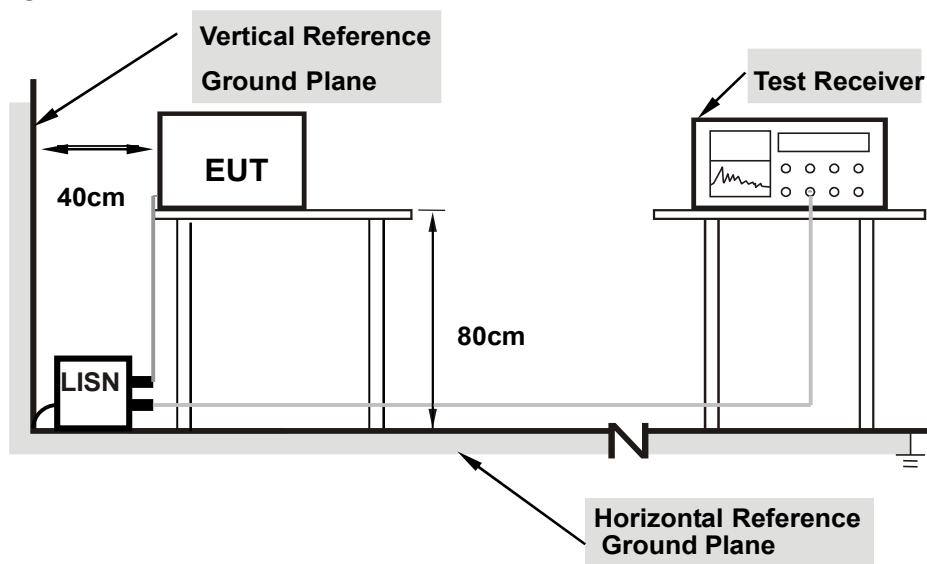
8.1 LIMIT

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

FREQUENCY (MHz)	Conducted Emissionlimit (dBuV)	
	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

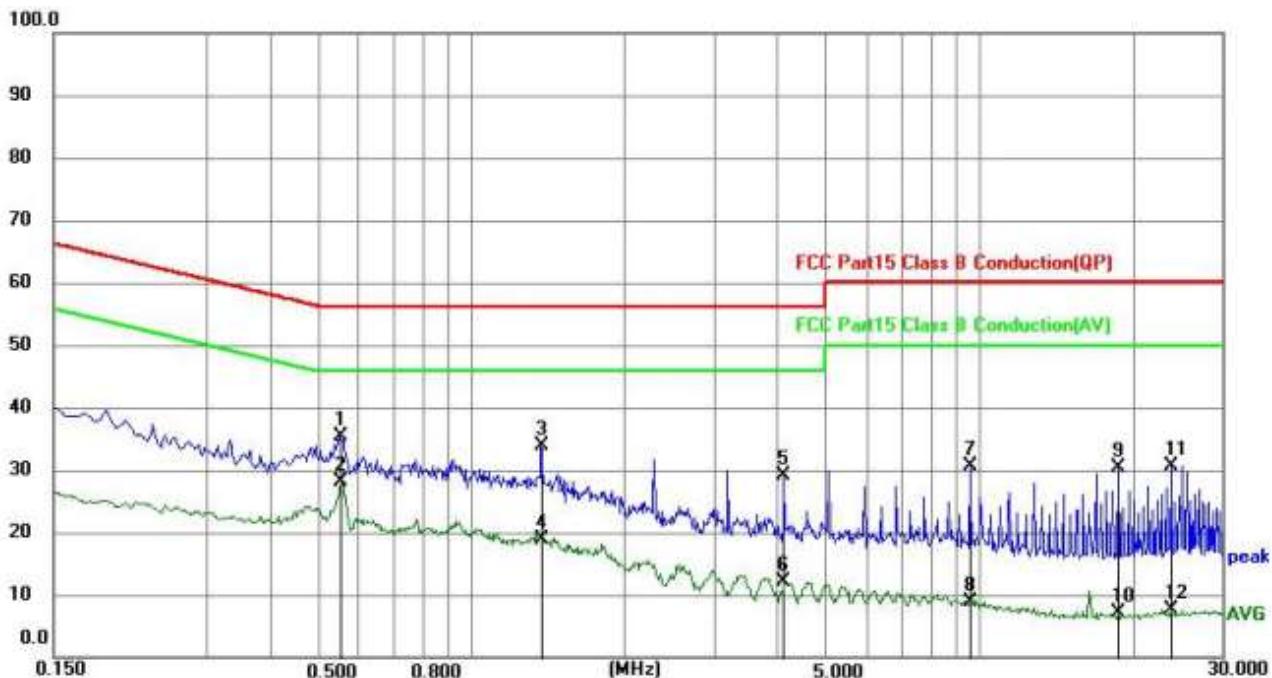

8.2 TEST PROCEDURE

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

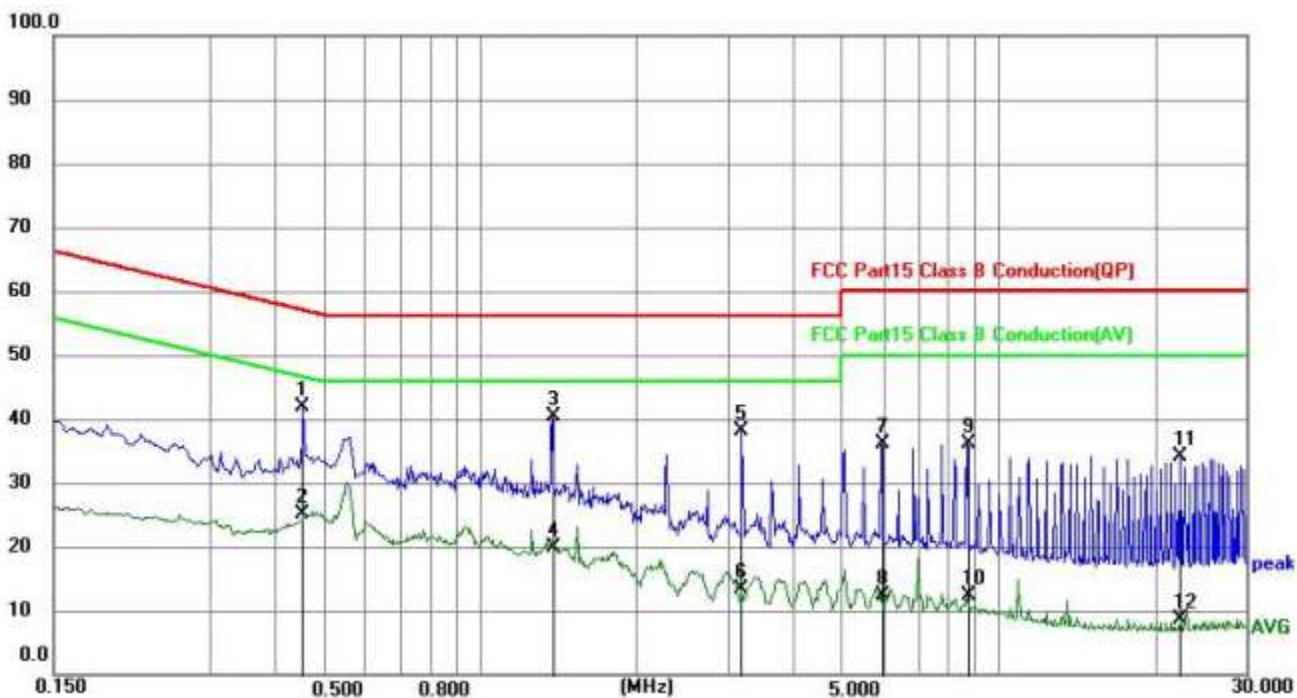
- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

8.3 TEST SETUP


Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

8.4 TEST RESULTS


Temperature:	25°C	Relative Humidity:	50%
Test Mode:	GFSK	Test Voltage:	DC 5V
Phase:	L	Result:	Pass

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	0.5505	25.61	9.87	35.48	56.00	20.52	QP
2	0.5505	18.14	9.87	28.01	46.00	17.99	AVG
3	1.3695	23.95	9.92	33.87	56.00	22.13	QP
4	1.3695	8.97	9.92	18.89	46.00	27.11	AVG
5	4.1280	19.21	9.96	29.17	56.00	26.83	QP
6	4.1280	2.17	9.96	12.13	46.00	33.87	AVG
7	9.6000	20.59	10.01	30.60	60.00	29.40	QP
8	9.6000	-1.13	10.01	8.88	50.00	41.12	AVG
9	18.7575	20.31	10.16	30.47	60.00	29.53	QP
10	18.7575	-2.99	10.16	7.17	50.00	42.83	AVG
11	23.7885	20.52	10.20	30.72	60.00	29.28	QP
12	23.7885	-2.46	10.20	7.74	50.00	42.26	AVG

Temperature:	25°C	Relative Humidity:	50%
Test Mode:	GFSK	Test Voltage:	DC 5V
Phase:	N	Result:	Pass

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	0.4560	31.96	9.86	41.82	56.77	14.95	QP
2	0.4560	15.32	9.86	25.18	46.77	21.59	AVG
3	1.3740	30.39	9.92	40.31	56.00	15.69	QP
4	1.3740	9.91	9.92	19.83	46.00	26.17	AVG
5	3.2010	28.28	9.97	38.25	56.00	17.75	QP
6	3.2010	3.35	9.97	13.32	46.00	32.68	AVG
7	5.9505	26.14	10.06	36.20	60.00	23.80	QP
8	5.9505	2.39	10.06	12.45	50.00	37.55	AVG
9	8.6955	25.97	10.16	36.13	60.00	23.87	QP
10	8.6955	2.20	10.16	12.36	50.00	37.64	AVG
11	22.4205	23.78	10.27	34.05	60.00	25.95	QP
12	22.4205	-1.55	10.27	8.72	50.00	41.28	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

*****END OF THE REPORT*****