

DATE: 26 October 2017

I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report

Vitalerter LTD

Equipment under test:

Sensor

Vitals v2.0 (Wi-Fi & BLE transceivers)

Tested by:

M. Zohar

Approved by:

V Students

D. Shidlowsky

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

Measurement/Technical Report for Vitalerter LTD

Sensor

Vitals v2.0

FCC ID: 2ANR2-VITALSV20

This report concerns: Original Grant: X

Class I Change: Class II Change:

Equipment type: Digital Transmission System

Limits used: 47CFR15 Section 15.247

Measurement procedure used is KDB 558074 D01 v03r05 and ANSI C63.10:2013.

Application for Certification Applicant for this device:

prepared by: (different from "prepared by")

R. Pinchuck Mor Raviv
ITL (Product Testing) Ltd. Vitalerter LTD
1 Bat Sheva St. 2 Ha-Yarden

Lod 7116002 Airport City, 7019900

e-mail Rpinchuck@itl.co.il Israel

Tel: +972775511194

e-mail: mor.raviv@vitalerter.com

TABLE OF CONTENTS

1.	GENERAL	. INFORMATION	
	1.1	Administrative Information	5
	1.2	List of Accreditations	
	1.3	Product Description	
	1.4	Test Methodology	7
	1.5	Test Facility	
	1.6	Measurement Uncertainty	
2.		TEST CONFIGURATION	
	2.1	Justification	
	2.2	EUT Exercise Software	
	2.3	Special Accessories	
	2.4	Equipment Modifications	11
	2.5	Configuration of Tested System	
3.		TED & RADIATED MEASUREMENT TEST SET-UP PHOTOS	
4.		TED EMISSION FROM AC MAINS	
	4.1	Test Specification	
	4.2	Test Procedure	
	4.3	Test Limit	
	4.4	Test Results	
	4.5	Test Equipment Used; Conducted Emission	
5.	-	MUM BANDWIDTH	_
	5.1	Test Specification	
	5.2	Test Procedure Test Limit	
	5.3 5.4	Test Results	
	5.5	Test Equipment Used; 6dB Bandwidth	
e		I TRANSMITTED PEAK POWER OUTPUT	
6.	6.1	Test Specification	
	6.2	Test Procedure	
	6.3	Test Limit	
	6.4	Test Results	
	6.5	Test Equipment Used; Maximum Peak Power Output	
7.		GE SPECTRUM	
7.	7.1	Test Specification	
	7.1	Test Procedure	
	7.2	Test Limit	
	7.4	Test Results	
	7.5	Test Equipment Used; Band Edge Spectrum	
8.		IS IN NON-RESTRICTED FREQUENCY BANDS	
Ο.	8.1	Test Specification	
	8.2	Test Procedure	
	8.3	Test Limit	
	8.4	Test Results	
	8.5	Test Instrumentation Used, Emission in Non Restricted Frequency Bands	
9.	EMISSION	IS IN RESTRICTED FREQUENCY BANDS	
٠.	9.1	Test Specification	
	9.2	Test Procedure	
	9.3	Test Limit	
	9.4	Test Results	
	9.5	Test Instrumentation Used: Emissions in Restricted Frequency Rands	ደር

10.	TRANSMI	TTED POWER DENSITY	81
	10.1	Test Specification	81
	10.2	Test Procedure	81
	10.3	Test Limit	81
	10.4	Test Results	82
	10.5	Test Equipment Used; Transmitted Power Density	93
11.	ANTENNA	A GAIN/INFORMATION	94
12.	R.F EXPO	SURE/SAFETY	95
13.	APPENDI	X A - CORRECTION FACTORS	97
	13.1	Correction factors for RF OATS Cable 35m	97
	13.2	Correction factors for RF CABLE for Semi Anechoic Chamber	98
	13.3	Correction factors for biconical antenna – ITL # 1356	99
	13.4	Correction factors for log periodic antenna – ITL # 1349	100
		Correction factors for Active Loop Antenna ITL #1075:	
	13.6	Correction factors for Horn ANTENNA	102
	13 7	Correction factors for Horn Antenna	103

1. General Information

1.1 Administrative Information

Manufacturer: Vitalerter LTD

Manufacturer's Address: 2 Ha-Yarden

Airport City, 7019990

Israel

Tel: +972775511194

Manufacturer's Representative: Mor Raviv

Equipment Under Test (E.U.T): Sensor

Equipment Model No.: Vitals v2.0

Equipment Serial No.: LA17050041

Date of Receipt of E.U.T: August 27, 2017

Start of Test: August 27, 2017

End of Test: September 25, 2017

Test Laboratory Location: I.T.L (Product Testing) Ltd.

1 Batsheva St.,

Lod

ISRAEL 7120101

Test Specifications: FCC Part 15, Subpart C, Section 15.247

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation No. IL1005.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. Industry Canada (Canada), IC File No.: 46405-4025; Site Nos. IC 4025A-1, IC 4025A-2.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

The Vitalerter Vitals is a contact free medical device intended to provide continuous measurement and monitoring of patient vitals heart rate, respiration rate and body motion for preventive care analysis while patient is at rest or during sleep.

Model name	Vitals v2.0
Working voltage	3.7VDC Rechargeable battery operated via AC/DC adapter
Mode of operation	Transceiver
Modulations	For Wi-Fi/b: DSSS,CCK
	For Wi-Fi/g: OFDM(BPSK,QPSK,16QAM,64QAM)
	For Wi-Fi/n: OFDM(BPSK,QPSK,16QAM,64QAM)
	For BLE: GFSK
Assigned Frequency Range	2400.0-2483.5MHz
Operating Frequency Range	For Wi-Fi/b/g/n: 2412.0-2462.0MHz
	For BLE: 2402.0-2480.0MHz
Transmit power(conducted)	For Wi-Fi/b/g/n: ~18.0dBm
	For BLE: ~4.0dBm
Antenna Gain	1.9 dBi chip antenna
Modulation BW	For Wi-Fi/b/g/n: 20MHz
	For BLE: 2MHz
Bit rate (Mbit/s)	For Wi-Fi/b: 1, 2, 5.5, 11
	For Wi-Fi/g: 6, 9, 12, 18, 24, 36, 48, 54
	For Wi-Fi/n: 6.5,13,19.5,26,39,52,58.5,65
	For BLE: 1,2,3

1.4 Test Methodology

Both conducted and radiated testing was performed according to the procedures in KDB 558074 D01 v03r05 and ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

Emissions tests were performed at I.T.L.'s testing facility in Lod, Israel. I.T.L.'s EMC Laboratory is accredited by A2LA, certificate No. 1152.01 and its FCC Designation Number is IL1005.

1.6 Measurement Uncertainty

Conducted Emission Power Lines (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4)

0.15 - 30 MHz:

Expanded Uncertainty (95% Confidence, K=2):

 \pm 3.44 dB

Radiated Emission

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) for open site:

30-1000MHz:

Expanded Uncertainty (95% Confidence, K=2):

 $\pm 4.96 dB$

1 GHz to 6 GHz

Expanded Uncertainty (95% Confidence, K=2):

±5.19 dB

>6 GHz

Expanded Uncertainty (95% Confidence, K=2):

±5.51 dB

2. System Test Configuration

2.1 Justification

- 1. The E.U.T contains 2 transceivers: IEEE 802.15.1 standard (BLE) and IEEE 802.11b/g/n standard (Wi-Fi/b/g/n) with only 20MHz CBW.
- 2. **For BLE** The unit was evaluated while transmitting at the low channel (2402MHz), the mid channel (2440MHz) and the high channel (2480MHz). **For Wi-Fi b/g/n** The unit was evaluated while transmitting at the low channel (2412MHz), the mid channel (2437MHz) and the high channel (2462MHz).
- 3. The evaluation was performed while the E.U.T was connected to typical AC/DC adapter for charge mode as the "worst case".
- 4. Conducted emission tests were performed with the E.U.T. antenna terminal connected by a RF cable to the Spectrum Analyzer through a 30dB external attenuator.
- 5. Final conducted/radiated emission for Wi-Fi b/g/n modes test were performed after finding 2 of the "worst case" for each different protocol type. The results are shown in the below table:

Protocol type	"worst case" bit rate		
Wi-Fi/b	1,11 Mbit/s		
Wi-Fi/g	6,54 Mbit/s		
Wi-Fi/n	6.5,65 Mbit/s		

6. Final Radiated emission test for spurious emission in restricted band was performed after exploratory emission testing that was performed in 3 orthogonal polarities to determine the "worst case" radiation.

7. According to results in the following table, the worst case for Wi-Fi mode was the X axis for all channels.

Orientation	Frequency	Fundamental	2 rd Harmonic	3 th Harmonic	Band Edge
	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)
	2412.0	110.6	56.1	62.9	71.3
X axis	2437.0	111.6	56.3	62.9	-
	2462.0	112.4	56.1	62.7	71.5
	2412.0	110.2	55.9	62.6	70.9
Y axis	2437.0	110.2	54.1	61.6	-
	2462.0	112.1	56.2	62.5	71.0
	2412.0	107.8	55.1	62.9	70.7
Z axis	2437.0	109.9	55.6	63.1	-
	2462.0	110.3	55.7	64.0	71.0

Figure 1. Screening Results Wi-Fi mode

8. For BLE, according to the below screening results the worst case was the X axis for the mid and high channels and the Y axis for the low channel.

Orientation	Frequency	Fundamental	2 rd Harmonic	3 th Harmonic	Band Edge
	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)
	2402.0	101.7	54.5	64.8	72.3
X axis	2440.0	101.3	54.8	65.3	-
	2480.0	100.3	54.4	65.4	71.5
	2402.0	103.2	55.0	64.8	73.5
Y axis	2440.0	100.9	54.5	65.1	-
	2480.0	98.8	54.2	64.8	70.0
	2402.0	101.9	54.6	64.6	72.4
Z axis	2440.0	101.1	54.6	65.2	-
	2480.0	98.6	54.2	65.0	70.3

Figure 2. Screening Results BLE mode

2.2 EUT Exercise Software

No special exercise software was used.

2.3 Special Accessories

AC/DC adapter manufactured by: MEAN WELL ENTERPRISES.LTD.

Model no.: GSM40A05 S/N: EB4AA11258

2.4 Equipment Modifications

No modifications were necessary in order to achieve compliance.

2.5 Configuration of Tested System

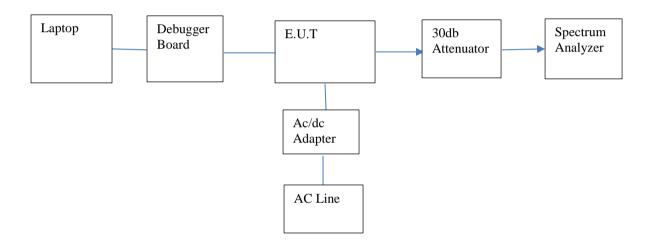


Figure 3. Configuration of Tested System Conducted

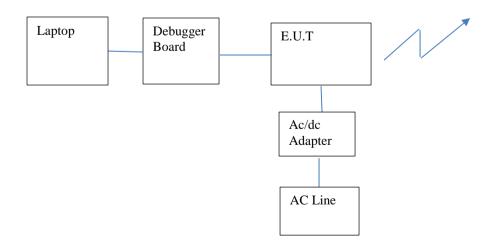


Figure 4. Configuration of Tested System Radiated

3. Conducted & Radiated Measurement Test Set-Up Photos

Figure 5. Conducted Emission from AC Mains Test

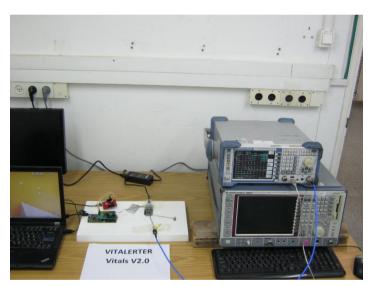


Figure 6. Conducted Emission From Antenna Ports Test

Figure 7. Radiated Emission Test, 0.009-30MHz

Figure 8. Radiated Emission Test, 30-200MHz

Figure 9. Radiated Emission Test, 200-1000MHz

Figure 10. Radiated Emission Test 1-18GHz

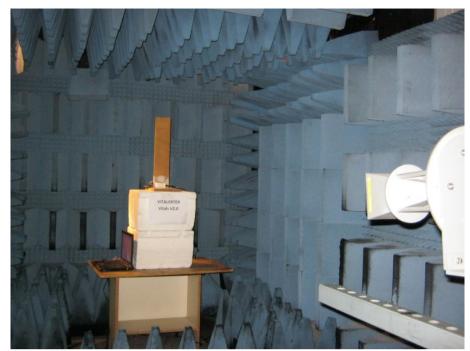


Figure 11. Radiated Emission Test 18-25GHz

4. Conducted Emission From AC Mains

4.1 Test Specification

FCC Part 15, Subpart C, Section 15.207

4.2 Test Procedure

(Temperature (20°C)/ Humidity (63%RH))

The E.U.T operation mode and test setup are as described in Section 2 of this report. In order to minimize background noise interference, the conducted emission testing was performed inside a shielded room, with the E.U.T placed on a 0.8 meter high wooden table, 0.4 meter from the room's vertical wall. In the case of a floor-standing E.U.T., it was placed on the horizontal ground plane.

The E.U.T was powered from 115 V AC / 60 Hz via 50 Ohm / 50 μ Hn Line Impedance Stabilization Network (LISN) on the phase and neutral lines. The LISN's were grounded to the shielded room ground plane (floor), and were kept at least 0.8 meters from the nearest boundary of the E.U.T

The center of the E.U.T.'s AC cable was folded back and forth, in order to form a bundle less than 0.40 meters and a total cable length of 1 meter.

The effect of varying the position of the cables was investigated to find the configuration that produces maximum emission.

The emission voltages at the LISN's outputs were measured using a computerized receiver, complying with CISPR 16 requirements. The specification limits are loaded to the receiver and are displayed on the receiver's spectrum display.

The E.U.T was evaluated while transmitting Wi-Fi and BLE simultaneously.

A frequency scan between 0.15 and 30 MHz was performed at 9 kHz I.F. band width, using peak detection.

The spectral components having the highest level on each line were measured using a quasi-peak and average detector.

4.3 Test Limit

Frequency of emission (MHz)	Conducted limit (dBμV)		
Frequency of comssion (M112)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

4.4 Test Results

JUDGEMENT: Passed by 4.51 dB

The margin between the emission levels and the specification limit is, in the worst case, 8.2 dB for the phase line at 0.42 MHz and 8.7 dB at 0.43 MHz for the neutral line.

The EUT met the F.C.C. Part 15, Subpart C specification requirements.

The details of the highest emissions are given in Figure 12 to Figure 15.

E.U.T Description Sensor
Type Vitals v2.0
Serial Number: LA17050041

Specification: FCC Part 15, Subpart C

Lead: Phase

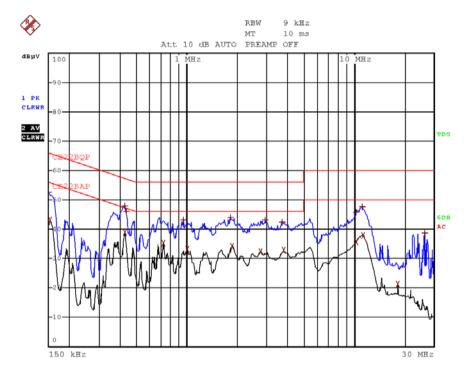
Detectors: Peak, Quasi-peak, Average

Power Operation AC/DC adapter

Date: 30.AUG.2017 15:16:33

Figure 12. Detectors: Peak, Quasi-peak, Average

Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.


E.U.T Description Sensor
Type Vitals v2.0
Serial Number: LA17050041

Specification: FCC Part 15, Subpart C

Lead: Phase

Detectors: Peak, Quasi-peak, Average

Power Operation AC/DC adapter

Date: 30.AUG.2017 15:10:41

Figure 13. Detectors: Peak, Quasi-peak, Average

E.U.T Description Sensor
Type Vitals v2.0
Serial Number: LA17050041

Specification: FCC Part 15, Subpart C

Lead: Neutral

Detectors: Peak, Quasi-peak, Average

Power Operation AC/DC adapter

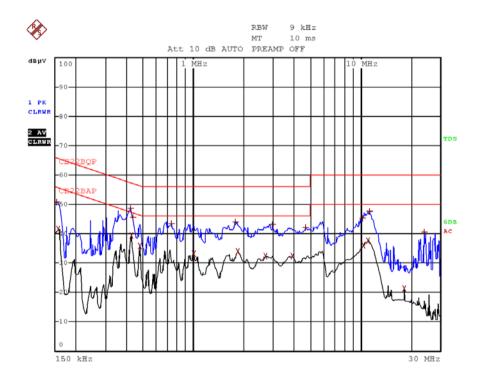
Date: 30.AUG.2017 15:25:30

Figure 14. Detectors: Peak, Quasi-peak, Average

Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T Description Sensor

Type Vitals v2.0


Serial Number: LA17050041

Specification: FCC Part 15, Subpart C

Lead: Neutral

Detectors: Peak, Quasi-peak, Average

Power Operation AC/DC adapter

Date: 30.AUG.2017 15:23:09

Figure 15 Detectors: Peak, Quasi-peak, Average

4.5 Test Equipment Used; Conducted Emission

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
LISN	Fischer	FCC-LISN-25A	127	July 20, 2017	July 20, 2018
Transient Limiter	НР	11947A	3107A03041	June 29, 2017	June 29, 2018
EMI Receiver	Rohde & Schwarz	ESCI7	100724	February 28, 2017	February 28, 2018

Figure 16 Test Equipment Used

5. 6 dB Minimum Bandwidth

5.1 Test Specification

FCC Part 15, Subpart C, Section 247(a)(2)

5.2 Test Procedure

(Temperature (23°C)/ Humidity (70%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (total loss=32.0 dB). Special attention was taken to prevent Spectrum Analyzer RF input overload.

The spectrum bandwidth of the E.U.T. at the point of 6 dB below maximum peak power was measured and recorded. The RBW was set to 100 kHz.

5.3 Test Limit

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.4 Test Results

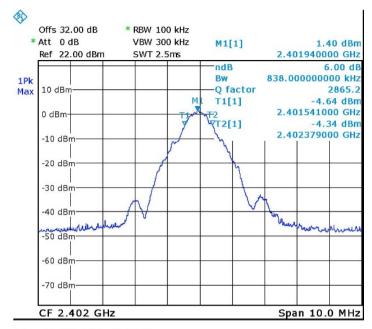
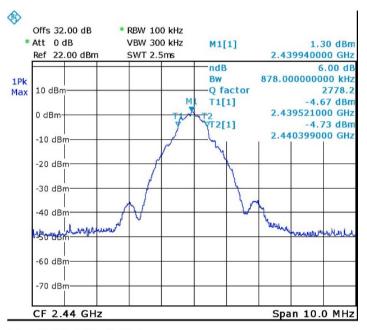
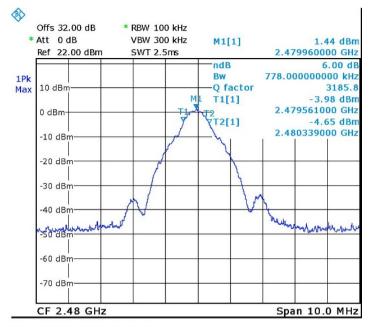

Protocol Type	Operation Frequency	Reading	Limit
	(MHz)	(kHz)	(kHz)
	2402.0	838.0	>500.0
BLE	2440.0	878.0	>500.0
	2480.0	778.0	>500.0
	2412.0	9,099.0	>500.0
Wi-fi/b(1Mbit/s)	2437.0	8,368.0	>500.0
	2462.0	8,463.0	>500.0
	2412.0	10,074.0	>500.0
Wi-fi/b(11Mbit/s)	2437.0	10,155.0	>500.0
	2462.0	8,942.0	>500.0
	2412.0	15,376.0	>500.0
Wi-fi/g(6Mbit/s)	2437.0	15,273.0	>500.0
	2462.0	15,010.0	>500.0
	2412.0	16,269.0	>500.0
Wi-fi/g(54Mbit/s)	2437.0	16,491.0	>500.0
	2462.0	16,447.0	>500.0
	2412.0	15,213.0	>500.0
Wi-fi/n(6.5Mbit/s)	2437.0	15,110.0	>500.0
	2462.0	14,930.0	>500.0
	2412.0	17,731.0	>500.0
Wi-fi/n(65Mbit/s)	2437.0	17,710.0	>500.0
	2462.0	17,645.0	>500.0

Figure 17 6 dB Minimum Bandwidth

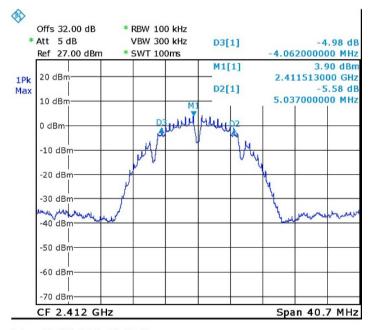
JUDGEMENT: Passed


For additional information see Figure 18 to Figure 38.

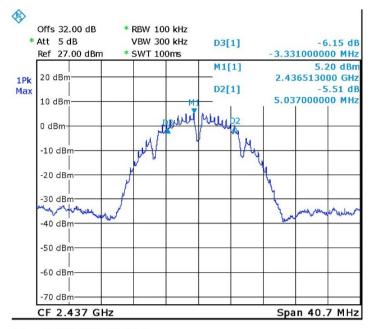
Date: 27.AUG.2017 11:03:17


Figure 18. 2402.0 MHz, BLE

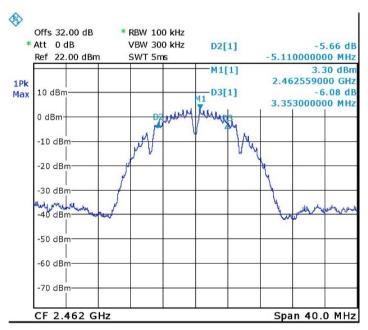
Date: 27.AUG.2017 11:04:22


Figure 19. 2440.0 MHz, BLE

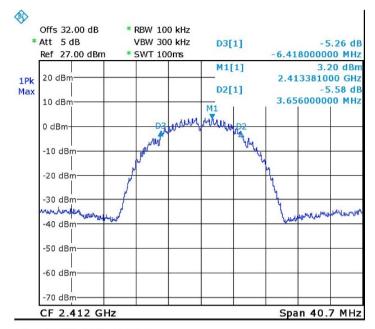
Date: 27.AUG.2017 11:05:10


Figure 20. 2480.0 MHz, BLE

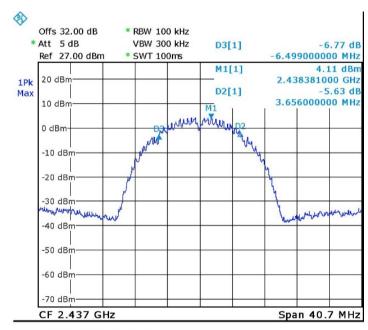
Date: 27.AUG.2017 19:07:21


Figure 21. 2412.0 MHz, Wi-fi/b(1Mbit/s)

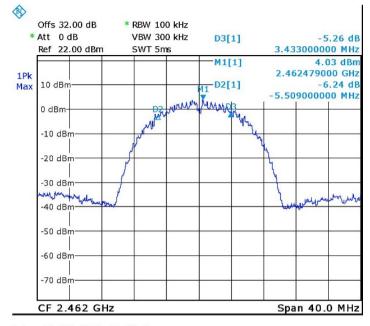
Date: 27.AUG.2017 18:46:00


Figure 22. 2437.0 MHz, Wi-fi/b(1Mbit/s)

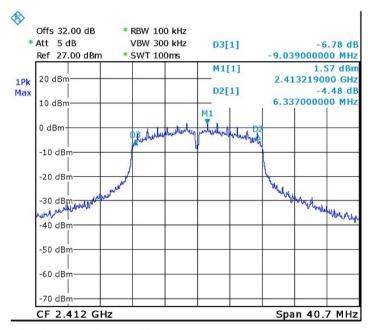
Date: 18.SEP.2017 11:25:24


Figure 23. 2462.0 MHz, Wi-fi/b(1Mbit/s)

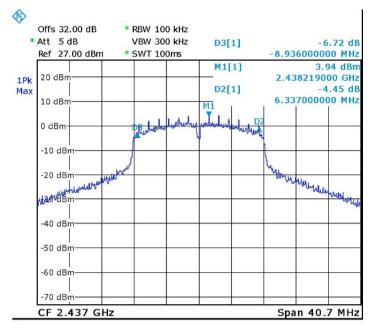
Date: 27.AUG.2017 19:06:10


Figure 24. 2412.0 MHz, Wi-fi/b(11Mbit/s)

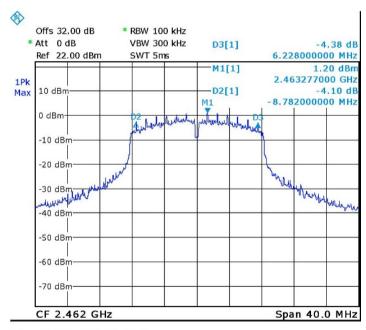
Date: 27.AUG.2017 18:47:21


Figure 25. 2437.0 MHz, Wi-fi/b(11Mbit/s)

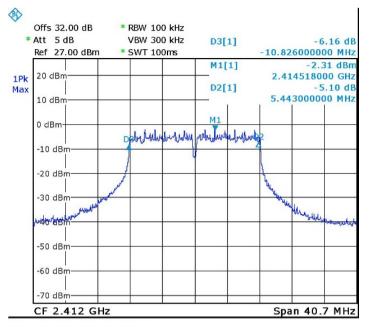
Date: 18.SEP.2017 11:29:01


Figure 26. 2462.0 MHz, Wi-fi/b(11Mbit/s)

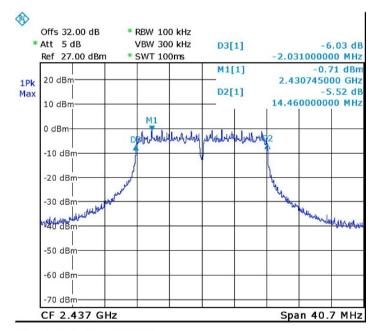
Date: 27.AUG.2017 19:04:29


Figure 27. 2412.0 MHz, Wi-fi/g(6Mbit/s)

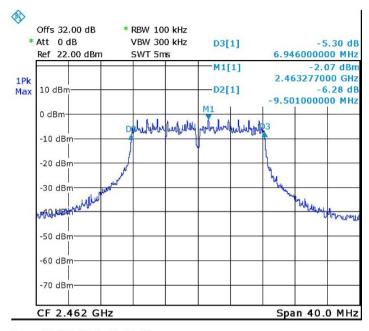
Date: 27.AUG.2017 18:50:04


Figure 28. 2437.0 MHz, Wi-fi/g(6Mbit/s)

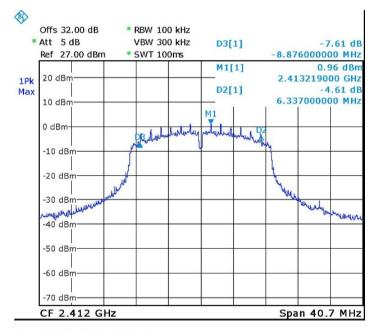
Date: 18.SEP.2017 11:32:46


Figure 29. 2462.0 MHz, Wi-fi/g(6Mbit/s)

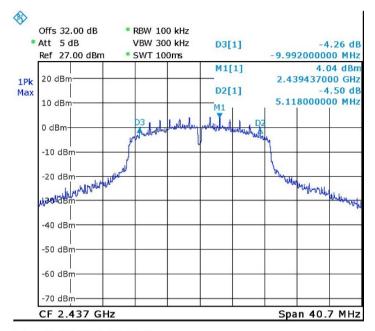
Date: 27.AUG.2017 19:03:26


Figure 30. 2412.0 MHz, Wi-fi/g(54Mbit/s)

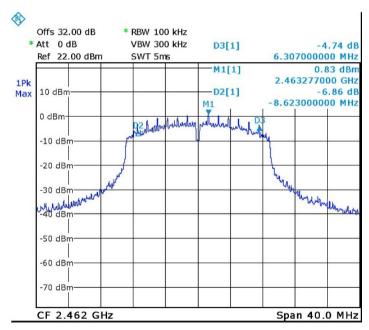
Date: 27.AUG.2017 18:51:07


Figure 31. 2437.0 MHz, Wi-fi/g(54Mbit/s)

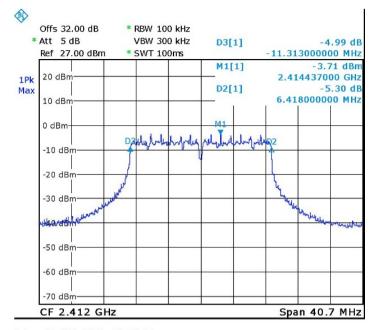
Date: 18.SEP.2017 11:34:02


Figure 32. 2462.0 MHz, Wi-fi/g(54Mbit/s)

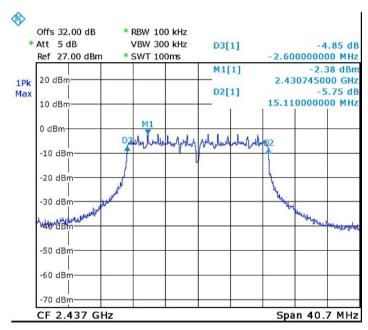
Date: 27.AUG.2017 19:01:48


Figure 33. 2412.0 MHz, Wi-fi/n(6.5Mbit/s)

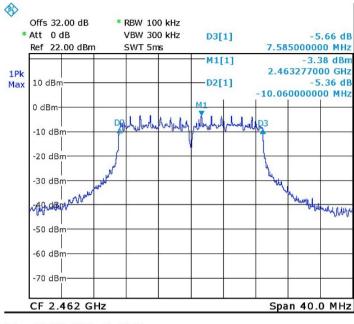
Date: 27.AUG.2017 18:52:58


Figure 34. 2437.0 MHz, Wi-fi/n(6.5Mbit/s)

Date: 18.SEP.2017 11:35:21


Figure 35. 2462.0 MHz, Wi-fi/n(6.5Mbit/s)

Date: 27.AUG.2017 18:59:24


Figure 36. 2412.0 MHz, Wi-fi/n(65Mbit/s)

Date: 27.AUG.2017 18:54:14

Figure 37. 2437.0 MHz, Wi-fi/n(65Mbit/s)

Date: 18.SEP.2017 11:36:34

Figure 38. 2462.0 MHz, Wi-fi/n(65Mbit/s)

5.5 Test Equipment Used; 6dB Bandwidth

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	March 2, 2017	March 2, 2018
30dB Attenuator	MCL	BW-S30W5	533	July 31, 2017	July 31, 2018

Figure 39 Test Equipment Used

6. Maximum Transmitted Peak Power Output

6.1 Test Specification

FCC, Part 15, Subpart C, Section 247(b)(3)

6.2 Test Procedure

(Temperature (23°C)/ Humidity (70%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (total loss=32.0 dB). Special attention was taken to prevent Spectrum Analyzer RF input overload.

6.3 Test Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850MHz bands: 1 Watt.

6.4 Test Results

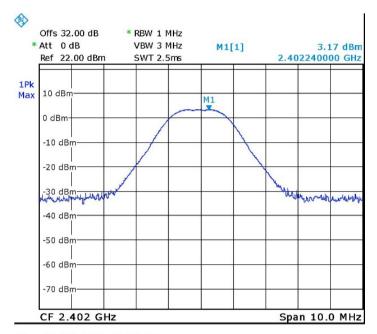
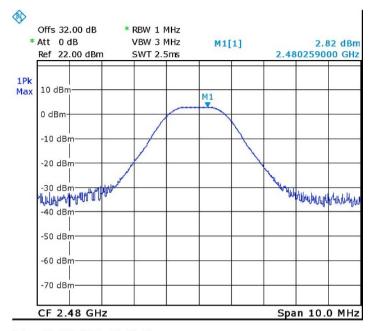

Protocol Type	Operation Frequency	Power	Power	Limit	Margin
71	(MHz)	(dBm)	(mW)	(mW)	(mW)
	2402.0	3.2	2.09	1000.0	-997.91
BLE	2440.0	2.8	1.91	1000.0	-998.09
	2480.0	2.8	1.91	1000.0	-998.09
Wi-fi/b(1Mbit/s)	2412.0	16.8	47.9	1000.0	-952.1
	2437.0	18.0	63.1	1000.0	-936.9
	2462.0	17.9	61.7	1000.0	-938.3
Wi-fi/b(11Mbit/s)	2412.0	19.8	95.5	1000.0	-904.5
	2437.0	21.0	126.0	1000.0	-874.0
	2462.0	20.3	107.0	1000.0	-893.0
Wi-fi/g(6Mbit/s)	2412.0	19.1	81.3	1000.0	-918.7
	2437.0	21.7	148.0	1000.0	-852.0
	2462.0	19.0	79.4	1000.0	-920.6
Wi-fi/g(54Mbit/s)	2412.0	16.0	39.8	1000.0	-960.2
	2437.0	18.1	64.6	1000.0	-935.4
	2462.0	16.0	39.8	1000.0	-960.2
Wi-fi/n(6.5Mbit/s)	2412.0	18.3	67.6	1000.0	-932.4
	2437.0	21.3	135.0	1000.0	-865.0
	2462.0	18.3	67.6	1000.0	-932.4
Wi-fi/n(65Mbit/s)	2412.0	14.4	27.5	1000.0	-972.5
	2437.0	16.6	45.7	1000.0	-954.3
	2462.0	16.8	47.9	1000.0	-952.1

Figure 40 Maximum Peak Power Output

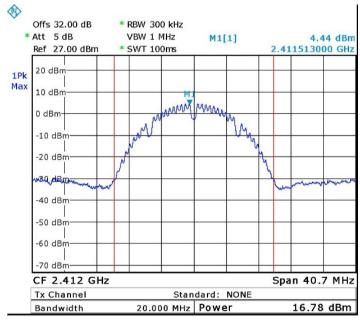
JUDGEMENT: Passed by 852.0 mW

For additional information see Figure 41 to Figure 61.

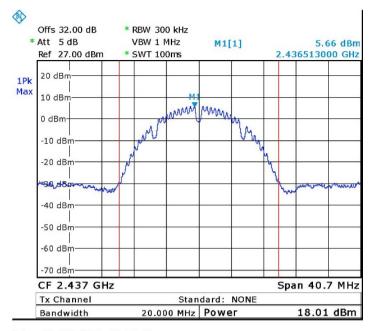
Date: 27.AUG.2017 16:56:13


Figure 41 2402.0 MHz, BLE

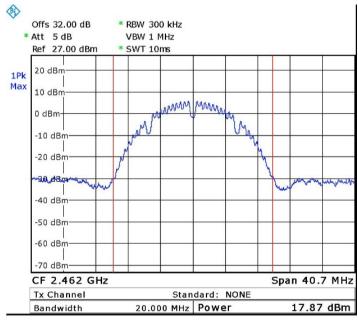
Date: 27.AUG.2017 16:38:50


Figure 42 2440.0 MHz, BLE

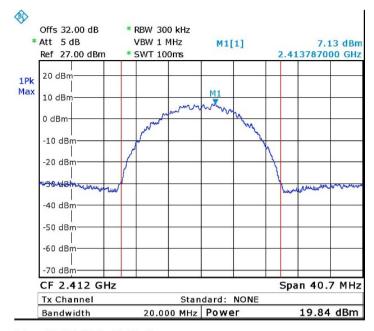
Date: 27.AUG.2017 16:39:16


Figure 43 2480.0 MHz, BLE

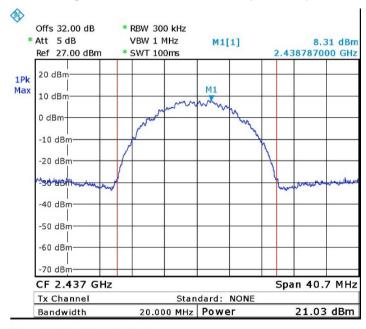
Date: 27.AUG.2017 18:00:01


Figure 44 2412.0 MHz, WI-FI/b(1Mbit/s)

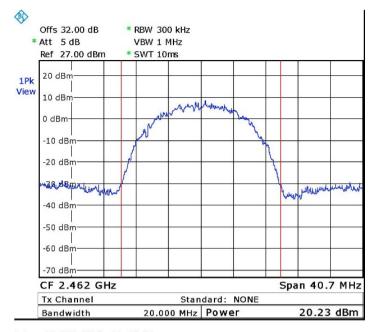
Date: 27.AUG.2017 18:17:20


Figure 45 2437.0 MHz, WI-FI/b(1Mbit/s)

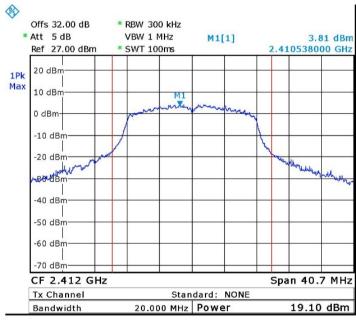
Date: 18.SEP.2017 11:49:37


Figure 46 2462.0 MHz, WI-FI/b(1Mbit/s)

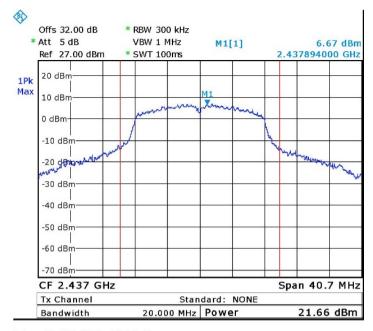
Date: 27.AUG.2017 17:58:43


Figure 47 2412.0 MHz, WI-FI/b(11Mbit/s)

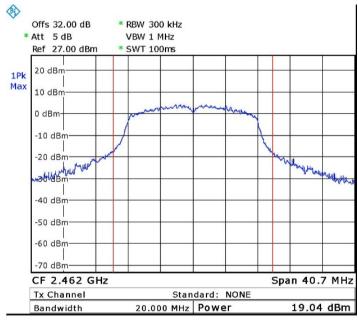
Date: 27.AUG.2017 18:16:50


Figure 48 2437.0 MHz, WI-FI/b(11Mbit/s)

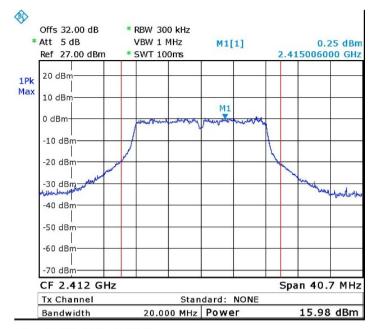
Date: 18.SEP.2017 11:49:04


Figure 49 2462.0 MHz, WI-FI/b(11Mbit/s)

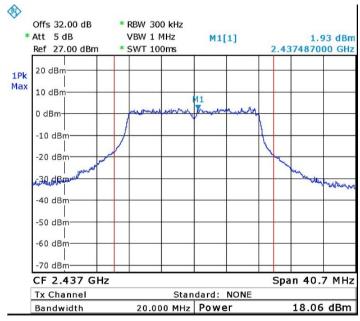
Date: 27.AUG.2017 18:01:06


Figure 50 2412.0 MHz, WI-FI/g(6Mbit/s)

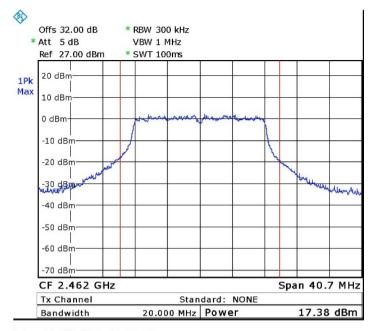
Date: 27.AUG.2017 18:16:11


Figure 51 2437.0 MHz, WI-FI/g(6Mbit/s)

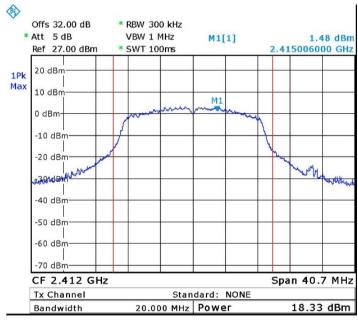
Date: 18.SEP.2017 11:47:27


Figure 52 2462.0 MHz, WI-FI/g(6Mbit/s)

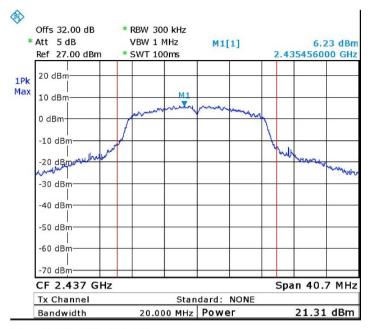
Date: 27.AUG.2017 18:01:49


Figure 53 2412.0 MHz, WI-FI/g(54Mbit/s)

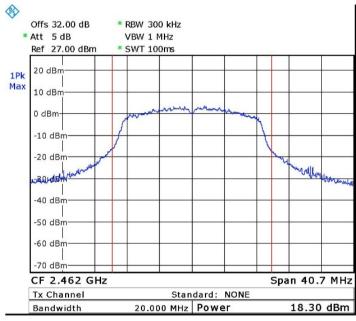
Date: 27.AUG.2017 18:15:28


Figure 54 2437.0 MHz, WI-FI/g(54Mbit/s)

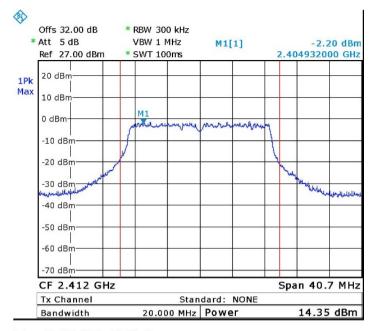
Date: 18.SEP.2017 11:47:00


Figure 55 2462.0 MHz, WI-FI/g(54Mbit/s)

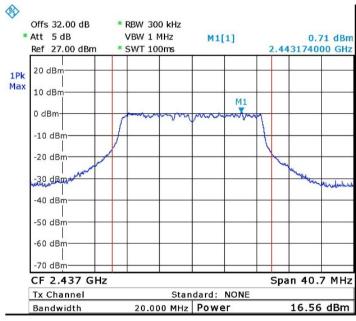
Date: 27.AUG.2017 18:03:02


Figure 56 2412.0 MHz, WI-FI/n(6.5Mbit/s)

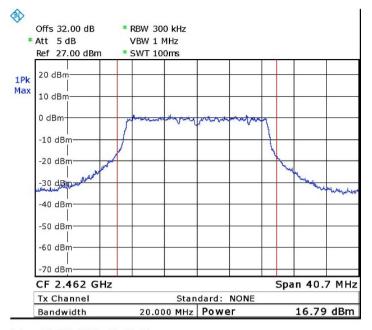
Date: 27.AUG.2017 18:14:36


Figure 57 2437.0 MHz, WI-FI/n(6.5Mbit/s)

Date: 18.SEP.2017 11:46:26


Figure 58 2462.0 MHz, WI-FI/n(6.5Mbit/s)

Date: 27.AUG.2017 18:03:47


Figure 59 2412.0 MHz, WI-FI/n(65Mbit/s)

Date: 27.AUG.2017 18:14:01

Figure 60 2437.0 MHz, WI-FI/n(65Mbit/s)

Date: 18.SEP.2017 11:45:54

Figure 61 2462.0 MHz, WI-FI/n(65Mbit/s)

6.5 Test Equipment Used; Maximum Peak Power Output

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	March 2, 2017	March 2, 2018
30dB Attenuator	MCL	BW-S30W5	533	July 31, 2017	July 31, 2018

Figure 62 Test Equipment Used