

# Wireless test report – 359758-1TRFWL

Applicant:

eers Global Technologies Inc.

Product name:

High-noise hearing protective communication device

Model:

SonX

FCC ID: IC Registration number:

2ANPP-SONXA10 2ANPP-23228

Specifications:

FCC 47 CFR Part 15 Subpart C, §15.247

Operation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

RSS-247, Issue 2, Feb 2017, Section 5

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

5) Standard specifications for frequency hopping systems and digital transmission systems operating in the bands 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz

Date of issue: February 7, 2019

Test engineer(s): Avul Nzenza Signature:

Reviewed by: Andrey Adelberg, Senior Wireless/EMC Specialist Signature:







#### Test location

| Company name | Nemko Canada Inc.                  |
|--------------|------------------------------------|
| Address      | 292 Labrosse Avenue                |
| City         | Pointe-Claire                      |
| Province     | Quebec                             |
| Postal code  | H9R 5L8                            |
| Country      | Canada                             |
| Telephone    | +1 514 694 2684                    |
| Facsimile    | +1 514 694 3528                    |
| Website      | www.nemko.com                      |
| Site number  | FCC: CA2041; IC: 2040G-5 (3 m SAC) |

#### Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

#### Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.



# Table of contents

| Table of  | contents                                                                                                | 3  |
|-----------|---------------------------------------------------------------------------------------------------------|----|
| Section 1 | I. Report summary                                                                                       | 4  |
| 1.1       | Applicant and manufacturer                                                                              | 4  |
| 1.2       | Test specifications                                                                                     | 4  |
| 1.3       | Test methods                                                                                            | 4  |
| 1.4       | Statement of compliance                                                                                 | 4  |
| 1.5       | Exclusions                                                                                              | 4  |
| 1.6       | Test report revision history                                                                            | 4  |
| Section 2 | 2. Summary of test results                                                                              | 5  |
| 2.1       | FCC Part 15 Subpart C, general requirements test results                                                | 5  |
| 2.2       | FCC Part 15 Subpart C, intentional radiators test results for frequency hopping spread spectrum systems | 5  |
| 2.3       | FCC Part 15 Subpart C, intentional radiators test results for digital transmission systems (DTS)        | 5  |
| 2.4       | RSS-Gen requirements test results                                                                       | 6  |
| 2.5       | RSS-247 requirements test results                                                                       | 6  |
| 2.6       | ISED RSS-247, Issue 2, test results for digital transmission systems (DTS)                              | 6  |
| Section 3 | 3. Equipment under test (EUT) details                                                                   | 7  |
| 3.1       | Sample information                                                                                      | 7  |
| 3.2       | EUT information                                                                                         | 7  |
| 3.3       | Technical information                                                                                   | 7  |
| 3.4       | Product description and theory of operation                                                             | 8  |
| 3.5       | EUT exercise details                                                                                    | 8  |
| 3.6       | Block Diagram                                                                                           | 8  |
| Section 4 | 4. Engineering considerations                                                                           | 9  |
| 4.1       | Modifications incorporated in the EUT                                                                   | 9  |
| 4.2       | Technical judgment                                                                                      | 9  |
| 4.3       | Deviations from laboratory tests procedures                                                             | 9  |
| Section 5 | 5. Test conditions                                                                                      | 10 |
| 5.1       | Atmospheric conditions                                                                                  | 10 |
| 5.2       | Power supply range                                                                                      | 10 |
| Section 6 | 5. Measurement uncertainty                                                                              | 11 |
| 6.1       | Uncertainty of measurement                                                                              | 11 |
| Section 7 | 7. Test equipment                                                                                       | 12 |
| 7.1       | Test equipment list                                                                                     | 12 |
| Section 8 | B. Testing data                                                                                         | 13 |
| 8.1       | FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements, 2 GHz operation                | 13 |
| 8.2       | FCC 15.247(b) and RSS-247 5.4 (b) Transmitter output power and e.i.r.p. requirements for FHSS 2 GHz     | 21 |
| 8.3       | FCC 15.247(a)(2) and RSS-247 5.2(a) Minimum 6 dB bandwidth for DTS systems                              | 24 |
| 8.4       | FCC 15.247(b) and RSS-247 5.4 (d) Transmitter output power and e.i.r.p. requirements for DTS in 2 GHz   | 27 |
| 8.5       | FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) emissions                                          |    |
| 8.6       | FCC 15.247(e) and RSS-247 5.2(b) Power spectral density for digitally modulated devices                 |    |
| Section 9 | g. Block diagrams of test set-ups                                                                       | 43 |
| 9.1       | Radiated emissions set-up for frequencies below 1 GHz                                                   | 43 |
| 9.2       | Radiated emissions set-up for frequencies above 1 GHz                                                   | 43 |



# Section 1. Report summary

# 1.1 Applicant and manufacturer

| Company name | eers Global Technologies Inc. |
|--------------|-------------------------------|
| Address      | 355, rue Peel, Bureau 710     |
|              | H3C 2G9 Montréal QC           |
|              | Canada                        |

# 1.2 Test specifications

| FCC 47 CFR Part 15, Subpart C, Clause 15.247 | Operation in the 902–928 MHz, 2400–2483.5 MHz, and 5725-5850 MHz.                                                            |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| RSS-247, Issue 2, Feb. 2017, Section 5       | Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices |

# 1.3 Test methods

| 558074 D01 DTS Meas Guidance v05   | Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating |
|------------------------------------|-------------------------------------------------------------------------------------------------|
| (August 24, 2018)                  | Under §15.247                                                                                   |
| DA 00-705, Released March 30, 2000 | Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems                 |
| ANSI C63.10 v2013                  | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices  |
| RSS-Gen, Issue 5, April 2018       | General Requirements for Compliance of Radio Apparatus                                          |

# 1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

# 1.5 Exclusions

None

# 1.6 Test report revision history

Table 1.6-1: Test report revision history

| Revision # | Details of changes made to test report |
|------------|----------------------------------------|
| TRF        | Original report issued                 |



# Section 2. Summary of test results

# 2.1 FCC Part 15 Subpart C, general requirements test results

Table 2.1-1: FCC general requirements results

| Part       | Test description             | Verdict                     |
|------------|------------------------------|-----------------------------|
| §15.207(a) | Conducted limits             | Not applicable <sup>1</sup> |
| §15.31(e)  | Variation of power source    | Pass                        |
| §15.31(m)  | Number of tested frequencies | Pass                        |
| §15.203    | Antenna requirement          | Pass <sup>2</sup>           |

#### Notes:

# FCC Part 15 Subpart C, intentional radiators test results for frequency hopping spread spectrum systems

Table 2.2-1: FCC 15.247 results for FHSS

| Part               | Test description                                                                        | Verdict        |
|--------------------|-----------------------------------------------------------------------------------------|----------------|
| §15.247(a)(1)(i)   | Requirements for operation in the 902–928 MHz band                                      | Not applicable |
| §15.247(a)(1)(ii)  | Requirements for operation in the 5725–5850 MHz band                                    | Not applicable |
| §15.247(a)(1)(iii) | Requirements for operation in the 2400–2483.5 MHz band                                  | Pass           |
| §15.247(b)(1)      | Maximum peak output power in the 2400–2483.5 MHz band and 5725–5850 MHz band            | Pass           |
| §15.247(b)(2)      | Maximum peak output power in the 902–928 MHz band                                       | Not applicable |
| §15.247(c)(1)      | Fixed point-to-point operation with directional antenna gains greater than 6 dBi        | Not applicable |
| §15.247(c)(2)      | Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams | Not applicable |
| §15.247(d)         | Spurious emissions                                                                      | Pass           |
| §15.247(f)         | Time of occupancy for hybrid systems                                                    | Not applicable |

# 2.3 FCC Part 15 Subpart C, intentional radiators test results for digital transmission systems (DTS)

Table 2.3-1: FCC 15.247 results for DTS

| Part          | Test description                                                                        | Verdict        |
|---------------|-----------------------------------------------------------------------------------------|----------------|
| §15.247(a)(2) | Minimum 6 dB bandwidth                                                                  | Pass           |
| §15.247(b)(3) | Maximum peak output power in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands  | Pass           |
| §15.247(c)(1) | Fixed point-to-point operation with directional antenna gains greater than 6 dBi        | Not applicable |
| §15.247(c)(2) | Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams | Not applicable |
| §15.247(d)    | Spurious emissions                                                                      | Pass           |
| §15.247(e)    | Power spectral density                                                                  | Pass           |
| §15.247(f)    | Time of occupancy for hybrid systems                                                    | Not applicable |

 $<sup>^{\</sup>rm 1}$  Equipment is DC powered (battery).

Testing was performed with fresh and fully charged batteries

<sup>&</sup>lt;sup>2</sup> The equipment will be professionally installed.



# 2.4 RSS-Gen requirements test results

Table 2.4-1: RSS-Gen results

| Part | Test description                                  | Verdict                     |
|------|---------------------------------------------------|-----------------------------|
| 7.3  | Receiver radiated emission limits                 | Not applicable              |
| 7.4  | Receiver conducted emission limits                | Not applicable <sup>1</sup> |
| 6.9  | Operating bands and selection of test frequencies | Pass                        |
| 8.8  | AC power-line conducted emissions limits          | Not applicable              |

Notes: <sup>1</sup> According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

EUT is a battery-operated device, the testing was performed using fresh batteries.

# 2.5 RSS-247 requirements test results

Table 2.5-1: RSS-247 results for FHSS

| Part    | Test description                                                                       | Verdict        |
|---------|----------------------------------------------------------------------------------------|----------------|
| 5.1 (a) | Bandwidth of a frequency hopping channel                                               | Pass           |
| 5.1 (b) | Minimum channel spacing                                                                | Pass           |
| 5.1 (c) | Systems operating in the 902–928 MHz band                                              | Not applicable |
| 5.1 (d) | Systems operating in the 2400–2483.5 MHz band                                          | Pass           |
| 5.1 (e) | Systems operating in the 5725–5850 MHz band                                            | Not applicable |
| 5.4     | Transmitter output power and e.i.r.p. requirements                                     |                |
| 5.4 (a) | Systems operating in the 902–928 MHz band                                              | Not applicable |
| 5.4 (b) | Systems operating in the 2400–2483.5 MHz band                                          | Pass           |
| 5.4 (c) | Systems operating in the 5725–5850 MHz                                                 | Not applicable |
| 5.4 (e) | Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band                       | Not applicable |
| 5.4 (f) | Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams | Not applicable |
| 5.5     | Unwanted emissions                                                                     | Pass           |

Notes: None

# 2.6 ISED RSS-247, Issue 2, test results for digital transmission systems (DTS)

Table 2.6-1: RSS-247 results for DTS

| Part    | Test description                                                                       | Verdict        |
|---------|----------------------------------------------------------------------------------------|----------------|
| 5.2 (a) | Minimum 6 dB bandwidth                                                                 | Pass           |
| 5.2 (b) | Maximum power spectral density                                                         | Pass           |
| 5.3     | Hybrid Systems                                                                         |                |
| 5.3 (a) | Digital modulation turned off                                                          | Not applicable |
| 5.3 (b) | Frequency hopping turned off                                                           | Not applicable |
| 5.4     | Transmitter output power and e.i.r.p. requirements                                     |                |
| 5.4 (d) | Systems employing digital modulation techniques                                        | Pass           |
| 5.4 (e) | Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band                       | Not applicable |
| 5.4 (f) | Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams | Not applicable |
| 5.5     | Unwanted emissions                                                                     | Pass           |

Notes: None



# Section 3. Equipment under test (EUT) details

# 3.1 Sample information

| Receipt date           | August 27, 2018 |
|------------------------|-----------------|
| Nemko sample ID number | #1              |

# 3.2 EUT information

| Product name  | High-noise hearing protective communication device |  |
|---------------|----------------------------------------------------|--|
| Model         | SonX                                               |  |
| Serial number | None                                               |  |

# 3.3 Technical information

| Applicant IC company number             | 2ANPP                                                                                                  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------|
| IC UPN number                           | 23228                                                                                                  |
| All used IC test site(s) Reg. number    | 2040G-5                                                                                                |
| RSS number and Issue number             | RSS-247 Issue 2, Feb. 2017                                                                             |
| Frequency band                          | 2400–2483.5 MHz                                                                                        |
| Frequency Min (MHz)                     | 2402                                                                                                   |
| Frequency Max (MHz)                     | 2480                                                                                                   |
| RF power (W), Conducted                 | 0.00007 (-11.58 dBm)                                                                                   |
| Field strength, Units @ distance        | N/A                                                                                                    |
| Measured BW (MHz) (99%)                 | 4.24                                                                                                   |
| Calculated BW (kHz), as per TRC-43      | N/A                                                                                                    |
| Type of modulation                      | GFSK, EDR2, EDR3                                                                                       |
| Emission classification (F1D, G1D, D1D) | 4M24F1D                                                                                                |
| Transmitter spurious, Units @ distance  | 52.1 dBμV/m Peak and 48.8 dBμV/m Average @ 3 m @ 4804.0 MHz                                            |
| Power requirements                      | 3.7 VDC (Battery)                                                                                      |
| Antenna information                     | Internal PCB antenna The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional |
|                                         | radiator. The Antenna Gain is 1.7 dBi                                                                  |



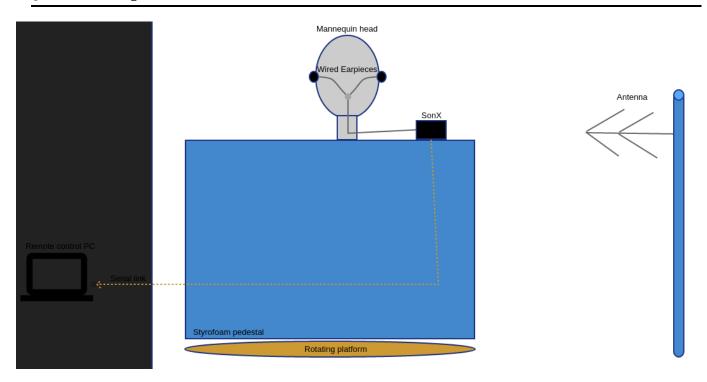
# 3.4 Product description and theory of operation

The product is intended to act as a radio communication and hearing protective device in noisy industrial environments.

It is composed of a lapel-mounted processing unit (including user-replaceable battery) and two wired earpieces with noise-attenuating earplugs that are intended to be worn in the outer ear canal.

Each earpiece has an in-ear microphone (for voice pick-up), an outer-ear microphone (for ambient noise pick-up), and a speaker for transmission of incoming signals to the ear canal.

The device is used as a push-to-talk radio, allowing half-duplex broadcast communications up to 25 meters.


It supports several different radio channels, with channel selection left at the discretion of individual users.

The product also includes Bluetooth Classic/LE connectivity, allowing data communication with a web platform, and voice communication with cellular phones or hand-held radio systems for long-range operation.

# 3.5 EUT exercise details

The unit is activated with a continuous transmissions signal using GFSK, EDR2 and EDR3 modulation.

### 3.6 Block Diagram





# **Section 4.** Engineering considerations

# 4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

# 4.2 Technical judgment

None

# 4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.



# Section 5. Test conditions

# 5.1 Atmospheric conditions

| Temperature       | 15–30 °C      |
|-------------------|---------------|
| Relative humidity | 20–75 %       |
| Air pressure      | 860–1060 mbar |

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

# 5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.



# Section 6. Measurement uncertainty

# 6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

| Test name                     | Measurement uncertainty, dB |
|-------------------------------|-----------------------------|
| All antenna port measurements | 0.55                        |
| Conducted spurious emissions  | 1.13                        |
| Radiated spurious emissions   | 3.78                        |



# **Section 7.** Test equipment

# 7.1 Test equipment list

Table 7.1-1: Equipment list

| Equipment                   | Manufacturer       | Model no. | Asset no. | Cal cycle | Next cal.   |
|-----------------------------|--------------------|-----------|-----------|-----------|-------------|
| 3 m EMI test chamber        | TDK                | SAC-3     | FA002532  | 2 year    | June 5/19   |
| Flush mount turntable       | Sunol              | FM2022    | FA002550  | _         | NCR         |
| Controller                  | Sunol              | SC104V    | FA002551  | _         | NCR         |
| Antenna mast                | Sunol              | TLT2      | FA002552  | _         | NCR         |
| Receiver/spectrum analyzer  | Rohde & Schwarz    | ESU 40    | FA002071  | 1 year    | Sept. 18/18 |
| Bilog antenna (20–2000 MHz) | Sunol              | JB1       | FA002517  | 1 year    | Dec. 6/18   |
| Horn antenna (1–18 GHz)     | EMCO               | 3115      | FA001451  | 1 year    | April 27/19 |
| Pre-amplifier (0.5–18 GHz)  | COM-POWER          | PAM-118A  | FA002561  | 1 year    | Sept. 21/18 |
| Pre-amplifier (18–40 GHz)   | COM-POWER          | PAM-840   | FA002508  | 1 year    | Sept 8/18   |
| 2400-2483 MHz Notch Filter  | Microwave Circuits | N0324413  | FA002693  | _         | VOU         |
| Horn antenna (1–18 GHz)     | EMCO               | RGA-60    | FA002577  | 1 year    | Aug. 16/19  |

Notes: NCR - no calibration required VOU - verify on use

Table 7.1-2: test software

| Test description            | Manufacturer of Software | Details                                               |
|-----------------------------|--------------------------|-------------------------------------------------------|
| Radiated emissions – Ottawa | Rhode & Schwarz          | EMC32, Software for EMC Measurements, Version 9.26.01 |
| Notes: None                 |                          |                                                       |

FCC Part 15 Subpart C and RSS-247, Issue 2



# Section 8. Testing data

## 8.1 FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements, 2 GHz operation

#### 8.1.1 Definitions and limits

#### FCC:

- (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- (iii) Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
- (f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### ISED:

- a) The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The system's radio frequency (RF) bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopset. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- b) FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400–2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.
- d) FHSs operating in the band 2400–2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

### 5.3 Hybrid systems

Hybrid systems employ a combination of both frequency hopping and digital transmission techniques and shall comply with the following:

a With the digital transmission operation of the hybrid system turned off, the frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.

Specification

FCC Part 15 Subpart C and RSS-247, Issue 2



#### 8.1.2 Test date

Start date August 27, 2018

### 8.1.3 Observations, settings and special notes

 $Spectrum\ analyser\ settings\ for\ carrier\ frequency\ separation:$ 

| Resolution bandwidth | ≥ 1 % of the span                                         |
|----------------------|-----------------------------------------------------------|
| Video bandwidth      | ≥RBW                                                      |
| Frequency span       | wide enough to capture the peaks of two adjacent channels |
| Detector mode        | Peak                                                      |
| Trace mode           | Max Hold                                                  |

Spectrum analyser settings for number of hopping frequencies:

| Resolution bandwidth | ≥1% of the span                 |
|----------------------|---------------------------------|
| Video bandwidth      | ≥RBW                            |
| Frequency span       | the frequency band of operation |
| Detector mode        | Peak                            |
| Trace mode           | Max Hold                        |

Spectrum analyser settings for time of occupancy (dwell time):

| Resolution bandwidth | 1 MHz     |
|----------------------|-----------|
| Video bandwidth      | ≥RBW      |
| Frequency span       | Zero span |
| Detector mode        | Peak      |
| Trace mode           | Max Hold  |

Spectrum analyser settings for 20 dB bandwidth:

| Resolution bandwidth | ≥ 1% of the 20 dB bandwidth                                                   |
|----------------------|-------------------------------------------------------------------------------|
| Video bandwidth      | ≥RBW                                                                          |
| Frequency span       | approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel |
| Detector mode        | Peak                                                                          |
| Trace mode           | Max Hold                                                                      |



#### 8.1.4 Test data

Table 8.1-1: 20 dB bandwidth results

| Frequency, MHz | 20 dB bandwidth, kHz |
|----------------|----------------------|
| EDR3           |                      |
| 2402           | 1386                 |
| 2441           | 1370                 |
| 2480           | 1354                 |
| EDR2           |                      |
| 2402           | 1450                 |
| 2441           | 1442                 |
| 2480           | 1450                 |
| GFSK           |                      |
| 2402           | 785                  |
| 2441           | 804                  |
| 2480           | 751                  |

Table 8.1-2: 99% bandwidth results

| Frequency, MHz | 99% bandwidth, kHz |
|----------------|--------------------|
| EDR3           |                    |
| 2402           | 1378               |
| 2441           | 1306               |
| 2480           | 1266               |
| EDR2           |                    |
| 2402           | 1410               |
| 2441           | 1386               |
| 2480           | 1354               |
| GFSK           |                    |
| 2402           | 772                |
| 2441           | 1025               |
| 2480           | 863                |

Table 8.1-3: Carrier frequency separation results

|      | Carrier frequency separation, kHz | Minimum limit, kHz | Margin, kHz |
|------|-----------------------------------|--------------------|-------------|
| EDR3 |                                   |                    |             |
|      | 1005                              | 899                | 106         |
| EDR2 |                                   |                    |             |
|      | 1047                              | 895                | 152         |
| GFSK |                                   |                    |             |
|      | 1023                              | 669                | 354         |

Notes: The maximum power of the unit is 2 mW (less than 125 mW). We have applied the 2/3 of 20 dB BW rule

Section 8 Testing data

Test name FCC 15.247(b) and RSS-247 5.4 (4) Transmitter output power and e.i.r.p. requirements Specification

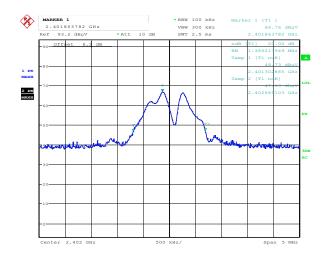
FCC Part 15 Subpart C and RSS-247, Issue 2

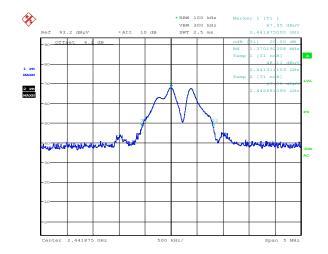


Table 8.1-4: Number of hopping frequencies results

|      | Number of hopping frequencies | Minimum limit | Margin |
|------|-------------------------------|---------------|--------|
| EDR3 |                               |               |        |
|      | 79                            | 15            | 64     |
| EDR2 |                               |               |        |
|      | 79                            | 15            | 64     |
| GFSK |                               |               |        |
|      | 79                            | 15            | 64     |

Table 8.1-5: Average time of occupancy results

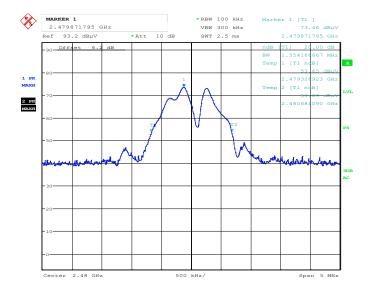

| Dwell time of each pulse, ms |     | Number of pulses within period | Total dwell time within period, ms | Limit, ms | Margin, ms |  |
|------------------------------|-----|--------------------------------|------------------------------------|-----------|------------|--|
| EDR3                         |     |                                |                                    |           |            |  |
|                              | 2.9 | 84                             | 243                                | 400       | 157        |  |
| EDR2                         |     |                                |                                    |           |            |  |
|                              | 2.9 | 75                             | 217                                | 400       | 183        |  |
| GFSK                         |     |                                |                                    |           |            |  |
|                              | 2.9 | 91                             | 264                                | 400       | 136        |  |


Measurement Period is 31.6 s, which is equal to 0.4 s multiplied by the number of hopping channels 79





# Samples of 20 dB bandwidth Measurements

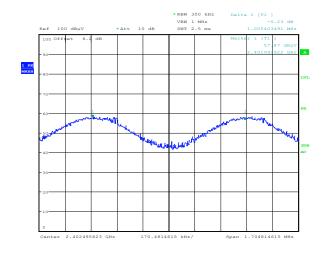





Date: 13.SEP.2018 08:00:51 Date: 13.SEP.2018 07:57:42

Figure 8.1-1: 20 dB bandwidth on low channel

Figure 8.1-2: 20 dB bandwidth on mid channel



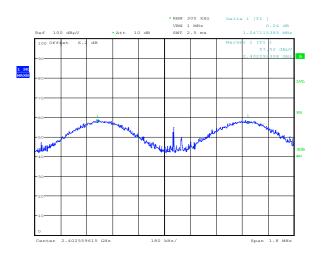
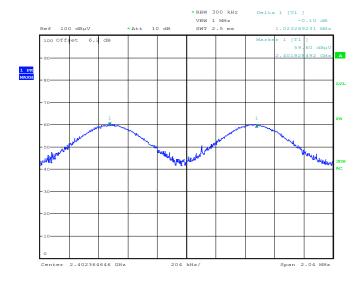


Date: 13.SEP.2018 07:59:21

Figure 8.1-3: 20 dB bandwidth on high channel



# Carrier frequency separation






Date: 29.AUG.2018 11:55:04 Date: 29.AUG.2018 11:49:45

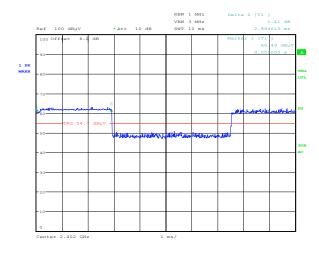
Figure 8.1-4: Carrier frequency separation – EDR3

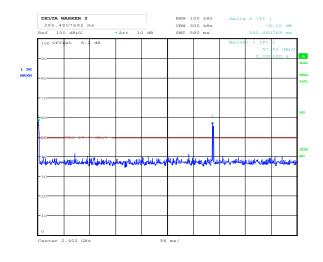
Figure 8.1-5: Carrier frequency separation – EDR2



Date: 29.AUG.2018 12:02:20

Figure 8.1-6: Carrier frequency separation – GFSK


Section 8 Testing data


Test nameFCC 15.247(b) and RSS-247 5.4 (4) Transmitter output power and e.i.r.p. requirementsSpecificationFCC Part 15 Subpart C and RSS-247, Issue 2

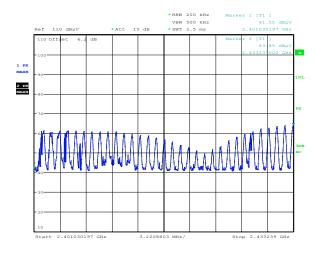


# Sample of Measurements

Date: 29.AUG.2018 11:18:54






Date: 29.AUG.2018 11:29:25

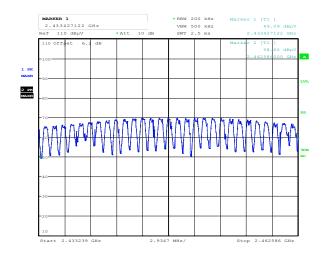
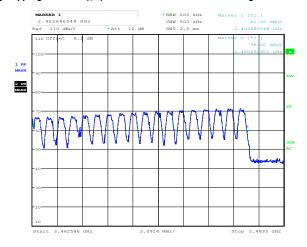

Figure 8.1-7: Dwell time

Figure 8.1-8: Pulse repetition on the same channel

FCC Part 15 Subpart C and RSS-247, Issue 2








Date: 29.AUG.2018 10:14:58

Date: 29.AUG.2018 10:00:59

Figure 8.1-9: Number of hopping channels (32)

Figure 8.1-10: Number of hopping channels (29)



Date: 29.AUG.2018 09:55:44

Figure 8.1-11: Number of hopping channels (18)

FCC Part 15 Subpart C and RSS-247, Issue 2



# 8.2 FCC 15.247(b) and RSS-247 5.4 (b) Transmitter output power and e.i.r.p. requirements for FHSS 2 GHz

#### 8.2.1 Definitions and limits

#### FCC:

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
  - (1) For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt (30 dBm). For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts (21 dBm).
  - (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### ISED:

For FHSs operating in the band 2400–2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W (30 dBm) if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W (21 dBm) if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W (36 dBm), except as provided in section 5.4(e).

#### Section 5.4(e

Fixed point-to-point systems in the bands 2400–2483.5 MHz and 5725–5850 MHz are permitted to have an e.i.r.p. higher than 4 W provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers. Point-to-multipoint systems, omnidirectional applications and multiple co-located transmitters transmitting the same information are prohibited from exceeding an e.i.r.p. of 4 W.

#### 8.2.2 Test date

| Start date | August 28, 2018 |
|------------|-----------------|

#### 8.2.3 Observations, settings and special notes

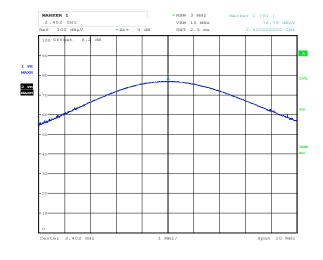
Spectrum analyser settings for output power:

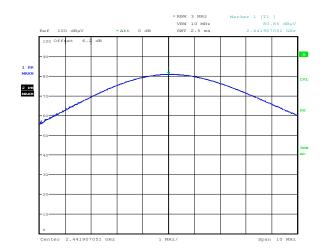
| Resolution bandwidth | > the 20 dB bandwidth of the emission being measured                     |
|----------------------|--------------------------------------------------------------------------|
| Video bandwidth      | ≥RBW                                                                     |
| Frequency span       | approximately 5 times the 20 dB bandwidth, centered on a hopping channel |
| Detector mode        | Peak                                                                     |
| Trace mode           | Max Hold                                                                 |



#### 8.2.4 Test data

Table 8.2-1: Output power results

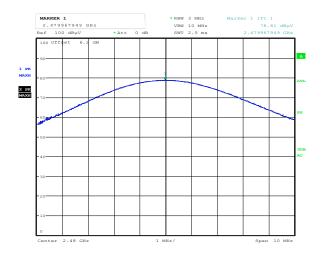

| Frequency,<br>MHz | Radiated<br>field<br>strength,<br>dBµV/m | dBμV/m to<br>dBm<br>factor, dB | EIRP,<br>dBm | Antenna Gain,<br>dBi | Output Power,<br>dBm | Output Power<br>Limit,<br>dBm | Output Power<br>margin,<br>dBm |
|-------------------|------------------------------------------|--------------------------------|--------------|----------------------|----------------------|-------------------------------|--------------------------------|
| EDR3              |                                          |                                |              |                      |                      |                               |                                |
| 2402              | 76.79                                    | 95.23                          | -18.44       | 1.70                 | -20.14               | 30.00                         | 50.14                          |
| 2441              | 80.85                                    | 95.23                          | -14.38       | 1.70                 | -16.08               | 30.00                         | 46.08                          |
| 2480              | 78.81                                    | 95.23                          | -16.42       | 1.70                 | -18.12               | 30.00                         | 48.12                          |
| EDR2              |                                          |                                |              |                      |                      |                               |                                |
| 2402              | 75.58                                    | 95.23                          | -19.65       | 1.70                 | -21.35               | 30.00                         | 51.35                          |
| 2441              | 79.59                                    | 95.23                          | -15.64       | 1.70                 | -17.34               | 30.00                         | 47.34                          |
| 2480              | 77.64                                    | 95.23                          | -17.59       | 1.70                 | -19.29               | 30.00                         | 49.29                          |
| GFSK              |                                          |                                |              |                      |                      |                               |                                |
| 2402              | 75.09                                    | 95.23                          | -20.14       | 1.70                 | -21.84               | 30.00                         | 51.84                          |
| 2441              | 79.41                                    | 95.23                          | -15.82       | 1.70                 | -17.52               | 30.00                         | 47.52                          |
| 2480              | 77.85                                    | 95.23                          | -17.38       | 1.70                 | -19.08               | 30.00                         | 49.08                          |


Table 8.2-2: EIRP measurements results

| Frequency, | Radiated field strength, | dBμV/m to dBm | EIRP,  | EIRP Limit, | EIRP margin, |
|------------|--------------------------|---------------|--------|-------------|--------------|
| MHz        | dBμV/m                   | factor, dB    | dBm    | dBm         | dBm          |
| EDR3       |                          |               |        |             |              |
| 2402       | 76.79                    | 95.23         | -18.44 | 36.00       | 54.44        |
| 2441       | 80.85                    | 95.23         | -14.38 | 36.00       | 50.38        |
| 2480       | 78.81                    | 95.23         | -16.42 | 36.00       | 52.42        |
| EDR2       |                          |               |        |             |              |
| 2402       | 75.58                    | 95.23         | -19.65 | 36.00       | 55.65        |
| 2441       | 79.59                    | 95.23         | -15.64 | 36.00       | 51.64        |
| 2480       | 77.64                    | 95.23         | -17.59 | 36.00       | 53.59        |
| GFSK       |                          |               |        |             |              |
| 2402       | 75.09                    | 95.23         | -20.14 | 36.00       | 56.14        |
| 2441       | 79.41                    | 95.23         | -15.82 | 36.00       | 51.82        |
| 2480       | 77.85                    | 95.23         | -17.38 | 36.00       | 53.38        |



# Sample of Output Power Measurement






Date: 11.0CT.2018 13:22:30 Date: 11.0CT.2018 13:23:47

Figure 8.2-1: Field Strength of fundamental on low channel

Figure 8.2-2: Field Strength of fundamental on mid channel



Date: 11.0CT.2018 13:24:48

Figure 8.2-3: Field Strength of fundamental on high channel

FCC Part 15 Subpart C and RSS-247, Issue 2



# 8.3 FCC 15.247(a)(2) and RSS-247 5.2(a) Minimum 6 dB bandwidth for DTS systems

### 8.3.1 Definitions and limits

#### FCC:

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

#### ISED

The minimum 6 dB bandwidth shall be 500 kHz.

### 8.3.1 Test date

Start date August 27, 2018

#### 8.3.2 Observations, settings and special notes

#### Spectrum analyser settings:

| Resolution bandwidth | 100 kHz  |
|----------------------|----------|
| Video bandwidth      | ≥3 × RBW |
| Frequency span       | 5 MHz    |
| Detector mode        | Peak     |
| Trace mode           | Max Hold |

### 8.3.3 Test data

#### Table 8.3-1: 6 dB bandwidth results

| Frequency, MHz | 6 dB bandwidth, kHz | Minimum limit, kHz | Margin, kHz |
|----------------|---------------------|--------------------|-------------|
| 2402           | 913.5               | 500.0              | 413.5       |
| 2442           | 969.6               | 500.0              | 469.6       |
| 2480           | 913.5               | 500.0              | 413.5       |

Notes: None

FCC Part 15 Subpart C and RSS-247, Issue 2



#### 8.3.4 Test data, continued

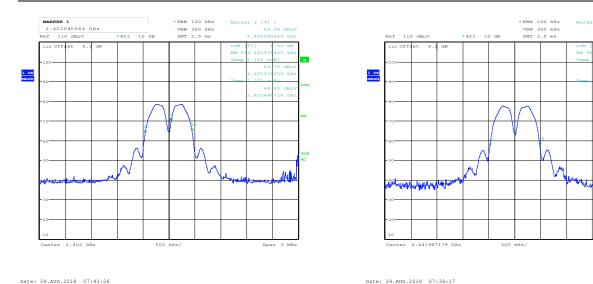
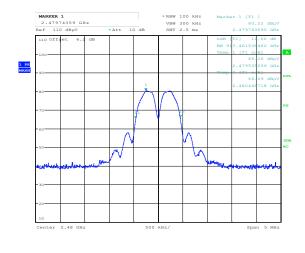
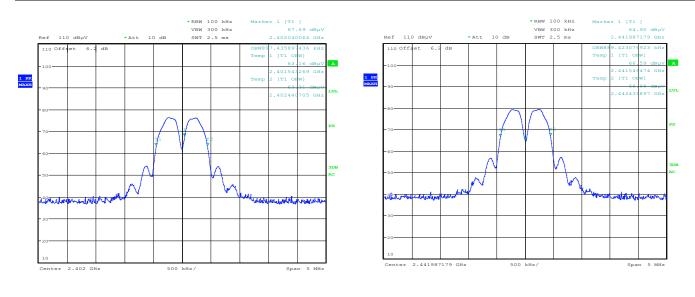



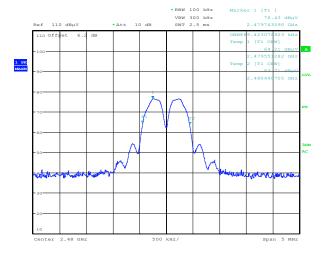

Figure 8.3-1: 6 dB bandwidth on low channel


Figure 8.3-2: 6 dB bandwidth on mid channel



Date: 29.AUG.2018 07:35:57




#### 8.3.5 Test data, continued



Date: 29.AUG.2018 07:43:55

Figure 8.3-4: 99% bandwidth on low channel

Figure 8.3-5: 99% bandwidth on mid channel



Date: 29.AUG.2018 07:36:18

Figure 8.3-6: 99% bandwidth on high channel

FCC Part 15 Subpart C and RSS-247, Issue 2



### 8.4 FCC 15.247(b) and RSS-247 5.4 (d) Transmitter output power and e.i.r.p. requirements for DTS in 2 GHz

#### 8.4.1 Definitions and limits

#### FCC:

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
  - (3) For systems using digital modulation in the 2400–2483.5 MHz band: 1 W (30 dBm). As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
  - (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (c) Operation with directional antenna gains greater than 6 dBi.
- (1) Fixed point-to-point operation:
- (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.
- (2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:
- (i) Different information must be transmitted to each receiver.
- (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
- (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
- (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
- (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.
- (iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Section 8 Testing data

FCC 15.247(b) and RSS-247 5.4 (d) Transmitter output power and e.i.r.p. requirements Test name Specification

FCC Part 15 Subpart C and RSS-247, Issue 2



#### ISED:

d. For DTSs employing digital modulation techniques operating in the 2400-2483.5 MHz band, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

e. Fixed point-to-point systems in the 2400-2483.5 MHz band are permitted to have an e.i.r.p. higher than 4 W provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers. Point-to-multipoint systems, omnidirectional applications and multiple co-located transmitters transmitting the same information are prohibited from exceeding an e.i.r.p. of 4 W.

f. Transmitters operating in the band 2400–2483.5 MHz, may employ antenna systems that emit multiple directional beams simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers, provided that the emissions comply with the following:

#### i Different information must be transmitted to each receiver.

ii If the transmitter employs an antenna system that emits multiple directional beams, but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device (i.e. the sum of the power supplied to all antennas, antenna elements, staves, etc., and summed across all carriers or frequency channels) shall not exceed the applicable output power limit specified in sections 5.4(b) and 5.4(d). However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

iii If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the applicable power limit specified in sections 5.4(b) and 5.4(d). If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the applicable limit specified in sections 5.4(b) and 5.4(d). In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the applicable limit specified in sections 5.4(b) and 5.4(d) by more than 8 dB. iv Transmitters that transmit a single directional beam shall operate under the provisions of sections 5.4(b), 5.4(d) and 5.4(e).

| _     |      |      |
|-------|------|------|
| 8.4.2 | Lest | date |

Start date August 28, 2018 Section 8 Test name Testing data

FCC 15.247(b) and RSS-247 5.4 (d) Transmitter output power and e.i.r.p. requirements

**Specification** FCC Part 15 Subpart C and RSS-247, Issue 2



#### 8.4.3 Observations, settings and special notes

The test was performed using Peak detector with max hold Method

# 8.4.4 Test data


Table 8.4-1: Output power measurements results

| Frequency,<br>MHz | Radiated field<br>strength, dBμV/m | dBμV/m to dBm<br>factor, dB | EIRP,<br>dBm | Antenna Gain,<br>dBi | Output Power,<br>dBm | Output Power<br>Limit,<br>dBm | Output Power<br>margin,<br>dBm |
|-------------------|------------------------------------|-----------------------------|--------------|----------------------|----------------------|-------------------------------|--------------------------------|
| LE                |                                    |                             |              |                      |                      |                               |                                |
| 2402              | 83.44                              | 95.23                       | -11.79       | 1.70                 | -13.49               | 30.00                         | 43.49                          |
| 2441              | 85.35                              | 95.23                       | -9.88        | 1.70                 | -11.58               | 30.00                         | 41.58                          |
| 2480              | 84.08                              | 95.23                       | -11.15       | 1.70                 | -12.85               | 30.00                         | 42.85                          |

Table 8.4-2: EIRP measurements results

| Frequency,<br>MHz | Radiated field strength,<br>dBμV/m | dBμV/m to dBm<br>factor, dB | EIRP,<br>dBm | EIRP Limit,<br>dBm | EIRP Power margin,<br>dBm |
|-------------------|------------------------------------|-----------------------------|--------------|--------------------|---------------------------|
| 2402              | 83.44                              | 95.23                       | -11.79       | 36                 | 47.79                     |
| 2441              | 85.35                              | 95.23                       | -9.88        | 36                 | 45.88                     |
| 2480              | 84.08                              | 95.23                       | -11.15       | 36                 | 47.15                     |





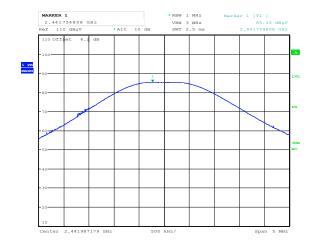



Figure 8.4-1: Output power on low channel

Figure 8.4-2: Output power on mid channel



Date: 29.AUG.2018 07:33:56

Figure 8.4-3: Output power on high channel



# 8.5 FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) emissions

#### 8.5.1 Definitions and limits

#### FCC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### **ISED**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Table 8.5-1: FCC §15.209 and RSS-Gen – Radiated emission limits

| Frequency,  | Field stren | gth of emissions                  | Measurement distance, m |
|-------------|-------------|-----------------------------------|-------------------------|
| MHz         | μV/m        | dBμV/m                            |                         |
| 0.009-0.490 | 2400/F      | 67.6 - 20 × log <sub>10</sub> (F) | 300                     |
| 0.490-1.705 | 24000/F     | $87.6 - 20 \times \log_{10}(F)$   | 30                      |
| 1.705-30.0  | 30          | 29.5                              | 30                      |
| 30–88       | 100         | 40.0                              | 3                       |
| 88–216      | 150         | 43.5                              | 3                       |
| 216–960     | 200         | 46.0                              | 3                       |
| ahove 960   | 500         | 54.0                              | 3                       |

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.5-2: ISED restricted frequency bands

| MHz             | MHz                 | MHz           | GHz         |
|-----------------|---------------------|---------------|-------------|
| 0.090-0.110     | 12.51975–12.52025   | 399.9–410     | 5.35–5.46   |
| 2.1735-2.1905   | 12.57675-12.57725   | 608-614       | 7.25–7.75   |
| 3.020-3.026     | 13.36–13.41         | 960–1427      | 8.025-8.5   |
| 4.125-4.128     | 16.42-16.423        | 1435-1626.5   | 9.0–9.2     |
| 4.17725-4.17775 | 16.69475-16.69525   | 1645.5-1646.5 | 9.3–9.5     |
| 4.20725-4.20775 | 16.80425-16.80475   | 1660–1710     | 10.6–12.7   |
| 5.677-5.683     | 25.5–25.67          | 1718.8-1722.2 | 13.25–13.4  |
| 6.215-6.218     | 37.5–38.25          | 2200-2300     | 14.47-14.5  |
| 6.26775-6.26825 | 73–74.6             | 2310–2390     | 15.35–16.2  |
| 6.31175-6.31225 | 74.8–75.2           | 2655-2900     | 17.7–21.4   |
| 8.291-8.294     | 108–138             | 3260–3267     | 22.01–23.12 |
| 8.362-8.366     | 156.52475-156.52525 | 3332–3339     | 23.6-24.0   |
| 8.37625-8.38675 | 156.7–156.9         | 3345.8–3358   | 31.2–31.8   |
| 8.41425-8.41475 | 240–285             | 3500-4400     | 36.43-36.5  |
| 12.29–12.293    | 322–335.4           | 4500–5150     | Above 38.6  |

Note: Certain frequency bands listed in Notes:

In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.5-2 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard.



Table 8.5-3: FCC restricted frequency bands

| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.090-0.110       | 16.42-16.423        | 399.9–410     | 4.5–5.15    |
| 0.495-0.505       | 16.69475-16.69525   | 608–614       | 5.35-5.46   |
| 2.1735-2.1905     | 16.80425-16.80475   | 960–1240      | 7.25–7.75   |
| 4.125-4.128       | 25.5–25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775   | 37.5–38.25          | 1435–1626.5   | 9.0–9.2     |
| 4.20725-4.20775   | 73–74.6             | 1645.5-1646.5 | 9.3–9.5     |
| 6.215-6.218       | 74.8–75.2           | 1660–1710     | 10.6–12.7   |
| 6.26775-6.26825   | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |
| 6.31175–6.31225   | 123–138             | 2200–2300     | 14.47–14.5  |
| 8.291-8.294       | 149.9–150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500   | 17.7–21.4   |
| 8.37625-8.38675   | 156.7-156.9         | 2690-2900     | 22.01-23.12 |
| 8.41425-8.41475   | 162.0125–167.17     | 3260–3267     | 23.6–24.0   |
| 12.29-12.293      | 167.72-173.2        | 3332–3339     | 31.2-31.8   |
| 12.51975-12.52025 | 240–285             | 3345.8–3358   | 36.43–36.5  |
| 12.57675-12.57725 | 322-335.4           | 3600-4400     | Above 38.6  |
| 13.36–13.41       |                     |               |             |

### 8.5.2 Test date

| Start date | August 28, 2018 |
|------------|-----------------|
| Start date | August 20, 2010 |

### 8.5.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to the  $10^{\text{th}}$  harmonic.

EUT was set to transmit with 100 % duty cycle.

Radiated measurements were performed at a distance of 3  $\mbox{m}$ 

Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

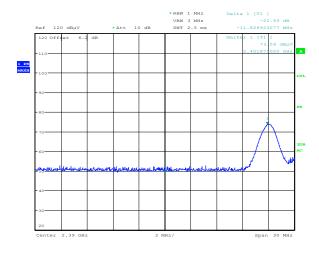
| Resolution bandwidth: | 100 kHz  |
|-----------------------|----------|
| Video bandwidth:      | 300 kHz  |
| Detector mode:        | Peak     |
| Trace mode:           | Max Hold |

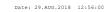
Spectrum analyser settings for peak radiated measurements within restricted bands above 1 GHz:

| Resolution bandwidth: | 1 MHz    |
|-----------------------|----------|
| Video bandwidth:      | 3 MHz    |
| Detector mode:        | Peak     |
| Trace mode:           | Max Hold |

Spectrum analyser settings for average radiated measurements within restricted bands above 1 GHz:

| Resolution bandwidth: | 1 MHz    |
|-----------------------|----------|
| Video bandwidth:      | 10 Hz    |
| Detector mode:        | Peak     |
| Trace mode:           | Max Hold |





### 8.5.4 Test data

Date: 29.AUG.2018 12:51:31

Date: 29.AUG.2018 12:42:10

### Sample of Band Edge Measurements





Date: 29.AUG.2018 12:37:43

Figure 8.5-1: Lower band edge emission, tx on low ch

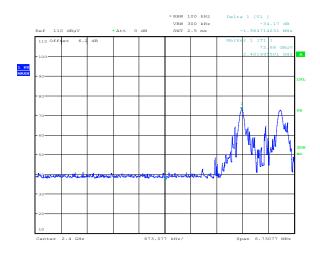
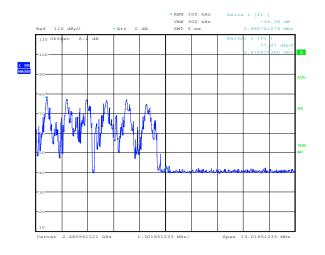



Figure 8.5-2: Upper band edge emission, tx on high channel



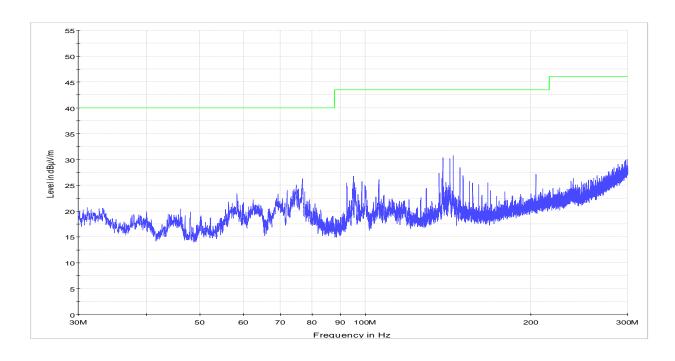


Figure 8.5-3: Lower band edge emission, tx hopping on, FHSS mode

Figure 8.5-4: Upper band edge emission, tx hopping on, FHSS mode

Report reference ID: 359758-1TRFWL



# Sample of Radiated Spurious (Out-of-band) Emissions Measurements



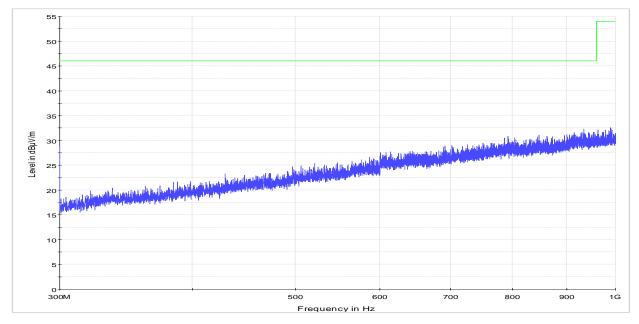
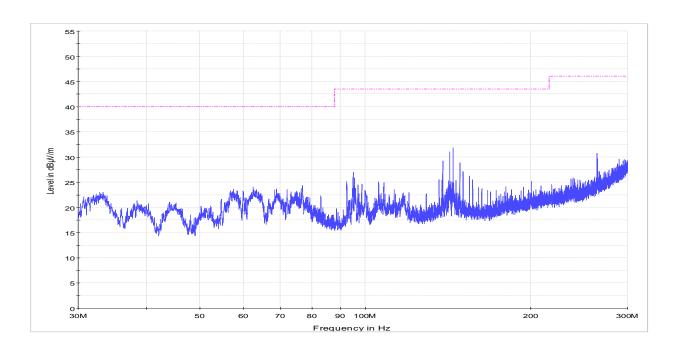




Figure 8.5-5: Radiated spurious (out-of-band) emissions, low channel, 30 to 1000 MHz



### 8.5.4 Test data, continued



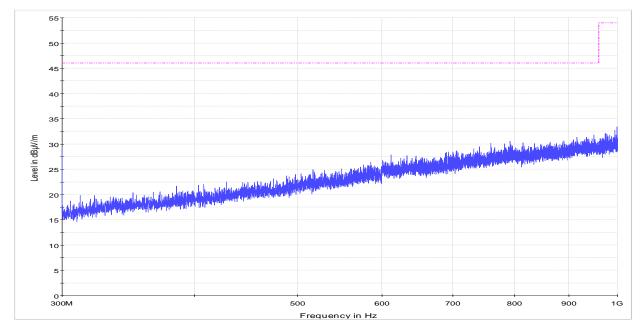
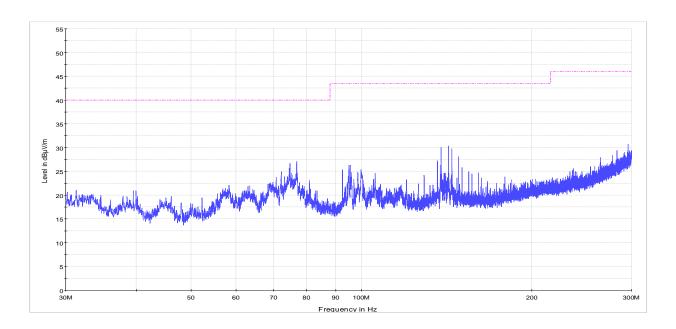




Figure 8.5-6: Radiated spurious (out-of-band) emissions, Mid channel, 30 to 1000 MHz





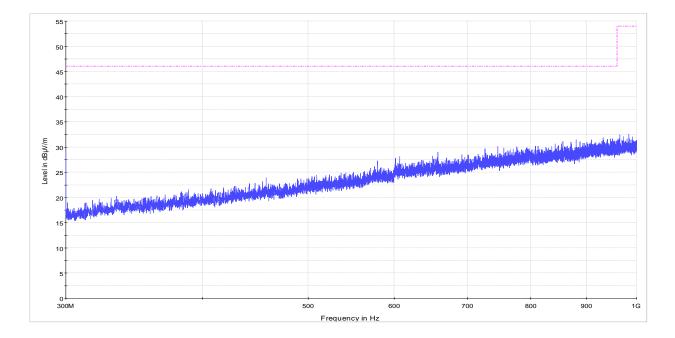



Figure 8.5-7: Radiated spurious (out-of-band) emissions, High channel, 30 to 1000 MHz



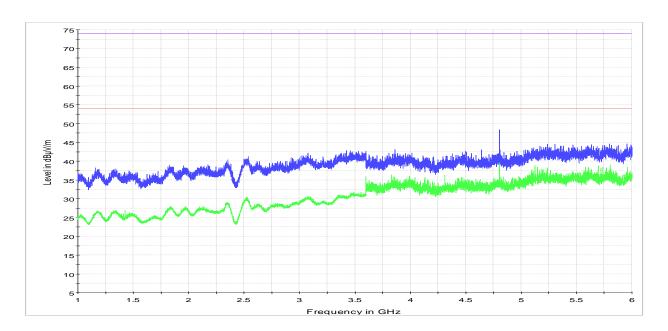



Figure 8.5-8: Radiated spurious emissions, low channel – 1 to 6 GHz

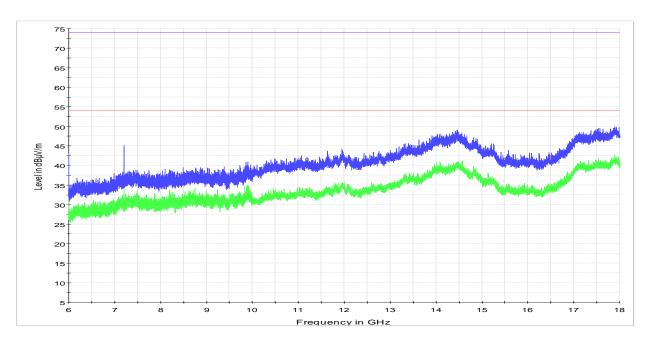



Figure 8.5-9: Radiated spurious emissions, low channel – 6 to 18 GHz

Note: Spectrum was investigated up to 25 GHz, no emission related to RF transmission was detected within 6 dB below the limit above 18 GHz



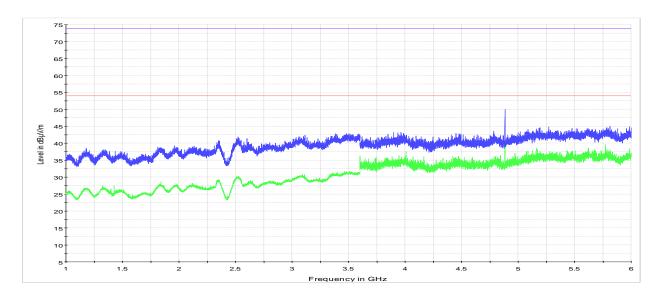



Figure 8.5-10: Radiated spurious emissions, Mid channel – 1 to 6 GHz

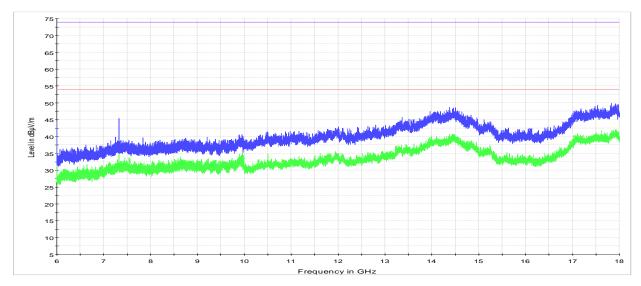



Figure 8.5-11: Radiated spurious emissions, Mid channel – 6 to 18 GHz

Note: Spectrum was investigated up to 25 GHz, no emission related to RF transmission was detected within 6 dB below the limit above 18 GHz



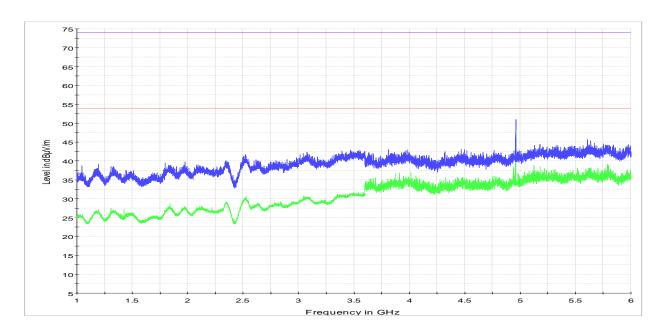



Figure 8.5-12: Radiated spurious emissions, High channel – 1 to 6 GHz

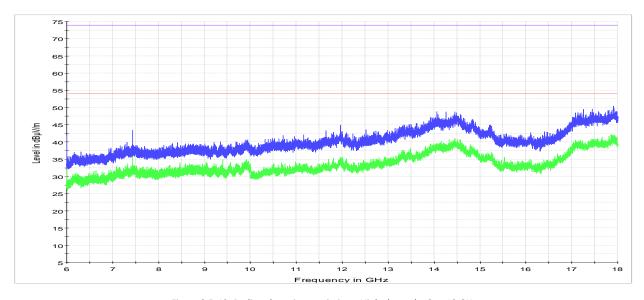



Figure 8.5-13: Radiated spurious emissions, High channel – 6 to 18 GHz Note: Spectrum was investigated up to 25 GHz, no emission related to RF transmission was detected within 6 dB below the limit above 18 GHz



### 8.5.4 Test data, continued

Table 8.5-4: Radiated spurious emissions test results.

| Channel            | Frequency,       | Peak Field strength, dBμV/m |              | Margin,      | Average Field strength, dBμV/m |              | Margin,      |
|--------------------|------------------|-----------------------------|--------------|--------------|--------------------------------|--------------|--------------|
| Cildilliei         | MHz              | Measured                    | Limit        | dB           |                                | Limit        | dB           |
| GFSK_Low           | 2390.0           | 50.8                        | 74.0         | 23.2         | 42.1                           | 54.0         | 11.9         |
| GFSK_Low           | 4804.0           | 47.5                        | 74.0         | 26.5         | 43.9                           | 54.0         | 10.1         |
| GFSK_Low           | 7206.4           | 48.8                        | 74.0         | 25.2         | 44.5                           | 54.0         | 9.5          |
| GFSK_Mid           | 4884.5           | 44.9                        | 74.0         | 29.1         | 41.7                           | 54.0         | 12.3         |
| GFSK_Mid           | 7326.4           | 50.5                        | 74.0         | 23.5         | 46.2                           | 54.0         | 7.8          |
| GFSK_High          | 2483.5           | 52.1                        | 74.0         | 21.9         | 44.3                           | 54.0         | 9.7          |
| GFSK_High          | 4960.5           | 45.5                        | 74.0         | 28.5         | 41.2                           | 54.0         | 12.8         |
| GFSK_High          | 7440.4           | 45.7                        | 74.0         | 28.3         | 41.4                           | 54.0         | 12.6         |
| EDR2_Low           | 2390.0           | 51.3                        | 74.0         | 22.7         | 46.3                           | 54.0         | 7.7          |
| EDR2_Low           | 4804.0           | 52.1                        | 74.0         | 21.9         | 48.8                           | 54.0         | 5.2          |
| EDR2_Low           | 7206.4           | 48.1                        | 74.0         | 25.9         | 43.8                           | 54.0         | 10.2         |
| EDR2_Mid           | 4885.0           | 50.1                        | 74.0         | 23.9         | 46.8                           | 54.0         | 7.2          |
| EDR2_Mid           | 7325.6           | 44.6                        | 74.0         | 29.4         | 39.4                           | 54.0         | 14.6         |
| EDR2_High          | 2483.5           | 51.0                        | 74.0         | 23.0         | 40.2                           | 54.0         | 13.8         |
| EDR2_High          | 4960.5           | 50.7                        | 74.0         | 23.3         | 46.0                           | 54.0         | 8.0          |
| EDR2_High          | 7440.4           | 43.6                        | 74.0         | 30.4         | 39.0                           | 54.0         | 15.0         |
| EDR3_Low           | 2390.0           | 50.6                        | 74.0         | 23.4         | 40.1                           | 54.0         | 13.9         |
| EDR3_Low           | 4804.5           | 48.4                        | 74.0         | 25.6         | 44.3                           | 54.0         | 9.7          |
| EDR3_Low           | 7205.6           | 45.1                        | 74.0         | 28.9         | 39.7                           | 54.0         | 14.3         |
| EDR3_Mid           | 4884.5           | 50.0                        | 74.0         | 24.0         | 46.9                           | 54.0         | 7.1          |
| EDR3_Mid           | 7325.6           | 45.4                        | 74.0         | 28.6         | 38.6                           | 54.0         | 15.4         |
| EDR3_High          | 2483.5           | 51.6                        | 74.0         | 22.4         | 39.6                           | 54.0         | 14.4         |
| EDR3_High          | 4960.5           | 51.0                        | 74.0         | 23.0         | 47.1                           | 54.0         | 6.9          |
| EDR3_High          | 7440.0           | 43.3                        | 74.0         | 30.7         | 38.2                           | 54.0         | 15.8         |
| LE_Low             | 2390.0           | 50.8                        | 74.0         | 23.2         | 41.2                           | 54.0         | 12.8         |
| LE_Low             | 4804.5           | 47.03                       | 74.0         | 27.0         | 40.1                           | 54.0         | 13.9         |
| LE_Low             | 7205.6           | 44.8                        | 74.0         | 29.2         | 34.2                           | 54.0         | 19.8         |
| LE_Mid             | 4884.5           | 44.5                        | 74.0         | 29.5         | 40.0                           | 54.0         | 14.0         |
| LE_Mid             | 7325.6           | 46.4                        | 74.0         | 27.6         | 34.7                           | 54.0         | 19.3         |
| LE_High            | 2483.5           | 52.1                        | 74.0         | 21.9         | 41.2                           | 54.0         | 12.8         |
| LE_High<br>LE_High | 4960.5<br>7440.0 | 44.9<br>46.0                | 74.0<br>74.0 | 29.1<br>28.0 | 40.52<br>41.0                  | 54.0<br>54.0 | 13.5<br>13.0 |

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Section 8

Testing data

Test name Specification FCC Clause 15.247(e) and RSS-247 5.2(b) Power spectral density for digitally modulated devices

FCC Part 15 Subpart C and RSS-247, Issue 2



# 8.6 FCC 15.247(e) and RSS-247 5.2(b) Power spectral density for digitally modulated devices

#### 8.6.1 Definitions and limits

#### FCC:

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

#### ISED:

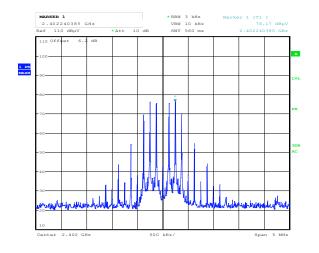
The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

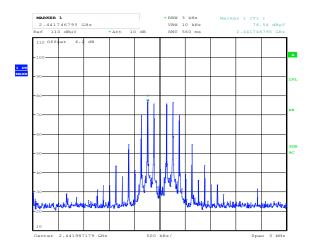
#### 8.6.2 Test date

|--|

#### 8.6.3 Observations, settings and special notes

The test was performed using method PKPSD (peak PSD). Spectrum analyser settings:


| Resolution bandwidth: | 3 kHz    |
|-----------------------|----------|
| Video bandwidth:      | 10 kHz   |
| Frequency span:       | 5 MHz    |
| Detector mode:        | Peak     |
| Trace mode:           | Max Hold |

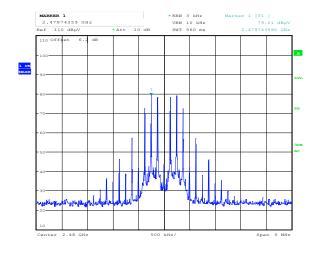



#### 8.6.4 Test data

Table 8.6-1: PSD measurements results

| Frequency, MHz | PSD, dBμV/m /3 kHz | PSD, dBm/3 kHz | PSD limit, dBm/3 kHz | Margin, dB |
|----------------|--------------------|----------------|----------------------|------------|
| 2402           | 76.17              | -19.06         | 8.00                 | 27.06      |
| 2441           | 76.54              | -18.69         | 8.00                 | 26.69      |
| 2480           | 79.01              | -16.22         | 8.00                 | 24.22      |






Date: 29.AUG.2018 07:41:38

Date: 29.AUG.2018 07:40:43

Figure 8.6-1: PSD plot on low channel

Figure 8.6-2: PSD plot on mid channel



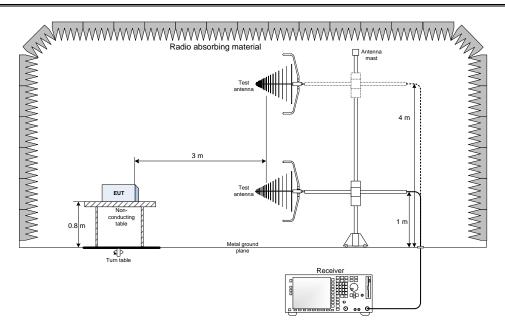
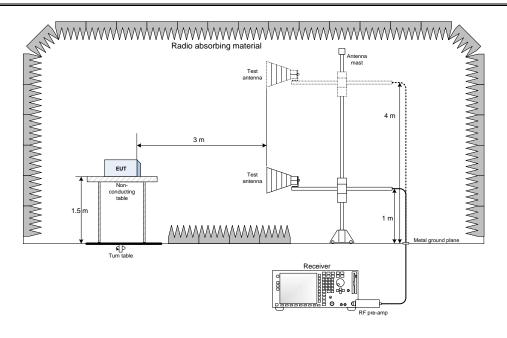

Date: 29.AUG.2018 07:34:51

Figure 8.6-3: PSD plot on high channel




# Section 9. Block diagrams of test set-ups

# 9.1 Radiated emissions set-up for frequencies below 1 GHz



# 9.2 Radiated emissions set-up for frequencies above 1 GHz

