

MEASUREMENT REPORT

FCC PART 15.247 / ISED RSS-247

FCC ID: 2ANOT-203532

IC: 23166-203532

Applicant: Alliance Laundry Systems LLC

Application Type: Certification

Product: Wireless Network Control

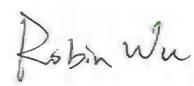
Model No.: 203532

Brand Name:

FCC Classification: Digital Transmission System (DTS)

FCC Rule Part(s): Part15 Subpart C (Section 15.247)

ISED Rule(s): RSS-247 Issue 2, RSS-Gen Issue 5


Test Procedure(s): ANSI C63.10-2013

Test Date: February 29 ~ May 16, 2020

Reviewed By:

(Sunny Sun)

Approved By:

(Robin Wu)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1911RSU027-U1	Rev. 01	Initial Report	09-05-2020	Valid

CONTENTS

Description	Page
General Information	5
1. INTRODUCTION.....	6
1.1. Scope.....	6
1.2. MRT Test Location.....	6
2. PRODUCT INFORMATION.....	7
2.1. Feature of Equipment under Test	7
2.2. Product Specification	7
2.3. Working Frequencies	7
2.4. Test Mode	7
2.5. Description of Test Software	7
2.6. Test Environment Condition.....	8
2.7. Labeling Requirements	8
3. ANTENNA REQUIREMENTS.....	9
4. TEST EQUIPMENT CALIBRATION DATE.....	10
5. MEASUREMENT UNCERTAINTY.....	12
6. TEST RESULT.....	13
6.1. Summary.....	13
6.2. 6dB Bandwidth Measurement.....	14
6.2.1. Test Limit.....	14
6.2.2. Test Procedure used	14
6.2.3. Test Setting	14
6.2.4. Test Setup	15
6.2.5. Test Result	16
6.3. Output Power Measurement.....	17
6.3.1. Test Limit.....	17
6.3.2. Test Procedure Used.....	17
6.3.3. Test Setting	17
6.3.4. Test Setup	18
6.3.5. Test Result	19
6.4. Power Spectral Density Measurement.....	20
6.4.1. Test Limit.....	20
6.4.2. Test Procedure Used.....	20
6.4.3. Test Setting	20
6.4.4. Test Setup	20

6.4.5. Test Result	21
6.5. Conducted Band Edge and Out-of-Band Emissions	22
6.5.1. Test Limit.....	22
6.5.2. Test Procedure Used.....	22
6.5.3. Test Setting	22
6.5.4. Test Setup	23
6.5.5. Test Result	24
6.6. Radiated Spurious Emission Measurement.....	26
6.6.1. Test Limit.....	26
6.6.2. Test Procedure Used.....	27
6.6.3. Test Setting	27
6.6.4. Test Setup	28
6.6.5. Test Result	30
6.7. Radiated Restricted Band Edge Measurement.....	35
6.7.1. Test Limit.....	35
6.7.2. Test Procedure Used.....	37
6.7.3. Test Setting	38
6.7.4. Test Setup	39
6.7.5. Test Result	40
6.8. AC Conducted Emissions Measurement	48
6.8.1. Test Limit.....	48
6.8.2. Test Setup	48
6.8.3. Test Result	48
7. CONCLUSION	49
Appendix A - Test Setup Photograph	50
Appendix B - EUT Photograph	51

General Information

Applicant:	Alliance Laundry Systems LLC
Applicant Address:	221 Shepard Street PO Box 990 Ripon, WI 54971
Applicant:	Alliance Laundry Systems LLC
Applicant Address:	221 Shepard Street PO Box 990 Ripon, WI 54971
Test Site:	MRT Technology (Suzhou) Co., Ltd
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is an FCC accredited testing laboratory (MRT Designation No. CN1166) on the FCC website.
- MRT facility is an ISED recognized testing laboratory (MRT Reg. No. CN0001) on the ISED website.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the A2LA under the A2LA Program (Cert. No. 3628.01) and CNAS under the CNAS Program (Cert. No. L10551) in EMC, Safety, Radio, Telecommunications and SAR testing.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name	Wireless Network Control
Model No.	203532
Brand Name	Alliance Laundry Systems
S/N	9120301
SW Version	0.02
Zigbee Specification	802.15.4

2.2. Product Specification

Frequency Range	2405 ~ 2475 MHz
Channel Number	15
Type of Modulation	O-QPSK
Antenna Type	Dipole Antenna
Antenna Gain	2dBi

Note: The antenna is declared by the manufacturer.

2.3. Working Frequencies

Channel	Frequency	Channel	Frequency	Channel	Frequency
11	2405 MHz	12	2410 MHz	13	2415 MHz
14	2420 MHz	15	2425 MHz	16	2430 MHz
17	2435 MHz	18	2440 MHz	19	2445 MHz
20	2450 MHz	21	2455 MHz	22	2460 MHz
23	2465 MHz	24	2470 MHz	25	2475 MHz

2.4. Test Mode

Test Mode	Mode 1: Transmit by Zigbee
-----------	----------------------------

2.5. Description of Test Software

The test utility software used during testing was "ModFLEX Test Tool", and the version was "2.7.0.3".

2.6. Test Environment Condition

Ambient Temperature	15°C ~ 35°C
Relative Humidity	20%RH ~ 75%RH

2.7. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

RSS-Gen Issue 5 Section 4

In addition to complying with the applicable RSSs and RSP-100, each unit of a product model (i.e. of a radio apparatus) shall meet the labelling requirements set out in this section prior to being marketed in Canada or imported into Canada.

For information regarding the labelling option, see Section 4.1, 4.2, 4.3 4.4. The label for the certified product represents the manufacturer's or importer's compliance with Innovation, Science and Economic Development Canada's (ISED) regulatory requirements.

Please see attachment for IC label and label location.

3. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the device is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

4. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2021/01/18
Two-Line V-Network	R&S	ENV216	MRTSUE06002	1 year	2021/06/11
Four-Line V-Network	R&S	ENV432	MRTSUE06615	1 year	2020/11/11
Thermal Hygrometer	Testo	608-H1	MRTSUE06404	1 year	2021/07/26

Radiated Emissions - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2021/01/18
EXA Signal Analyzer	Keysight	N9010B	MRTSUE06558	1 year	2021/07/23
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/13
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2021/04/03
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06023	1 year	2020/10/13
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06597	1 year	2020/12/17
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2021/06/11
Thermal Hygrometer	Testo	608-H1	MRTSUE06403	1 year	2021/07/26
Anechoic Chamber	TDK	Chamber-AC1	MRTSUE06212	1 year	2021/04/29

Radiated Emission - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
MXE EMI Receiver	Keysight	N9038A	MRTSUE06125	1 year	2021/07/02
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/13
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2020/10/13
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2020/10/27
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06597	1 year	2020/12/17
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2021/06/11
Thermal Hygrometer	Minggao	ETH529	MRTSUE06170	1 year	2020/12/15
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2021/04/29

Conducted Test Equipment - TR3

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2021/04/14
EXA Signal Analyzer	Keysight	N9010B	MRTSUE06607	1 year	2021/01/08
Signal Analyzer	R&S	FSV40	MRTSUE06218	1 year	2021/04/14
Power Meter	Agilent	U2021XA	MRTSUE06030	1 year	2020/11/18
USB wideband power sensor	Keysight	U2021XA	MRTSUE06446	1 year	2021/06/11
USB wideband power sensor	Keysight	U2021XA	MRTSUE06447	1 year	2021/06/11
Bluetooth Test Set	Anritsu	MT8852B-042	MRTSUE06389	1 year	2021/06/11
Audio Analyzer	Agilent	U8903B	MRTSUE06143	1 year	2021/06/11
Modulation Analyzer	HP	8901A	MRTSUE06098	1 year	2020/10/10
Wideband Radio Communication Tester	R&S	CMW 500	MRTSUE06243	1 year	2020/11/07
DC Power Supply	GWINSTEK	DPS-3303C	MRTSUE06064	N/A	N/A
Temperature & Humidity Chamber	BAOYT	BYH-150CL	MRTSUE06051	1 year	2020/11/07
Thermal Hygrometer	testo	608-H1	MRTSUE06401	1 year	2021/07/26

Software	Version	Function
EMI Software	V3	EMI Test Software

5. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

AC Conducted Emission Measurement
Measurement Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 9kHz~150kHz: 3.74dB 150kHz~30MHz: 3.44dB
Radiated Disturbance
Measurement Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): Horizontal: 30MHz~300MHz: 5.04dB 300MHz~1GHz: 4.95dB 1GHz~25GHz: 6.40dB Vertical: 30MHz~300MHz: 5.24dB 300MHz~1GHz: 6.03dB 1GHz~40GHz: 6.40dB
Spurious Emissions, Conducted
Measurement Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 0.78dB
Output Power
Measurement Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 1.13dB
Power Spectrum Density
Measurement Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 1.15dB
Occupied Bandwidth
Measurement Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 0.28%

6. TEST RESULT

6.1. Summary

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	$\geq 500\text{kHz}$	Conducted	Pass	Section 6.2
N/A	RSS-Gen [6.7]	99% Bandwidth	N/A		Pass	
15.247(b)(3)	RSS-247 [5.4(d)]	Output Power	$\leq 1\text{Watt}$ & EIRP $\leq 4\text{Watt}$		Pass	Section 6.3
15.247(e)	RSS-247 [5.2]	Power Spectral Density	$\leq 8\text{dBm} / 3\text{kHz}$		Pass	Section 6.4
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	20dBc (Peak)		Pass	Section 6.5
15.205 15.209	RSS-247 [5.5]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 6.6 & 6.7
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 6.8

Notes:

- 1) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 2) All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst-case emissions.

6.2. 6dB Bandwidth Measurement

6.2.1. Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

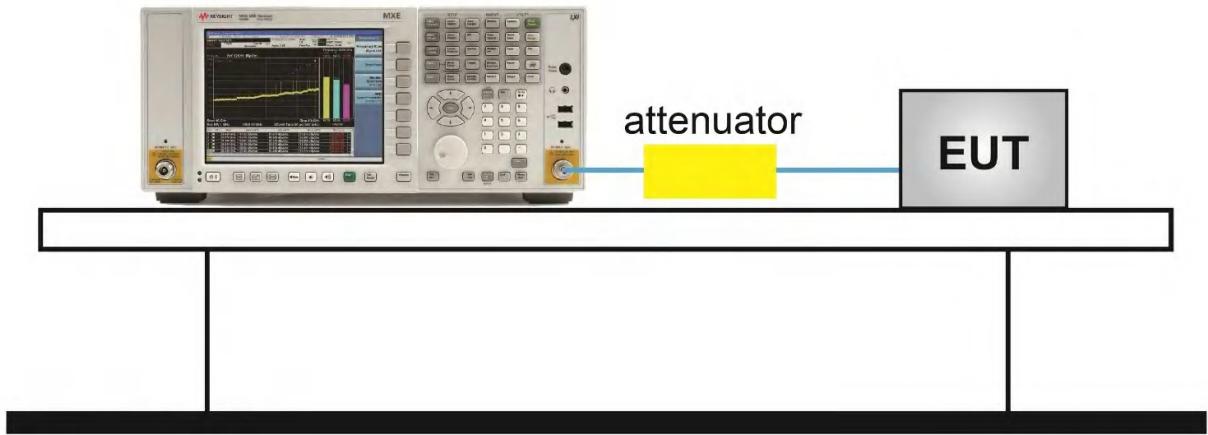
6.2.2. Test Procedure used

ANSI C63.10-2013 - Section 11.8 (6dB bandwidth)

ANSI C63.10-2013 - Section 6.9.3 (99% bandwidth)

6.2.3. Test Setting

For 6dB bandwidth


1. The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. Set RBW = 100 kHz
3. VBW $\geq 3 \times$ RBW
4. Detector = Peak
5. Trace mode = Max hold
6. Sweep = Auto couple
7. Allow the trace was allowed to stabilize

For 99% bandwidth

1. Span = 1.5 times to 5 times the OBW
2. Set RBW = 1% to 5% the OBW
3. VBW $\geq 3 \times$ RBW
4. Detector = Peak
5. Trace mode = Max hold
6. Sweep = Auto couple
7. Allow the trace was allowed to stabilize

6.2.4. Test Setup

Spectrum Analyzer

6.2.5. Test Result

Product	Wireless Network Control	Test Engineer	David Lv
Test Site	TR3	Test Date	2020/03/25 ~ 2020/05/16

Test Mode	Channel No.	Frequency (MHz)	6dB Bandwidth (kHz)	Limit (kHz)	99% Bandwidth (kHz)	Result
Zigbee	11	2405	1142.0	≥ 500	2220.2	Pass
Zigbee	18	2440	1122.0	≥ 500	2217.0	Pass
Zigbee	25	2475	1122.0	≥ 500	2240.6	Pass

6.3. Output Power Measurement

6.3.1. Test Limit

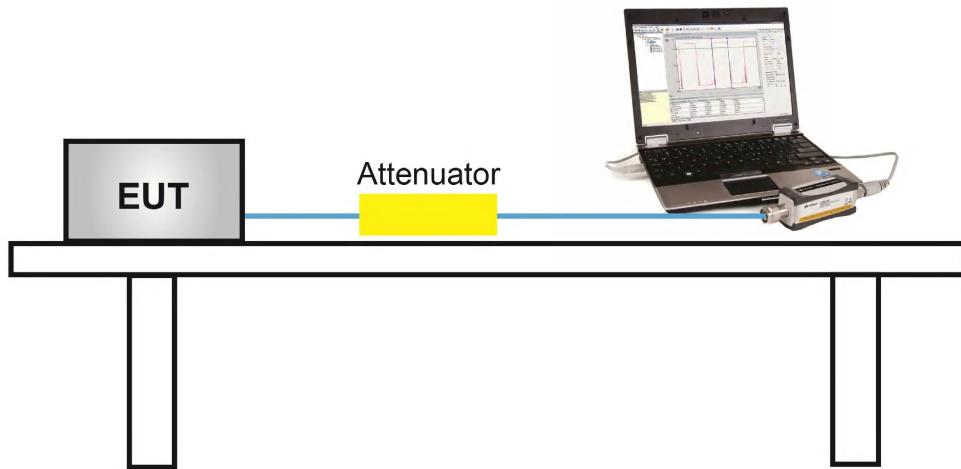
The maximum out power shall be less 1 Watt (30dBm) and the E.I.R.P shall not exceed 4 Watt (36.02dBm).

The conducted output power limit specified in paragraph FCC Part 15.247(b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs FCC Part 15.247(b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.3.2. Test Procedure Used

ANSI C63.10-2013 Section 11.9.1.3

ANSI C63.10-2013 Section 11.9.2.3.2


6.3.3. Test Setting

PKPM1 Peak Power Meter Method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

Method AVGPM-G (Measurement using a gated RF average power meter)

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

6.3.4. Test Setup

6.3.5. Test Result

Product	Wireless Network Control		Test Engineer	David Lv		
Test Site	TR3		Test Date	2020/03/25		

Test Mode	Channel No.	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Max EIRP (dBm)	EIRP Limit (dBm)	Result
Peak Output Power							
Zigbee	11	2405	7.26	≤ 30.00	9.26	≤ 36.02	Pass
Zigbee	18	2440	7.25	≤ 30.00	9.25	≤ 36.02	Pass
Zigbee	25	2475	7.98	≤ 30.00	9.98	≤ 36.02	Pass
Average Output Power (Report Only)							
Zigbee	11	2405	6.74	≤ 30.00	8.74	≤ 36.02	Pass
Zigbee	18	2440	6.72	≤ 30.00	8.72	≤ 36.02	Pass
Zigbee	25	2475	7.38	≤ 30.00	9.38	≤ 36.02	Pass

Note: E.I.R.P (dBm) = Average Power (dBm) + Antenna Gain (dBi), Antenna Gain = 2dBi.

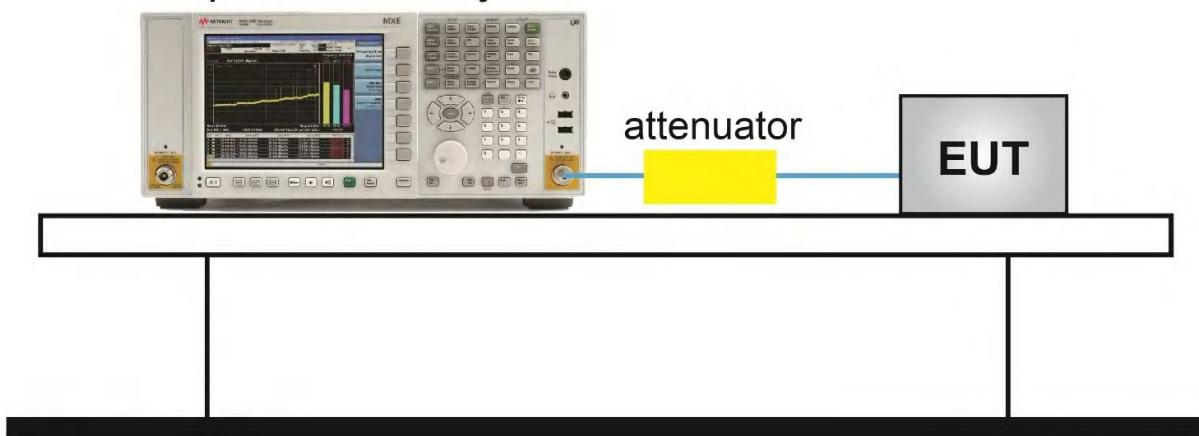
6.4. Power Spectral Density Measurement

6.4.1. Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

The same method of determining the conducted output power shall be used to determine the power spectral density.

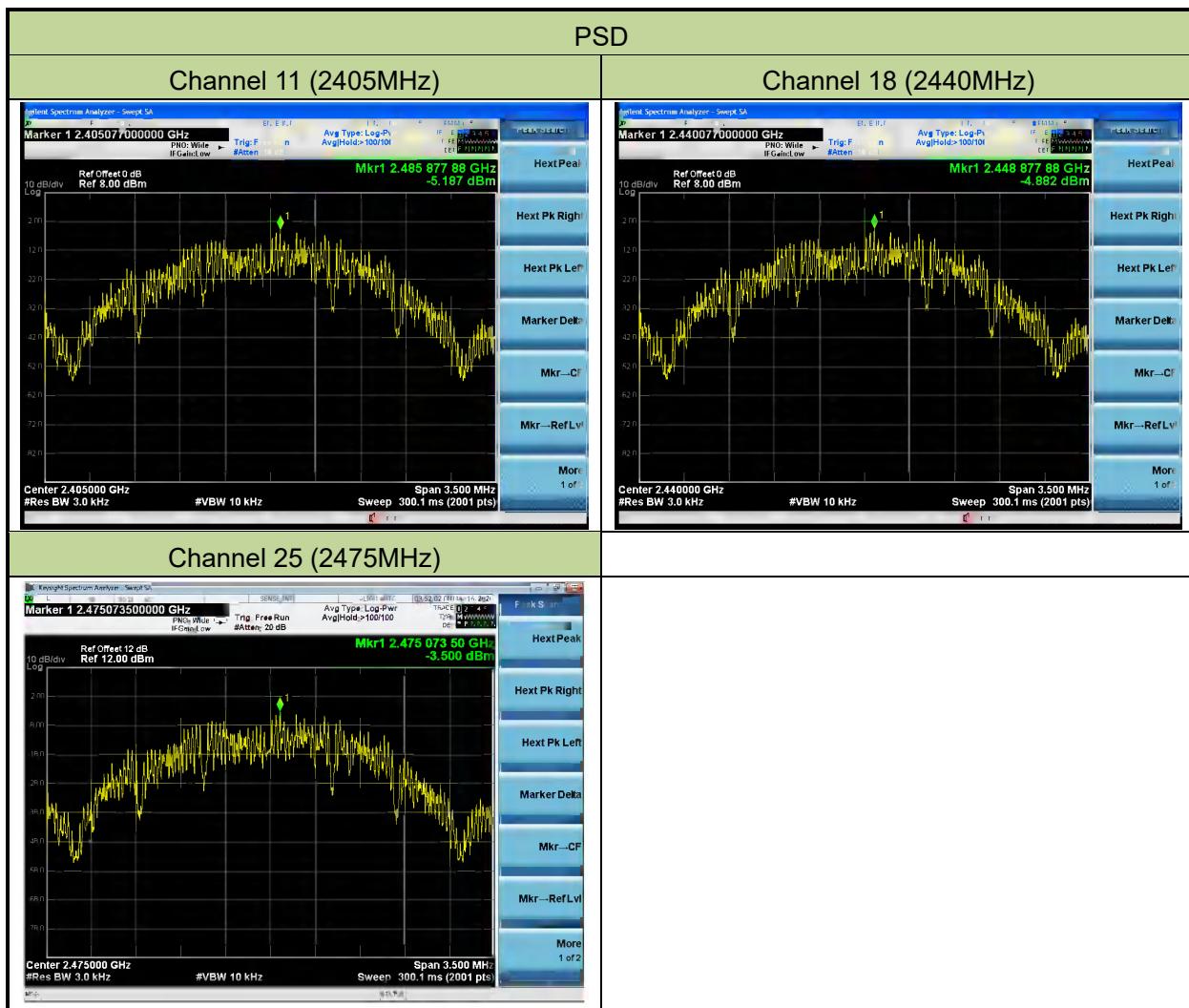
6.4.2. Test Procedure Used


ANSI C63.10-2013 Section 11.10.2

6.4.3. Test Setting

1. Analyzer was set to the center frequency of the DTS channel under investigation
2. Span = 1.5 times the DTS channel bandwidth
3. RBW = 3kHz
4. VBW = 10kHz
5. Detector = peak
6. Sweep time = auto couple
7. Trace mode = max hold
8. Trace was allowed to stabilize

6.4.4. Test Setup


Spectrum Analyzer

6.4.5. Test Result

Product	Wireless Network Control	Test Engineer	David Lv
Test Site	TR3	Test Date	2020/03/25 ~ 2020/05/16

Test Mode	Channel No.	Frequency (MHz)	PSD Result (dBm / 3kHz)	Limit (dBm / 3kHz)	Result
Zigbee	11	2405	-5.19	≤ 8.00	Pass
Zigbee	18	2440	-4.80	≤ 8.00	Pass
Zigbee	25	2475	-3.51	≤ 8.00	Pass

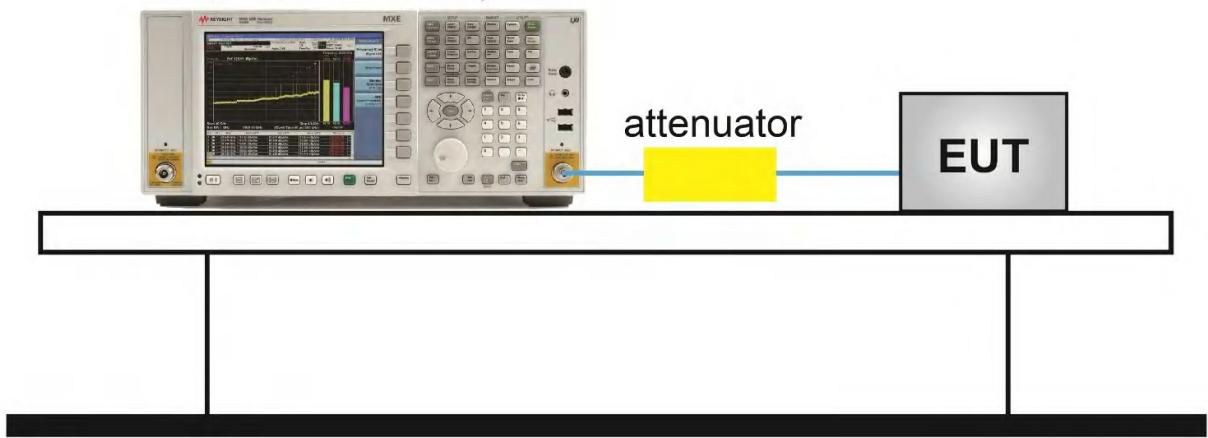
6.5. Conducted Band Edge and Out-of-Band Emissions

6.5.1. Test Limit

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100 kHz bandwidth per the PSD procedure.

6.5.2. Test Procedure Used

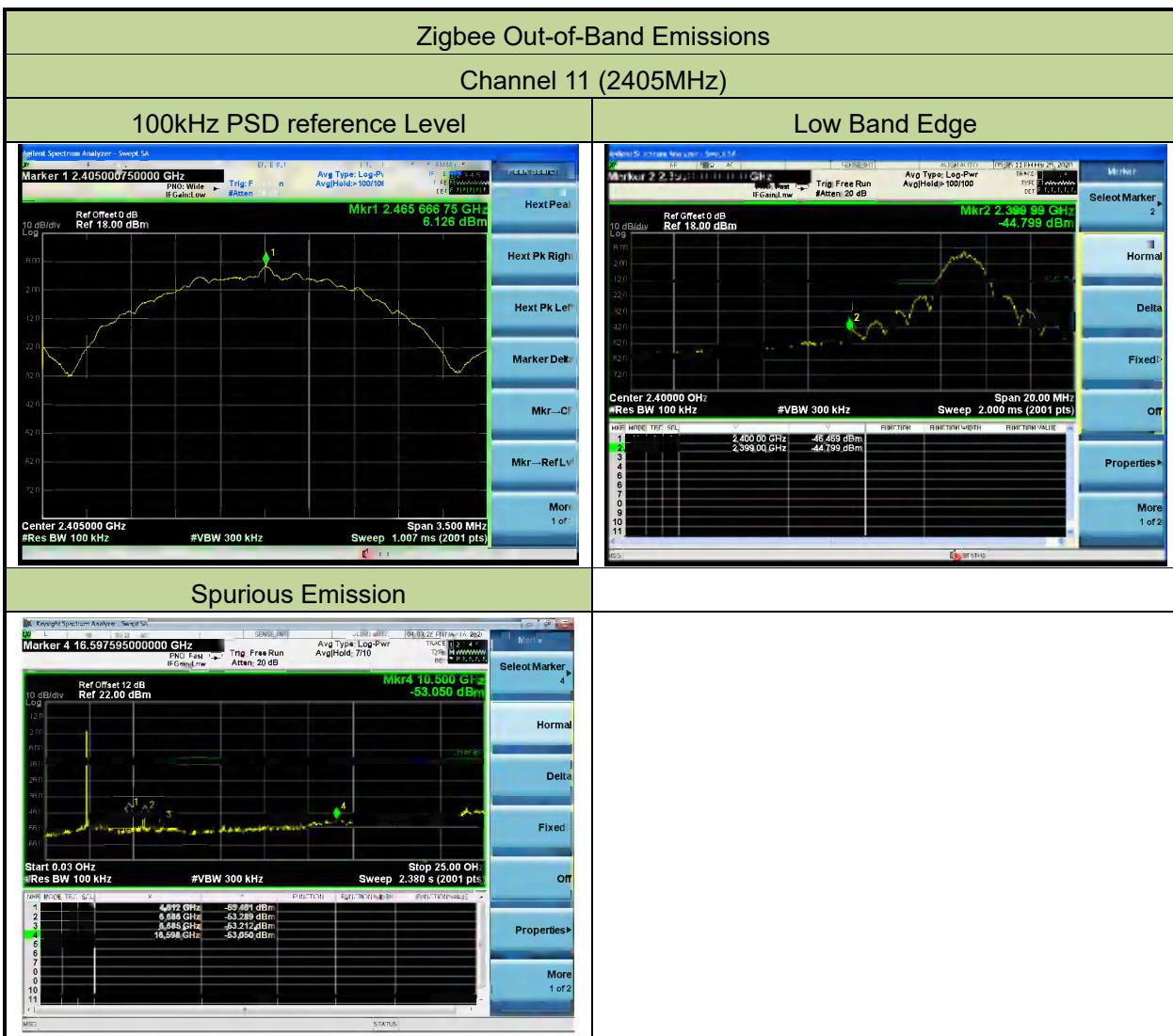
ANSI C63.10-2013 Section 11.11

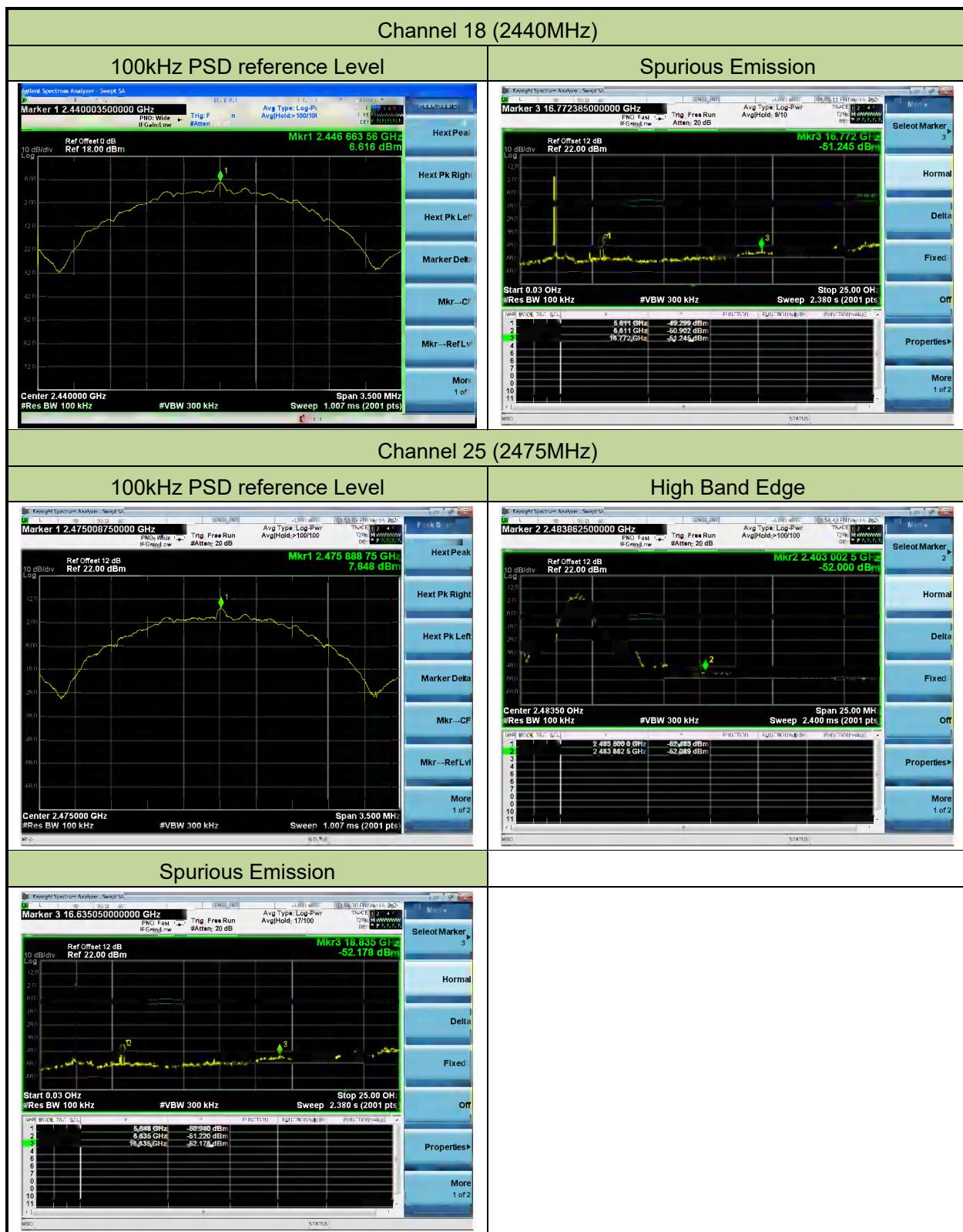

6.5.3. Test Setting

Reference level measurement

1. Set instrument center frequency to DTS channel center frequency
2. Set the span to \geq 1.5 times the DTS bandwidth
3. Set the RBW = 100 kHz
4. Set the VBW \geq 3 x RBW
5. Detector = peak
6. Sweep time = auto couple
7. Trace mode = max hold
8. Allow trace to fully stabilize

Emission level measurement


1. Set the center frequency and span to encompass frequency range to be measured
2. RBW = 100kHz
3. VBW = 300kHz
4. Detector = Peak
5. Trace mode = max hold
6. Sweep time = auto couple
7. The trace was allowed to stabilize


6.5.4. Test Setup**Spectrum Analyzer**

6.5.5. Test Result

Product	Wireless Network Control	Test Engineer	David Lv
Test Site	TR3	Test Date	2020/03/25 ~ 2020/05/16

Test Mode	Channel No.	Frequency (MHz)	Limit	Result
Zigbee	11	2405	20dBc	Pass
Zigbee	18	2440	20dBc	Pass
Zigbee	25	2475	20dBc	Pass

6.6. Radiated Spurious Emission Measurement

6.6.1. Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209		
Frequency [MHz]	Field Strength [uV/m]	Measured Distance [Meters]
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

All out of band emissions appearing in a restricted band as specified in Section 8.10 of the RSS-Gen must not exceed the limits shown in Table per Section 8.9.

RSS-Gen Section 8.9			
Frequency (MHz)	Field Strength (μV/m)	Magnetic Field Strength (H-Field) (μA/m)	Measured Distance (m)
0.009 - 0.490	--	6.37/F (F in kHz)	300
0.490 - 1.705	--	6.37/F (F in kHz)	30
1.705 - 30	--	0.08	30
30 - 88	100	--	3
88 - 216	150	--	3
216 - 960	200	--	3
Above 960	500	--	3

6.6.2. Test Procedure Used

ANSI C63.10-2013 Section 6.3 (General Requirements)

ANSI C63.10-2013 Section 6.4 (Standard test method below 30MHz)

ANSI C63.10-2013 Section 6.5 (Standard test method above 30MHz to 1GHz)

ANSI C63.10-2013 Section 6.6 (Standard test method above 1GHz)

6.6.3. Test Setting

Table 1 - RBW as a function of frequency

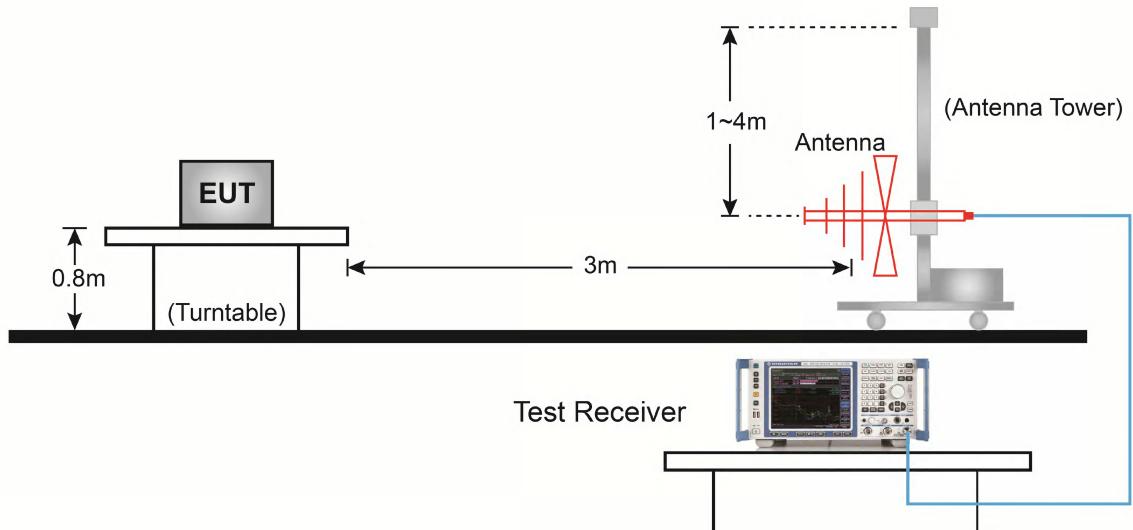
Frequency	RBW
9 ~ 150 kHz	200 ~ 300 Hz
0.15 ~ 30 MHz	9 ~ 10 kHz
30 ~ 1000 MHz	100 ~ 120 kHz
> 1000MHz	1MHz

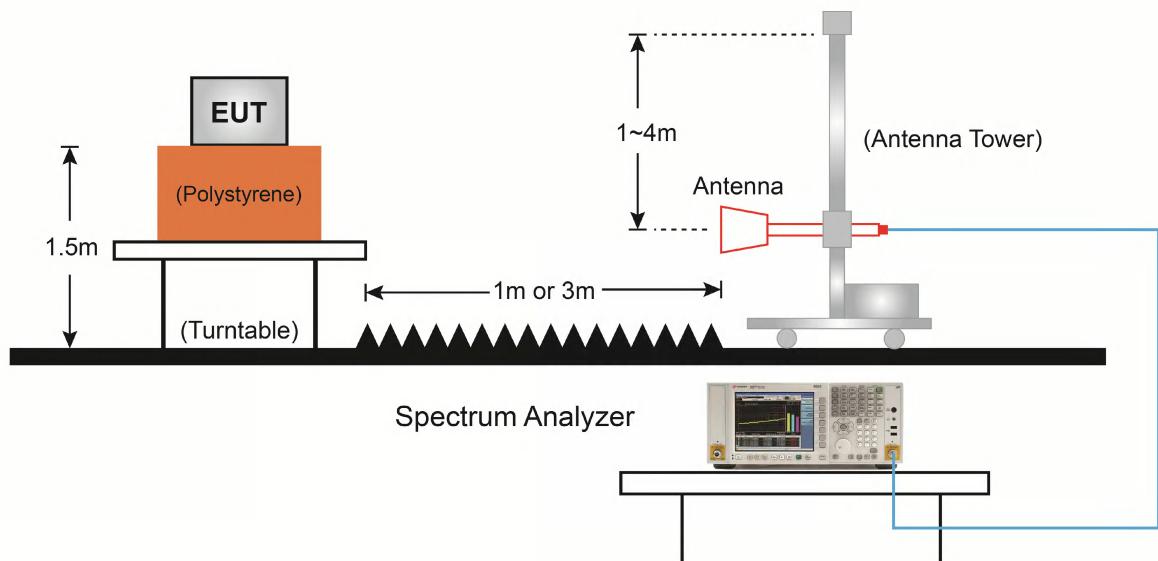
Quasi-Peak Measurements below 1GHz

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Span was set greater than 1MHz
3. RBW = as specified in Table 1
4. Detector = CISPR quasi-peak
5. Sweep time = auto couple
6. Trace was allowed to stabilize

Peak Measurements above 1GHz

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = 1MHz
3. VBW = 3MHz
4. Detector = peak
5. Sweep time = auto couple
6. Trace mode = max hold


7. Trace was allowed to stabilize


Average Measurements above 1GHz

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = 1MHz
3. VBW; If the EUT is configured to transmit with duty cycle $\geq 98\%$, set VBW = 10 Hz.
If the EUT duty cycle is $< 98\%$, set VBW $\geq 1/T$. T is the minimum transmission duration.
4. Detector = Peak
5. Sweep time = auto
6. Trace mode = max hold
7. Trace was allowed to stabilize

6.6.4. Test Setup

Below 1GHz Test Setup:

Above 1GHz Test Setup:

6.6.5. Test Result

Product	Wireless Network Control	Test Engineer	David Lv
Test Site	AC1	Test Date	2020/02/29
Test Mode	Zigbee	Test Channel	11
Note	<ol style="list-style-type: none"> 1. Average measurement was not performed if peak level lower than average limit. 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report. 		

Mark	Frequency (MHz)	Reading Level (dB μ V)	Factor (dB)	Measure Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Polarization
	4204.5	36.2	5.3	41.5	74.0	-32.5	Peak	Horizontal
	4842.0	39.0	7.6	46.6	74.0	-27.4	Peak	Horizontal
*	5751.5	34.6	9.1	43.7	74.0	-30.3	Peak	Horizontal
*	6491.0	35.9	11.1	47.0	74.0	-27.0	Peak	Horizontal
	4238.5	36.9	5.3	42.2	74.0	-31.8	Peak	Vertical
	4901.5	35.9	7.8	43.7	74.0	-30.3	Peak	Vertical
*	5930.0	35.8	9.7	45.5	74.0	-28.5	Peak	Vertical
*	6941.5	34.4	12.2	46.6	74.0	-27.4	Peak	Vertical

Note 1: “*” is not in restricted band

Note 2: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Product	Wireless Network Control	Test Engineer	David Lv
Test Site	AC1	Test Date	2020/02/29
Test Mode	Zigbee	Test Channel	18
Note	1. Average measurement was not performed if peak level lower than average limit. 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report.		

Mark	Frequency (MHz)	Reading Level (dB μ V)	Factor (dB)	Measure Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Polarization
	4068.5	36.3	4.9	41.2	74.0	-32.8	Peak	Horizontal
	4842.0	38.2	7.6	45.8	74.0	-28.2	Peak	Horizontal
*	5768.5	35.0	9.2	44.2	74.0	-29.8	Peak	Horizontal
*	6431.5	35.1	11.0	46.1	74.0	-27.9	Peak	Horizontal
	3847.5	37.2	4.2	41.4	74.0	-32.6	Peak	Vertical
	4842.0	38.0	7.6	45.6	74.0	-28.4	Peak	Vertical
*	5632.5	36.5	8.8	45.3	74.0	-28.7	Peak	Vertical
*	6678.0	35.5	11.5	47.0	74.0	-27.0	Peak	Vertical

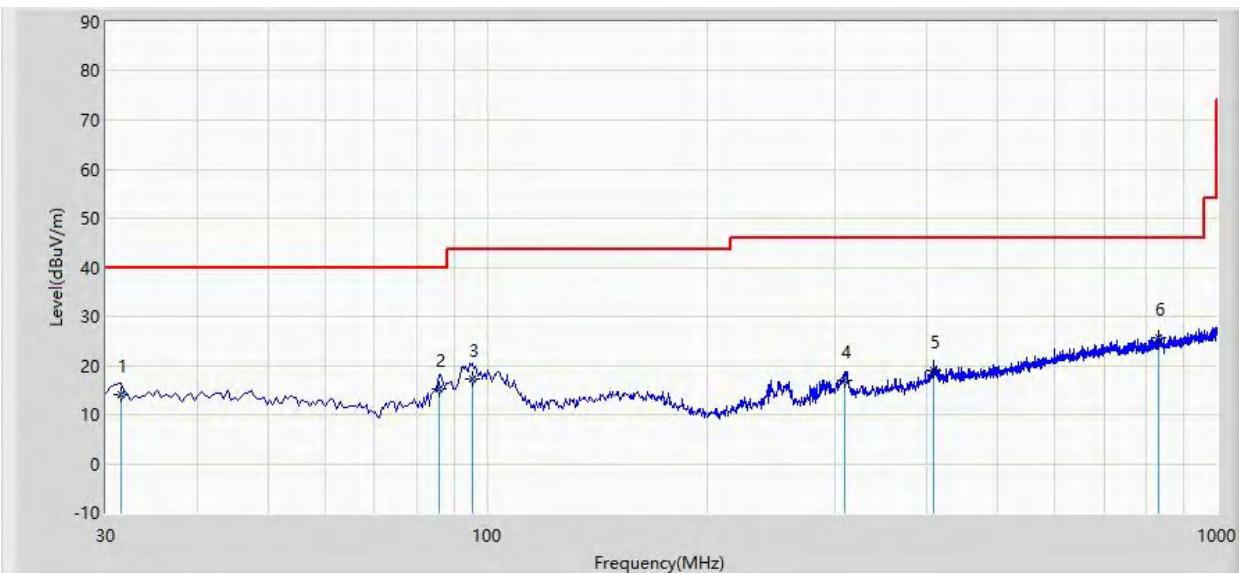
Note 1: “**” is not in restricted band

Note 2: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Product	Wireless Network Control	Test Engineer	David Lv
Test Site	AC1	Test Date	2020/02/29
Test Mode	Zigbee	Test Channel	25
Note	1. Average measurement was not performed if peak level lower than average limit. 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report.		

Mark	Frequency (MHz)	Reading Level (dB μ V)	Factor (dB)	Measure Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Polarization
	3830.5	36.5	4.3	40.8	74.0	-33.2	Peak	Horizontal
	4842.0	39.3	7.6	46.9	74.0	-27.1	Peak	Horizontal
*	5658.0	36.2	9.0	45.2	74.0	-28.8	Peak	Horizontal
*	6508.0	34.8	11.4	46.2	74.0	-27.8	Peak	Horizontal
	3975.0	36.0	4.7	40.7	74.0	-33.3	Peak	Vertical
	4842.0	36.8	7.6	44.4	74.0	-29.6	Peak	Vertical
*	5921.5	35.2	9.7	44.9	74.0	-29.1	Peak	Vertical
*	6992.5	35.0	12.5	47.5	74.0	-26.5	Peak	Vertical


Note 1: “*” is not in restricted band.

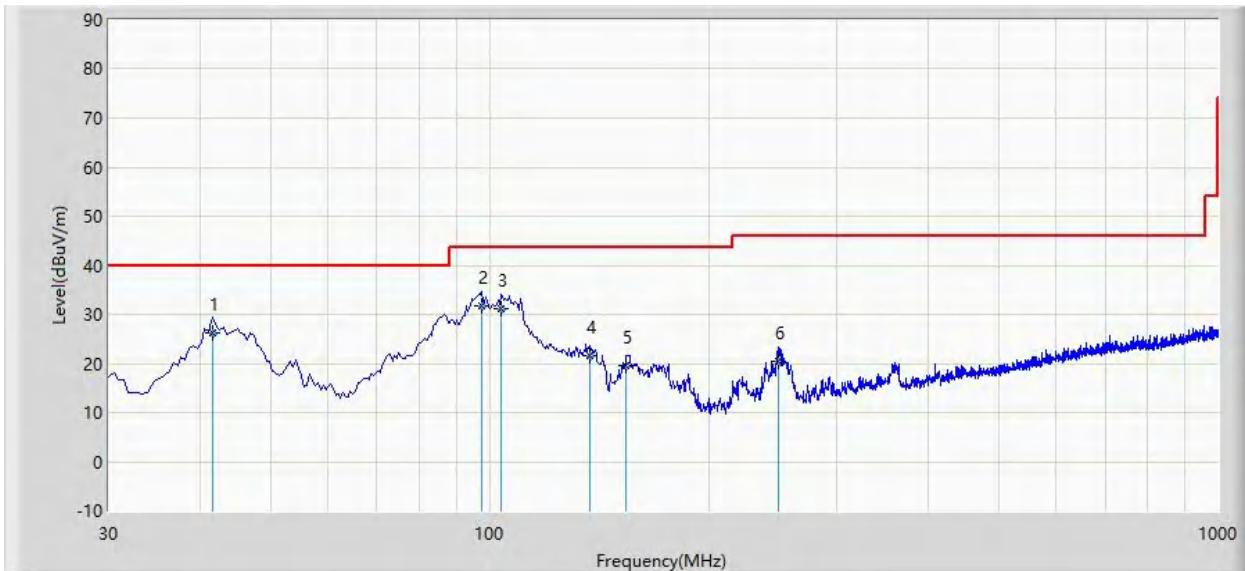
Note 2: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

The Worst Case of Radiated Emission below 1GHz:

Site: AC1	Time: 2020/04/30
Limit: FCC_Part15.209_RE(3m)	Engineer: Dillon Diao
Probe: AC1_VULB 9168 _20-2000MHz	Polarity: Horizontal
EUT: Wireless Network Control	Power: DC 12V
Test Mode 1	

No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Factor (dB)	Type
1			31.455	14.055	1.105	-25.945	40.000	12.949	QP
2			85.775	15.209	6.434	-24.791	40.000	8.775	QP
3			95.475	17.340	8.387	-26.160	43.500	8.953	QP
4			309.360	16.812	1.681	-29.188	46.000	15.131	QP
5			408.785	18.893	1.447	-27.107	46.000	17.446	QP
6	*		833.160	25.736	0.554	-20.264	46.000	25.182	QP


Note 1: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The amplitude of radiated emissions (frequency range from 9kHz to 30MHz and 18GHz to 40GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value.

Therefore, the data is not presented in the report.

Site: AC1	Time: 2020/04/30
Limit: FCC_Part15.209_RE(3m)	Engineer: Dillon Diao
Probe: AC1_VULB 9168 _20-2000MHz	Polarity: Vertical
EUT: Wireless Network Control	Power: DC 12V
Test Mode 1	

No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Factor (dB)	Type
1			41.640	26.323	12.240	-13.677	40.000	14.083	QP
2		*	97.415	31.646	22.439	-11.854	43.500	9.207	QP
3			103.720	31.183	21.015	-12.317	43.500	10.168	QP
4			137.185	21.624	7.979	-21.876	43.500	13.645	QP
5			154.160	19.657	5.219	-23.843	43.500	14.438	QP
6			249.705	20.291	7.286	-25.709	46.000	13.005	QP

Note 1: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The amplitude of radiated emissions (frequency range from 9kHz to 30MHz and 18GHz to 40GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value.

Therefore, the data is not presented in the report.

6.7. Radiated Restricted Band Edge Measurement

6.7.1. Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41	--	--	--

For RSS-Gen Section 8.10 Requirement

Radiated emissions which fall in the restricted bands, as defined in Section 8.10 of RSS-Gen, must also comply with the radiated emission limits specified in Section 8.9.

Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	--
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 - 138	--	

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209		
Frequency [MHz]	Field Strength [uV/m]	Measured Distance [Meters]
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

All out of band emissions appearing in a restricted band as specified in Section 8.10 of the RSS-Gen must not exceed the limits shown in Table per Section 8.9.

RSS-Gen Section 8.9			
Frequency (MHz)	Field Strength (μ V/m)	Magnetic Field Strength (H-Field) (μ A/m)	Measured Distance (m)
0.009 - 0.490	--	6.37/F (F in kHz)	300
0.490 - 1.705	--	6.37/F (F in kHz)	30
1.705 - 30	--	0.08	30
30 - 88	100	--	3
88 - 216	150	--	3
216 - 960	200	--	3
Above 960	500	--	3

6.7.2. Test Procedure Used

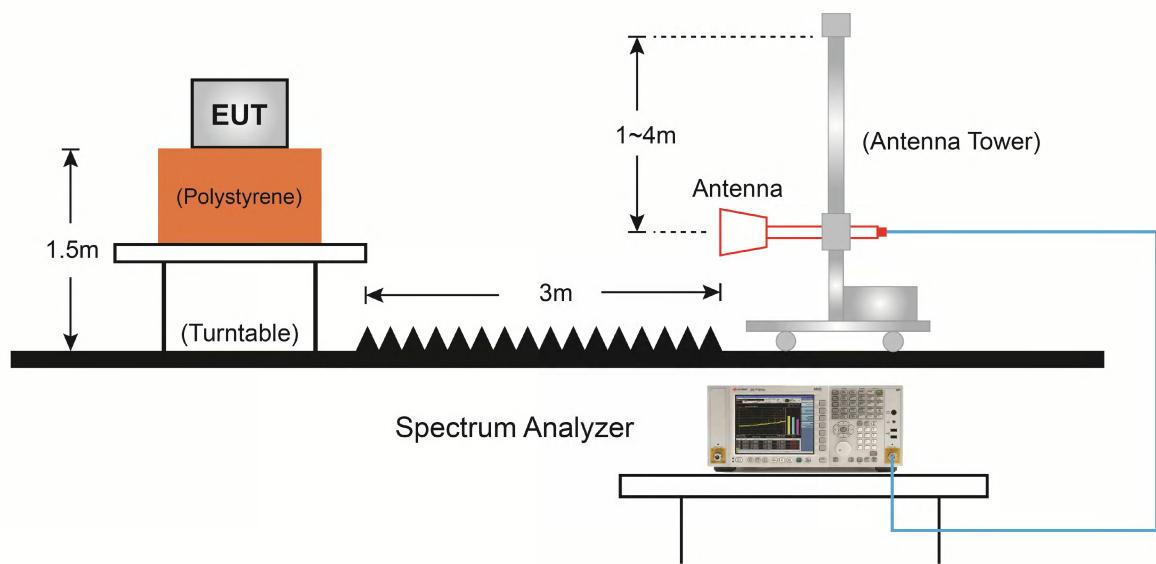
ANSI C63.10-2013 Section 6.3 (General Requirements)

ANSI C63.10-2013 Section 6.6 (Standard test method above 1GHz)

6.7.3. Test Setting

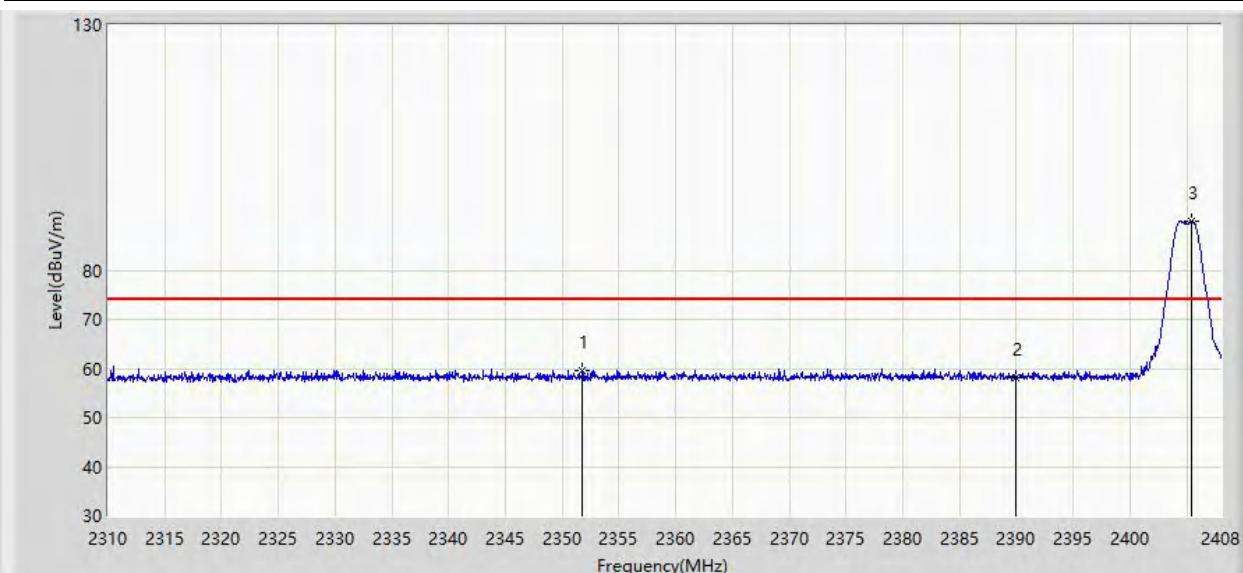
Peak Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = 1MHz
3. VBW = 3MHz
4. Detector = peak
5. Sweep time = auto couple
6. Trace mode = max hold
7. Trace was allowed to stabilize


Average Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = 1MHz
3. VBW; If the EUT is configured to transmit with duty cycle $\geq 98\%$, set VBW = 10 Hz.

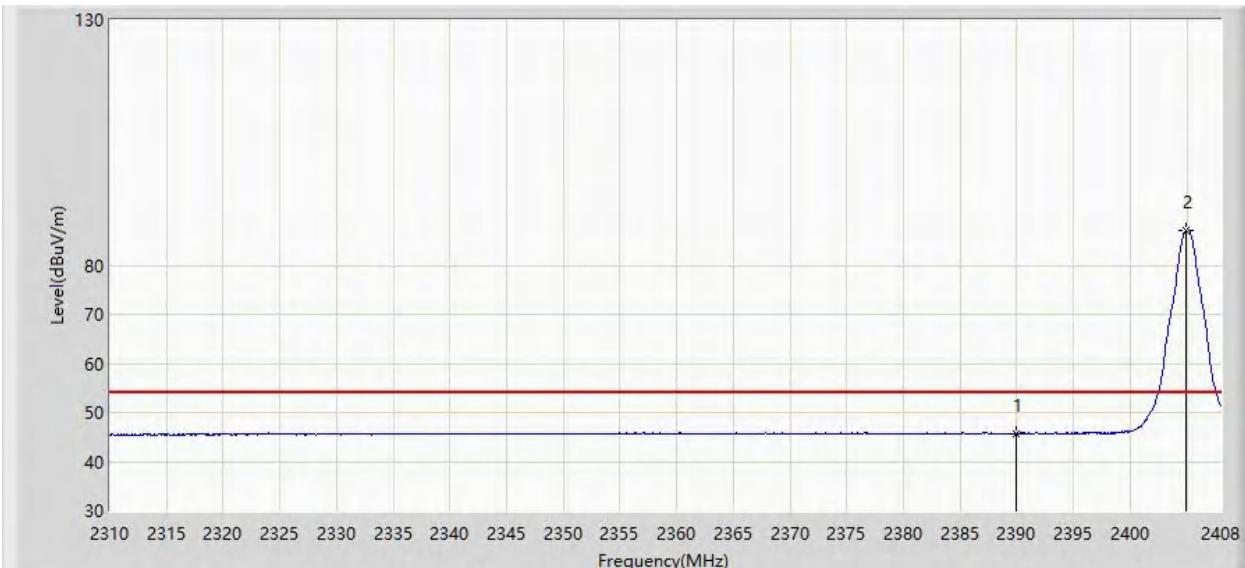
If the EUT duty cycle is $< 98\%$, set $VBW \geq 1/T$. T is the minimum transmission duration.


4. Detector = Peak
5. Sweep time = auto
6. Trace mode = max hold
7. Trace was allowed to stabilize

6.7.4. Test Setup

6.7.5. Test Result

Site: AC1	Time: 2020/02/29 - 15:36
Limit: FCC_Part15.209_RE(3m)	Engineer: David Lv
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Wireless Network Control	Power: DC 12V
Note: Transmit by Zigbee at 2405MHz	

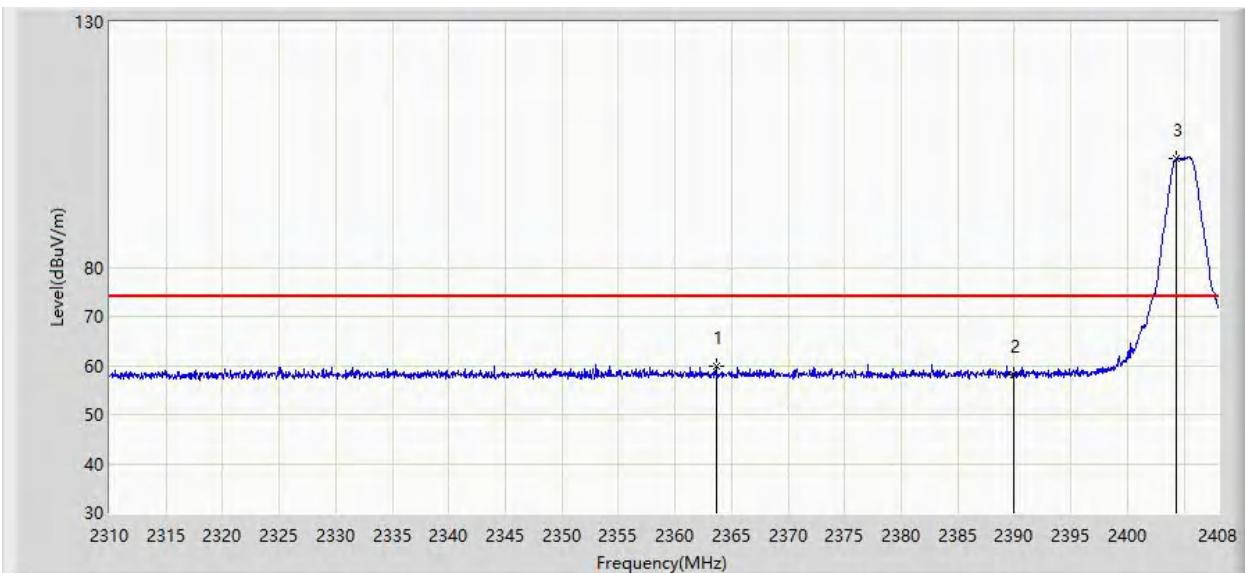


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Factor	Type
1			2351.797	59.704	26.591	-14.296	74.000	33.113	PK
2			2390.000	58.018	24.938	-15.982	74.000	33.080	PK
3		*	2405.452	90.095	57.004	N/A	N/A	33.091	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Site: AC1	Time: 2020/02/29 - 15:40
Limit: FCC_Part15.209_RE(3m)	Engineer: David Lv
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Wireless Network Control	Power: DC 12V
Note: Transmit by Zigbee at 2405MHz	

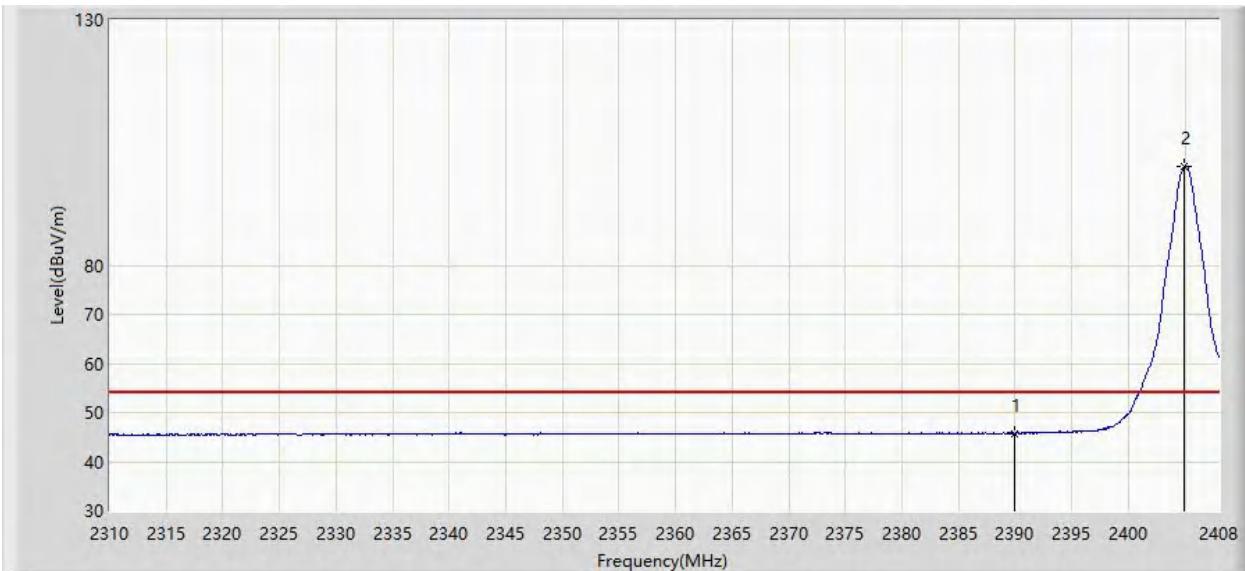


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Factor	Type
1			2390.000	45.713	12.633	-8.287	54.000	33.080	AV
2		*	2404.913	87.109	54.019	N/A	N/A	33.090	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Site: AC1	Time: 2020/02/29 - 15:40
Limit: FCC_Part15.209_RE(3m)	Engineer: David Lv
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Wireless Network Control	Power: DC 12V
Note: Transmit by Zigbee at 2405MHz	

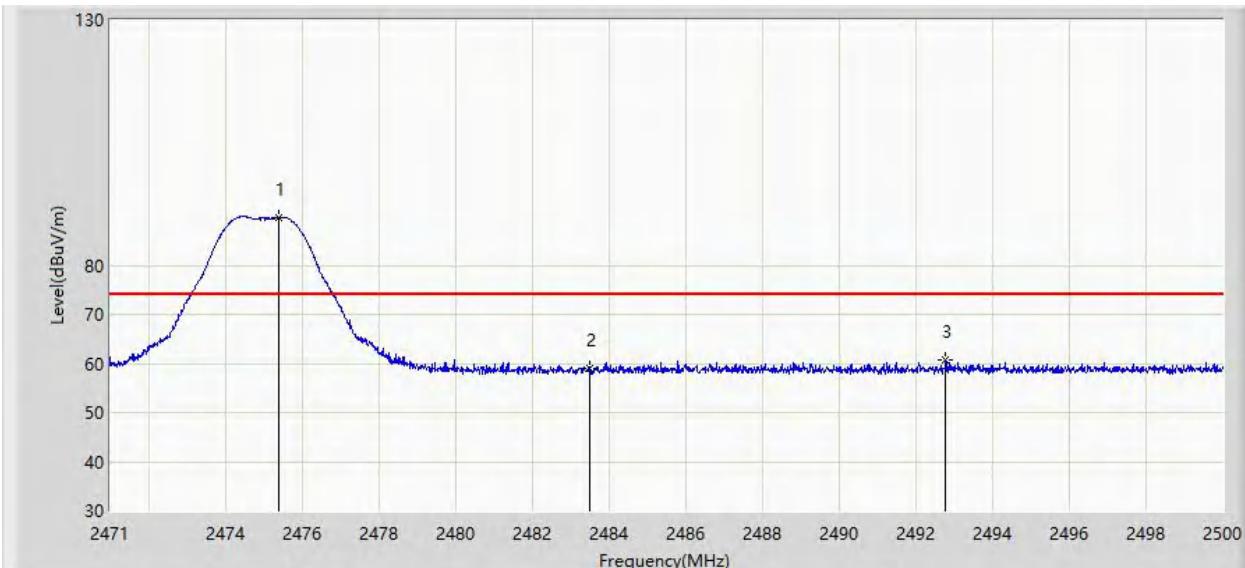


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Factor	Type
1			2363.606	59.923	26.791	-14.077	74.000	33.133	PK
2			2390.000	58.217	25.137	-15.783	74.000	33.080	PK
3		*	2404.374	102.255	69.166	N/A	N/A	33.090	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Site: AC1	Time: 2020/02/29 - 15:42
Limit: FCC_Part15.209_RE(3m)	Engineer: David Lv
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Wireless Network Control	Power: DC 12V
Note: Transmit by Zigbee at 2405MHz	

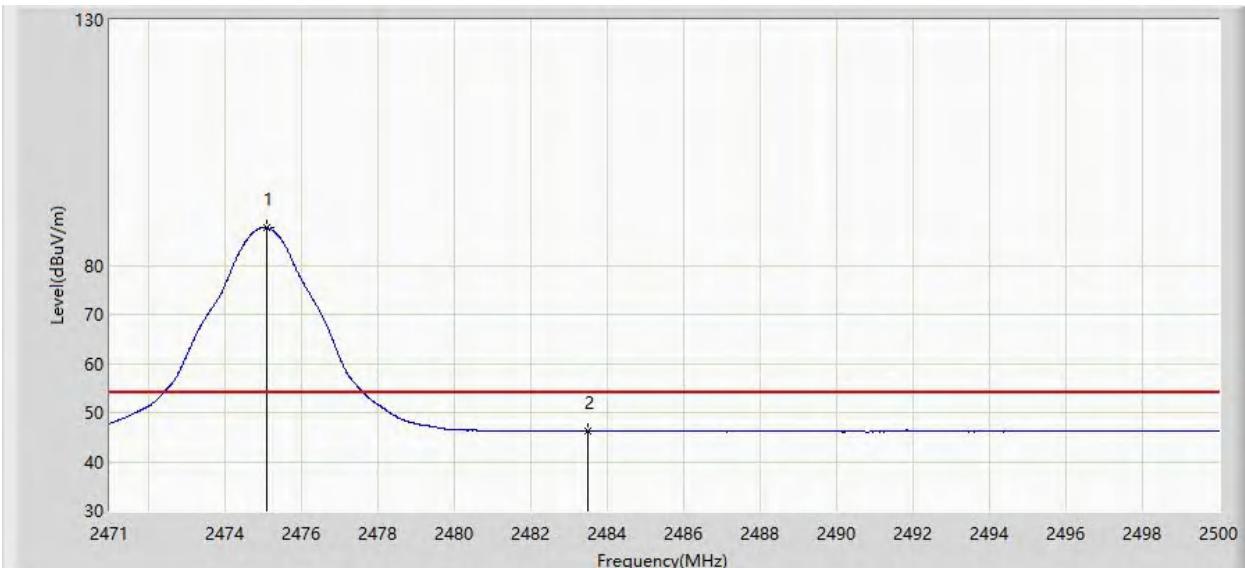


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Factor	Type
1			2390.000	45.771	12.691	-8.229	54.000	33.080	AV
2		*	2404.913	100.081	66.991	N/A	N/A	33.090	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Site: AC1	Time: 2020/02/29 - 15:43
Limit: FCC_Part15.209_RE(3m)	Engineer: David Lv
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Wireless Network Control	Power: DC 12V
Note: Transmit by Zigbee at 2475MHz	

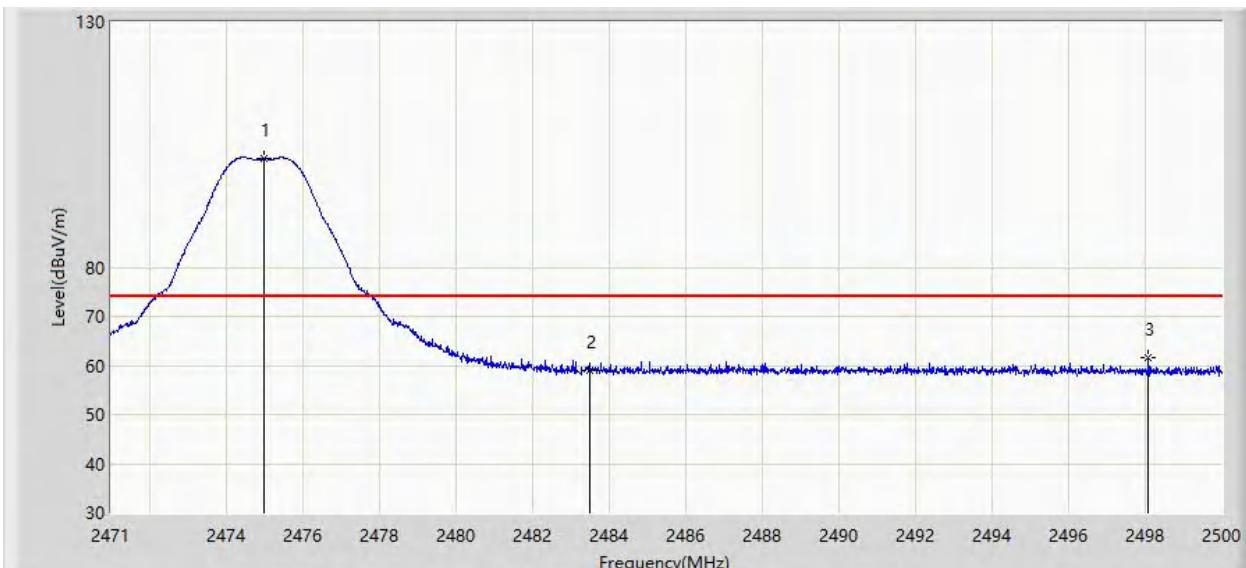


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Factor	Type
1		*	2475.408	89.806	56.760	N/A	N/A	33.046	PK
2			2483.500	58.910	25.868	-15.090	74.000	33.042	PK
3			2492.764	60.678	27.640	-13.322	74.000	33.038	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Site: AC1	Time: 2020/02/29 - 15:51
Limit: FCC_Part15.209_RE(3m)	Engineer: David Lv
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Wireless Network Control	Power: DC 12V
Note: Transmit by Zigbee at 2475MHz	

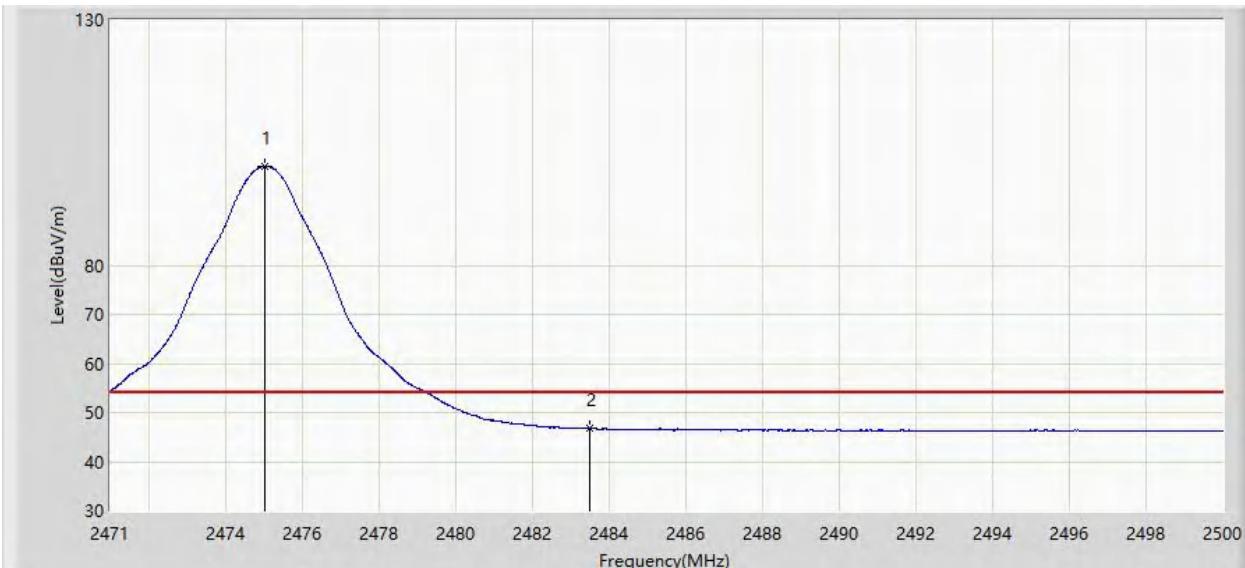


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Factor	Type
1		*	2475.089	87.636	54.590	N/A	N/A	33.046	AV
2			2483.500	46.182	13.140	-7.818	54.000	33.042	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Site: AC1	Time: 2020/02/29 - 15:51
Limit: FCC_Part15.209_RE(3m)	Engineer: David Lv
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Wireless Network Control	Power: DC 12V
Note: Transmit by Zigbee at 2475MHz	



No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Factor	Type
1		*	2475.002	102.240	69.194	N/A	N/A	33.047	PK
2			2483.500	58.995	25.953	-15.005	74.000	33.042	PK
3			2498.086	61.677	28.644	-12.323	74.000	33.034	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

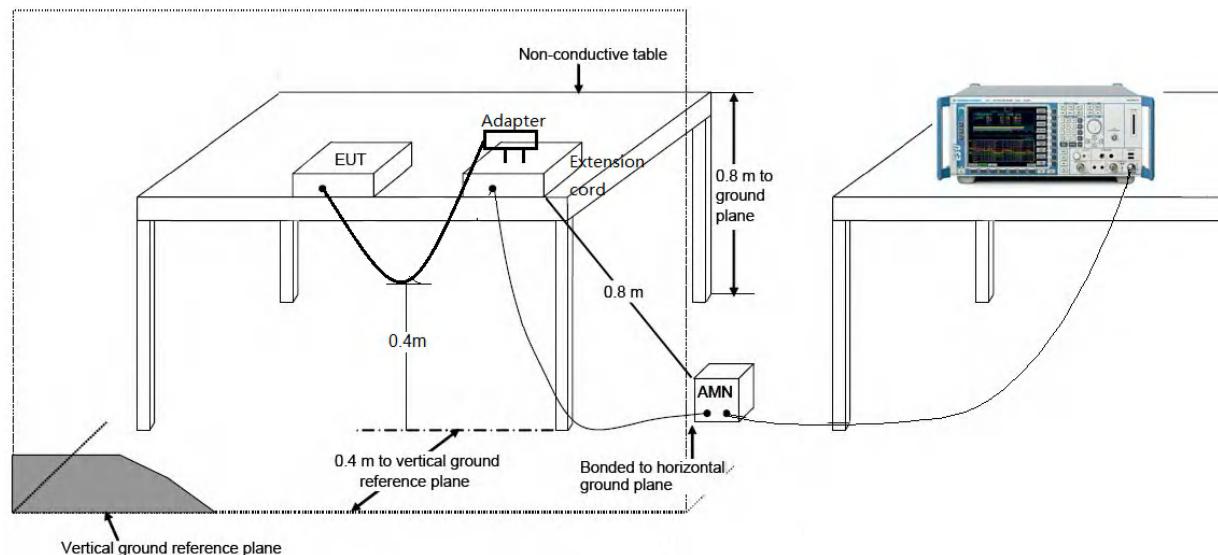
Site: AC1	Time: 2020/02/29 - 15:53
Limit: FCC_Part15.209_RE(3m)	Engineer: David Lv
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Wireless Network Control	Power: DC 12V
Note: Transmit by Zigbee at 2475MHz	

No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Factor	Type
1		*	2475.045	100.188	67.142	N/A	N/A	33.047	AV
2			2483.500	46.691	13.649	-7.309	54.000	33.042	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

6.8. AC Conducted Emissions Measurement


6.8.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.207 / RSS-Gen Issue 5 Section 8.8 Limits		
Frequency (MHz)	QP (dB μ V)	Average (dB μ V)
0.15 - 0.50	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30	60	50

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

6.8.2. Test Setup

6.8.3. Test Result

The EUT is powered by DC source, so this requirement doesn't apply.

7. CONCLUSION

The data collected relate only the item(s) tested and show that the device is compliance with Part 15C of the FCC Rules and RSS-247 Section 5 of the ISED Rules.

The End

Appendix A - Test Setup Photograph

Refer to "1911RSU027-UT" file.

Appendix B - EUT Photograph

Refer to "1911RSU027-UE" file.