FCC TEST REPORT

For

Shenzhen Neewer Technology Co., Ltd **TRIGGER**

Test Model: CT-16

Prepared for : Shenzhen Neewer Technology Co., Ltd

ROOM 1901-1903, Block A, LU SHAN BUILDING NO.3023

Address : CHUNFENG RD LUO HU DISTRICT, SHENZHEN,

GUANGDONG, 518001, CHINA

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Street,

Address Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail webmaster@LCS-cert.com

Date of receipt of test sample : March 11, 2021

Number of tested samples

Sample number : 210301189A Serial number : Prototype

: March 11, 2021 ~ March 22, 2021 Date of Test

Date of Report : March 22, 2021

FCC TEST REPORT FCC CFR 47 PART 15C(15.231)

Report Reference No.: LCS210301189AEA

Date of Issue: March 22, 2021

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Street,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: Shenzhen Neewer Technology Co., Ltd

ROOM 1901-1903, Block A, LU SHAN BUILDING NO.3023

Address:: CHUNFENG RD LUO HU DISTRICT, SHENZHEN, GUANGDONG,

518001, CHINA

Test Specification

Standard.....: FCC CFR 47 PART 15 Subpart C

Test Report Form No.: LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.: TRIGGER

Trade Mark.....: NEEWER

Test Model: CT-16

TX: DC 12V 23A Lithium-ion Battery

Ratings :

RX: DC 3V By 2*AAA Battery

Result: Positive

Compiled by:

Cherry Chen

Supervised by:

Approved by:

Cherry Chen/ Administrators

Jin Wang/ Technique principal

Gavin Liang/ Manager

FCC TEST REPORT

March 22, 2021 **Test Report No.:** LCS210301189AEA Date of issue

Test Mode.....: CT-16 EUT.....:: TRIGGER Applicant.....: : Shenzhen Neewer Technology Co., Ltd ROOM 1901-1903, Block A, LU SHAN BUILDING NO.3023 Address..... : CHUNFENG RD LUO HU DISTRICT, SHENZHEN, GUANGDONG, 518001, CHINA : / Telephone..... Fax..... Manufacturer..... : Shenzhen Neewer Technology Co., Ltd ROOM 1901-1903, Block A, LU SHAN BUILDING NO.3023 Address..... : CHUNFENG RD LUO HU DISTRICT, SHENZHEN, GUANGDONG, 518001, CHINA Telephone..... : / Fax..... : / Factory..... : Shenzhen Neewer Technology Co., Ltd ROOM 1901-1903, Block A, LU SHAN BUILDING NO.3023 Address.....: : CHUNFENG RD LUO HU DISTRICT, SHENZHEN, GUANGDONG, 518001, CHINA Telephone.....:: : / Fax..... : /

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	March 22, 2021	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT)	
1.2. OBJECTIVE	6
1.3. ENVIRONMENTAL CONDITIONS	6
1.4. HOST SYSTEM CONFIGURATION LIST AND DETAILS	
1.5. EXTERNAL I/O PORT	6
1.7. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2. TEST METHODOLOGY	
2.1. EUT CONFIGURATION	
2.2. EUT EXERCISE	
2.3. GENERAL TEST PROCEDURES	
2.5. TEST MODE	
3. SYSTEM TEST CONFIGURATION	
3.1. JUSTIFICATION	9
3.3. SPECIAL ACCESSORIES	
3.4. BLOCK DIAGRAM/SCHEMATICS	9
3.5. EQUIPMENT MODIFICATIONS	9
3.6. TEST SETUP	
4. SUMMARY OF TEST RESULTS	10
5. TEST ITEMS AND RESULTS	11
5.1. TRANSMISSION CEASE TIME	11
5.2. TRANSMITTER FIELD STRENGTH OF EMISSIONS	12
5.3. AC POWER LINE CONDUCTED EMISSIONS (NOT APPLICABLE)	
5.4. 20DB BANDWIDTH EMISSIONS	
5.5. DUTY CYCLE	
5.6. Antenna Requirement	
6. LIST OF MEASURING EQUIPMENTS	
7. TEST SETUP PHOTOGRAPHS OF EUT	26
8. EXTERIOR PHOTOGRAPHS OF THE EUT	26
Q INTEDIOD DUOTOGDADUS OF THE FIIT	26

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : TRIGGER
Test Model : CT-16

Hardware version : /
Software version : /

TX: DC 12V 23A Lithium-ion Battery

RX: DC 3V By 2*AAA Battery

Remote

Power Supply

Trans mit Frequency : 433.92MHz

Number of Channels : 1 Modulation Type : ASK

Antenna Description : PCB Antenna, 0dBi

1.2. Objective

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

1.3. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C

- Humidity: 30-60 %

- Atmospheric pressure: 86-106kPa

1.4. Host System Configuration List and Details

ľ	Manufacturer	Description	Model	Serial Number	Certificate
	/	/	/	/	/

1.5. External I/O Port

I/O Port Description	Quantity	Cable

1.6. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10:2013 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.7. Statement of The Measurement Uncertainty

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
Radiation Uncertainty		30MHz~200MHz	2.96dB	(1)
Radiation Oncertainty	•	200MHz~1000MHz	3.10dB	(1)
	1GHz~26.5GHz	3.80dB	(1)	
Conduction Uncertainty	:	150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the normal operating mode. The TX frequency that was fixed which was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.231 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions (Not Applicable)

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013.

2.4. Instrument Calibration

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

2.5. Test Mode

The EUT has been tested under engineering mode. The field strength of radiation emission was measured in the following position: EUT stand-up position (Y axis), lie-down position (X, Z axis).

The worst case of X axis was reported.

Press the button on the EUT can transmit 433.92MHz control signal. Only recorded the worst test case in this report.

***Note: Using a temporary antenna connector for the EUT when conducted measurements are performed.

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmit condition.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C: §15.231			
FCC Rules	FCC Rules Description of Test		
§15.231 (b)	Field Strength of Fundamental and Harmonics	Compliant	
§15.231 (c)	§15.231 (c) 20dB Bandwidth		
§15.231 (a)(1)	5.231 (a)(1) Transmission Cease Time		
§15.231 Duty cycle Factor		Compliant	
§15.207	§15.207 AC line conducted		

N/A* - Not Applicable

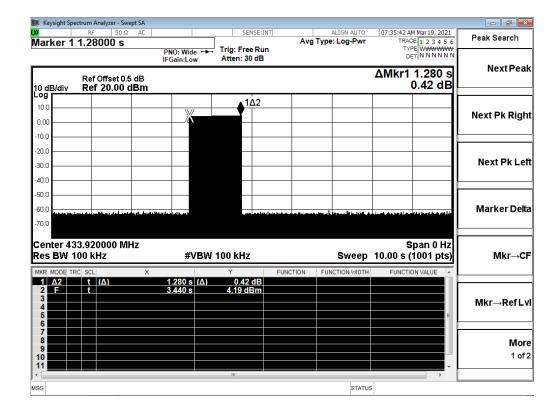
5. TEST ITEMS AND RESULTS

5.1. Transmission Cease Time

5.1.1. Limit

According to §15.231 (a)

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.


5.1.2. Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. The antenna was all opened.

5.1.3. Test Results

Temperature	23.5℃	Humidity	52.1%
Test Engineer	Kay Hu		

Frequency	Transmission cease Time	Limit: not more than 5 seconds of being released	Conclusion
(MHz)	(s)	(s)	Conclusion
433.92	1.28	5	PASS

5.2. Transmitter Field Strength of Emissions

5.2.1. Limit

According to §15.231 (b): In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹Linear interpolations.

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band
- (2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- (3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.
- 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.5.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

5.2.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

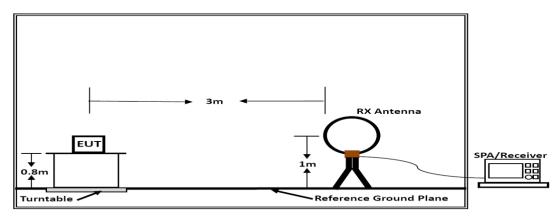
Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

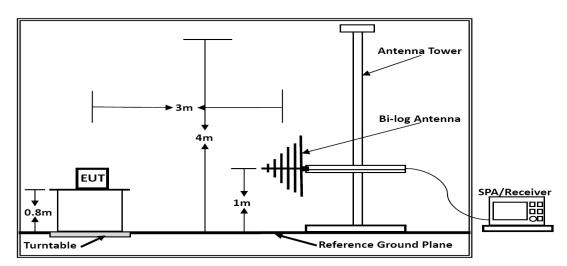
3) Sequence of testing 1 GHz to 18 GHz

Setup:

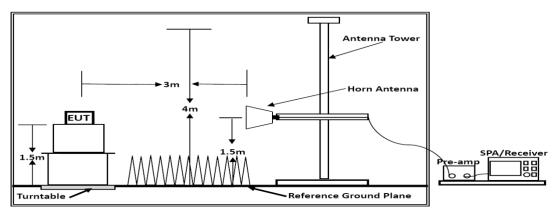
- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.


Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height is 1.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.


Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.


5.2.4. Test Setup Layout

Below 30MHz

Below 1GHz

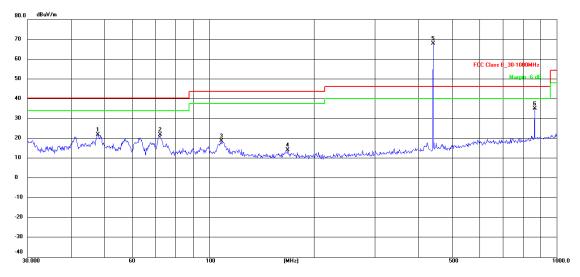
Above 1GHz

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.2.6. Results of Radiated Emissions (9 KHz~30 MHz)

The low frequency, which started from 9 KHz to 30 MHz, was pre-scan and the result was 20dB lower than the limit line per 15.31(o) was not reported.

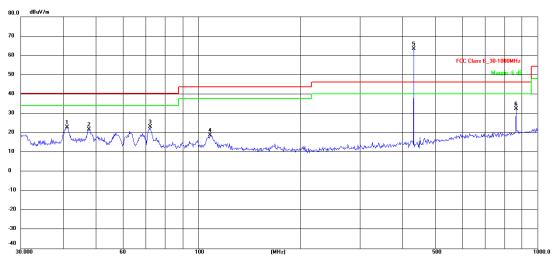

Note: Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

5.2.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24.6°C	Humidity	54.1%
Test Engineer	Kay Hu	Pol	Horizontal
Test Mode	Tx		

Horizontal



No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1 *	47.8260	51.37	-29.39	21.98	40.00	-18.02	QP
2	72.3375	56.10	-34.15	21.95	40.00	-18.05	QP
3	108.6470	50.58	-31.89	18.69	43.50	-24.81	QP
4	168.4137	48.62	-34.42	14.20	43.50	-29.30	QP
5	433.9417	95.35	-26.29	68.43	46.00	22.43	PK
6	869.3260	57.54	-23.39	34.15	46.00	-11.85	PK

	Fundamental and Harmonics Average Result					
Frequency	Peak Level	AV Factor(dB _μ V/m)	Average Level	Limit(dBµV/m)	Margin(dB)	Conclusion
(MHz)	(dBμV/m)	(see Section 5.4)	(dBµV/m)	(average)	iviargiri(ub)	Conclusion
433.920	68.43	-11.59	56.84	80.82	-23.96	PASS
867.840	34.15	-11.59	22.56	60.82	-38.24	PASS

Temperature	24.2℃	Humidity	57.7%
Test Engineer	Kay Hu	Pol	Vertical
Test Mode	Tx		

Vertical

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	41.1320	52.85	-30.08	22.77	40.00	-17.23	QP
2	47.6584	51.03	-29.39	21.64	40.00	-18.36	QP
3 *	72.3375	57.10	-34.15	22.95	40.00	-17.05	QP
4	108.6470	50.58	-31.89	18.69	43.50	-24.81	QP
5	168.4137	90.48	-26.29	64.19	46.00	18.19	PK
6	451.1350	55.82	-23.39	32.43	46.00	-13.57	PK

	Fundamental and Harmonics Average Result					
Frequency (MHz)	Peak Level (dBμV/m)	AV Factor(dBμV/m) (see Section 5.4)	Average Level (dBµV/m)	Limit(dBµV/m) (average)	Margin(dB)	Conclusion
433.920	64.19	-11.59	52.60	80.82	-28.20	PASS
867.840	32.43	-11.59	20.84	60.82	-39.96	PASS

Remark:

1. Level = Reading + Factor

Margin = Level - Limit

2. Average values = Peak + DC Factor

Margin = Average values - Limit

5.2.8. Results of Radiated Emissions (1-5GHz)

Temperature	24.6°C	Humidity	54.1%
Test Engineer	Kay Hu	Test Mode	Tx

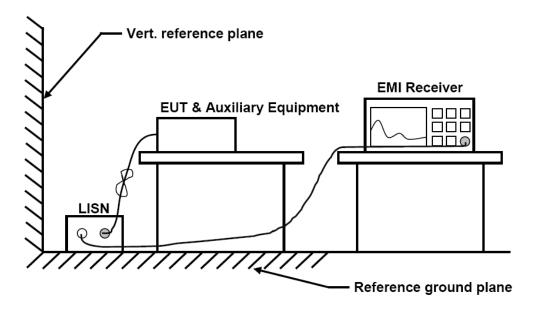
Peak Value					
Frequency (MHz)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
1300.43	45.09	74.00	-28.91	Horizontal	
1735.26	38.43	74.00	-35.57	Horizontal	
2170.30	39.16	74.00	-34.84	Horizontal	
1299.29	44.24	74.00	-29.76	Vertical	
1737.65	31.28	74.00	-42.72	Vertical	
2169.25	36.58	74.00	-37.42	Vertical	

Average Value:						
Frequency (MHz)	Level (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
1300.28	42.44	-11.59	30.85	54.00	-23.15	Horizontal
1733.65	39.46	-11.59	27.87	54.00	-26.13	Horizontal
2167.18	37.31	-11.59	25.72	54.00	-28.28	Horizontal
1300.33	46.95	-11.59	35.36	54.00	-18.64	Vertical
1734.82	31.67	-11.59	20.08	54.00	-33.92	Vertical
2168.86	38.72	-11.59	27.13	54.00	-26.87	Vertical

Remark:

- 1. Measuring frequencies from 9 KHz~10t^h harmonic (ex. 5GHz), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9 KHz~10th harmonic (ex. 5GHz) were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Average values = Peak values + DC Factor;
- 5. Margin = Values Limit;

5.3. AC Power Line Conducted Emissions (Not Applicable)


5.3.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

^{*} Decreasing linearly with the logarithm of the frequency

5.3.2 Block Diagram of Test Setup

5.3.3 Test Results

Not Applicable!!

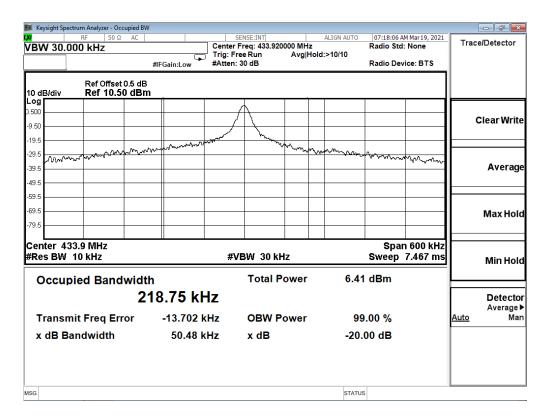
The device was powered by 2*AA Battery!

FCC ID: 2ANIV-CT-16

5.4. 20dB Bandwidth Emissions

5.4.1. Limit

The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.


5.4.2. Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna which was connected to the spectrum analyser with the START and STOP frequencies set to the EUT's operation band

5.4.3. Test Data

Temperature	23.5℃	Humidity	52.1%
Test Engineer	Kay Hu	Test Mode	TX

Transmit Frequency (MHz)	Limit (kHz)	20dB Bandwidth (kHz)	Result	
433.92	1084.80	50.48	PASS	
Maximum allowed bandwidth:				
RBW: VBW:				

5.5. Duty cycle

5.5.1. Limit

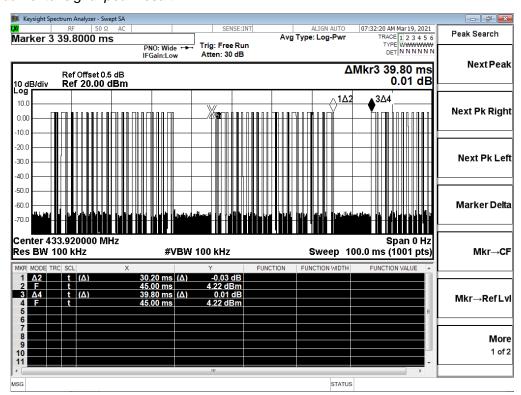
No dedicated limit specified in the Rules.

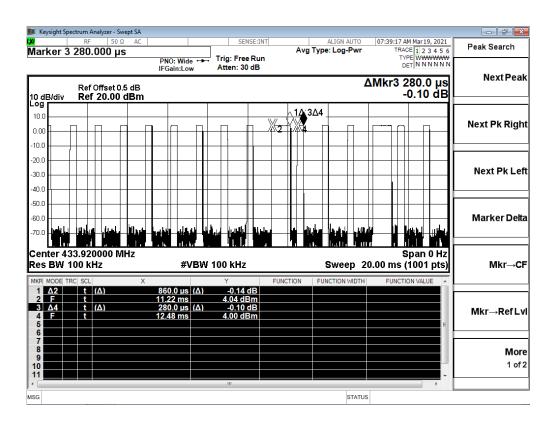
5.5.2. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyser.
- 3. Set centre frequency of spectrum analyser = operating frequency.
- 4. Set the spectrum analysers as RBW=1 MHz, VBW=1 MHz, Span=0Hz, Adjust Sweep=100ms to obtain the "worst-case" pulse on time
- 5. Repeat above procedures until all frequency measured was complete.

5.5.3. Test Data

Temperature	23.5℃	Humidity	52.1%
Test Engineer	Kay Hu		


 $T_{on} = 0.28*19 \text{ (ms)} + 0.86*6 \text{ (ms)} = 10.48 \text{ (ms)}$


 $T_p = 39.80 (ms)$

The duty cycle = 10.48/39.80 = 26.33%

Average Correction Factory = $20*\log (T_{on}/T_p) = 20*\log (0.2633) = -11.59dB$

Note: The signal bandwidth was measured and less than 1 MHz RBW so PDCF factor is not required to correct the fundamental signal peak result.

5.6. Antenna Requirement

5.6.1. Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

5.6.2. Antenna Connected Construction

5.6.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.6.2.2. Antenna Connector Construction

The gains of antenna used for transmitting is 0 dBi, and the antenna is an PCB Antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.6.2.3. Results: Compliance.

6. LIST OF MEASURING EQUIPMENTS

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Meter	R&S	NRVS	100444	2020-06-22	2021-06-21
2	Power Sensor	R&S	NRV-Z81	100458	2020-06-22	2021-06-21
3	Power Sensor	R&S	NRV-Z32	10057	2020-06-22	2021-06-21
4	Test Software	Tonscend	JS1120-2	/	N/A	N/A
5	RF Control Unit	Tonscend	JS0806-2	N/A	2020-11-17	2021-11-16
6	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2020-11-17	2021-11-16
7	DC Power Supply	Agilent	E3642A	N/A	2020-11-13	2021-11-12
8	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A
9	3m Full Anechoic Chamber	MRDIANZI	FAC-3M	MR009	2020-09-26	2021-09-25
10	Positioning Controller	MF	MF7082	MF78020803	2020-06-22	2021-06-21
11	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2020-06-22	2021-06-21
12	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-07-26	2021-07-25
13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-07-26	2021-07-25
14	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2018-07-02	2021-07-01
15	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2020-09-20	2023-09-19
16	Broadband Preamplifier	SCHWARZBECK	BBV9745	9719-025	2020-06-22	2021-06-21
17	EMI Test Receiver	R&S	ESR 7	101181	2020-06-22	2021-06-21
18	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2020-11-17	2021-11-16
19	Broadband Preamplifier	/	BP-01M18G	P190501	2020-06-22	2021-06-21
20	RF Cable-R03m	Jye Bao	RG142	CB021	2020-06-22	2021-06-21
21	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2020-06-22	2021-06-21
22	6dB Attenuator	/	100W/6dB	1172040	2020-06-22	2021-06-21
23	3dB Attenuator	/	2N-3dB	/	2020-11-17	2021-11-16
24	EMI Test Receiver	R&S	ESPI	101840	2020-06-22	2021-06-21
25	Artificial Mains	R&S	ENV216	101288	2020-06-22	2021-06-21
26	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2020-06-22	2021-06-21

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

Please refer to separated files for Internal Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

-----THE END OF REPORT-----