

FCC ID: 2ANDZ-S02B01

RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposure				
0.3-3.0	614	1.63	*100	6
3.0-30	1842/f	4.89/f	*900/f ²	6
30-300	61.4	0.163	1.0	6
300-1,500			f/300	6
1,500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

MPE Calculation Method

$$E \text{ (V/m)} = \frac{\sqrt{30 * P * G}}{d}$$

$$\text{Power Density: } Pd \text{ (W/m}^2\text{)} = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 * P * G}{377 * D^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

MAX OUTPUT POWER

BLE:

Test Channel	Frequency (MHz)	Power Setting	Peak Output Power (dBm)	LIMIT (dBm)	Verdict
1Mbps					
00	2402	Default	-5.03	30	PASS
19	2440	Default	-5.28	30	PASS
39	2480	Default	-6.46	30	PASS

Measurement Result

Operation Frequency: BLE 2402MHz~2480MHz

Power density limited: 1mW/ cm²

Antenna Type: PCB Antenna

Antenna gain: 1.0dBi,

R=20cm

Bluetooth DTS:

Channel Freq. (MHz)	modulation	conducted power (dBm)	Tune-up power (dBm)	Max		Antenna		Evaluation result (mW/cm ²)	Power density (mW/cm ²)	
				tune-up power		Gain				
		(dBm)		(dBm)	(mW)	(dBi)	Numeric			
2402	GFSK	-5.03	-6±1	-5	0.316	1.00	1.26	0.0001	1	
2440		-5.28	-6±1	-5	0.316	1.00	1.26	0.0001	1	
2480		-6.46	-6±1	-5	0.316	1.00	1.26	0.0001	1	

Conclusion:

For the max result : 0.0001≤ 1.0 for 1g SAR, No SAR is required.

Jason chen

Signature:

Date: 2017-9-1

NAME AND TITLE (Please print or type): Jason Chen/Manager

COMPANY (Please print or type): Shenzhen NTEK Testing Technology Co., Ltd./ 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen P.R. China.