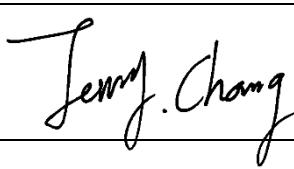


FCC Part 15.247


TEST REPORT

For

Cascade Health and Fitness LLC

PO BOX 1318 Woodinville, WA 98072 United States

FCC ID: 2ANCK37122720

Report Type: Original Report	Product Type: CASCADE POWER Console
Report Producer: <u>Kaylee Chiang</u>	
Report Number: <u>RTWA170811001-00A</u>	
Report Date: <u>2017-09-04</u>	
Reviewed By: <u>Jerry Chang</u>	
Bay Area Compliance Laboratories Corp.(Taiwan) 70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C. Tel: +886 (2) 2647 6898 Fax: +886 (2) 2647 6895 www.bacl.com.tw	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan)

REVISION HISTORY

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
1.0	RTWA170811001	RTWA170811001-00A	2017.09.04	Original Report	Kaylee

TABLE OF CONTENTS

1	GENERAL INFORMATION	4
1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2	OBJECTIVE	4
1.3	RELATED SUBMITTAL(S)/GRANT(S).....	4
1.4	TEST METHODOLOGY	5
1.5	TEST FACILITY	5
2	SYSTEM TEST CONFIGURATION.....	6
2.1	DESCRIPTION OF TEST CONFIGURATION.....	6
2.2	EQUIPMENT MODIFICATIONS	6
2.3	EUT EXERCISE SOFTWARE.....	6
2.4	SUPPORT EQUIPMENT LIST AND DETAILS.....	6
2.5	EXTERNAL CABLE LIST AND DETAILS.....	6
2.6	BLOCK DIAGRAM OF TEST SETUP	7
2.7	DUTY CYCLE.....	8
3	SUMMARY OF TEST RESULTS	9
4	FCC §15.247(I), §1.1310 ,§ 2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE).....	10
4.1	APPLICABLE STANDARD.....	10
4.2	RF EXPOSURE EVALUATION RESULT	10
5	FCC §15.203 – ANTENNA REQUIREMENTS.....	11
5.1	APPLICABLE STANDARD.....	11
5.2	ANTENNA LIST AND DETAILS	11
6	FCC §15.209, §15.205, §15.247(D) – SPURIOUS EMISSIONS.....	12
6.1	APPLICABLE STANDARD.....	12
6.2	MEASUREMENT UNCERTAINTY.....	13
6.3	EUT SETUP	13
6.4	EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP.....	14
6.5	TEST PROCEDURE	14
6.6	CORRECTED FACTOR & MARGIN CALCULATION	15
6.7	TEST RESULTS SUMMARY	15
6.8	TEST EQUIPMENT LIST AND DETAILS	16
6.9	TEST ENVIRONMENTAL CONDITIONS	16
6.10	TEST RESULTS	17

1 General Information

1.1 Product Description for Equipment Under Test (EUT)

Applicant: Cascade Health and Fitness LLC
PO BOX 1318 Woodinville, WA 98072 United States

Manufacturer: ALATECH Technology Limited
39F., No. 758, Jungming S. RD. Taichung, Taiwan

Product: CASCADE POWER Console

Model: 24-21-005

Trade Name: CASCADE

Frequency Range: 2402-2480 MHz

Transmit Power: BLE Mode: -0.31 dBm

Modulation Technique: BLE Mode: GFSK

Transmit Data Rate: BLE Mode: 1 Mbps

Number of Channels: BLE Mode: 40 Channels

Antenna Specification: Chip Antenna/Gain: 5.05 dBi

Voltage Range: 3Vdc from Battery

Date of Test: Aug. 11, 2017 ~ Sep. 04, 2017

**All measurement and test data in this report was gathered from production sample serial number: 170811001
(Assigned by BACL, Taiwan) The EUT supplied by the applicant was received on 2017-08-11.*

1.2 Objective

This report is prepared on behalf of *Cascade Health and Fitness LLC* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commission's rules.

The objective is to determine compliance with FCC Part 15.247 rules for Output Power, Antenna Requirements, 6 dB Bandwidth, Power Spectral Density, 100 kHz Bandwidth of Band Edges Measurement, Conducted and Radiated Spurious Emissions.

1.3 Related Submittal(s)/Grant(s)

N/A

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.5 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Taiwan) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

68-3, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (Taiwan) Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3180) and the FCC designation No.TW3180 under the Mutual Recognition Agreement (MRA) in FCC Test. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 974454. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

2 System Test Configuration

2.1 Description of Test Configuration

For BLE mode, there are totally 40 channels.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2402	21	2442
2	2404	--	--
3	2406	--	--
4	2408	38	2476
--	--	39	2478
20	2440	40	2480

For BLE Modes were testd with channel 1, 21 and 40

2.2 Equipment Modifications

No modification was made to the EUT

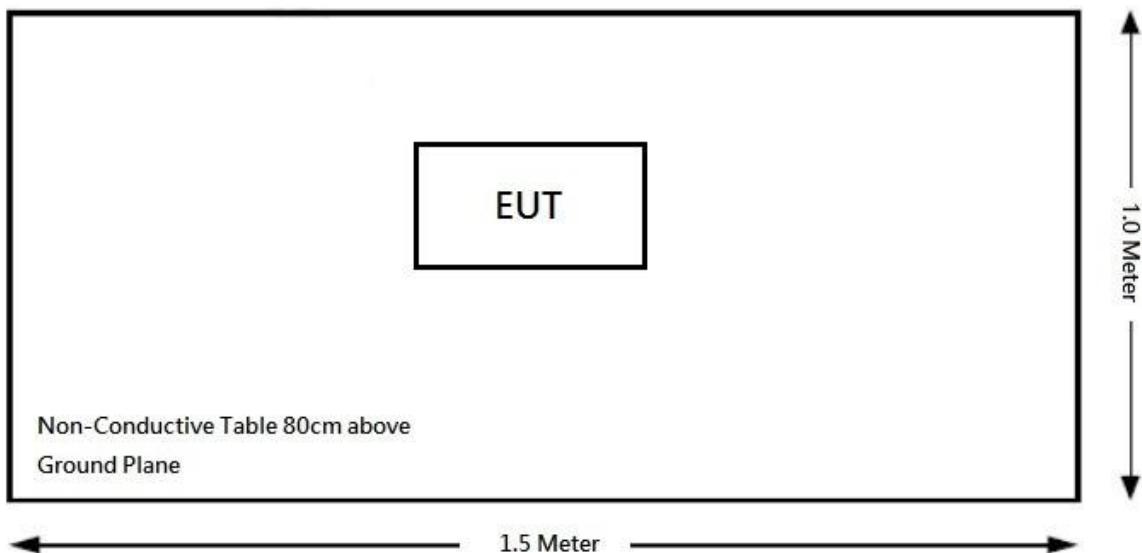
2.3 EUT Exercise Software

N/A

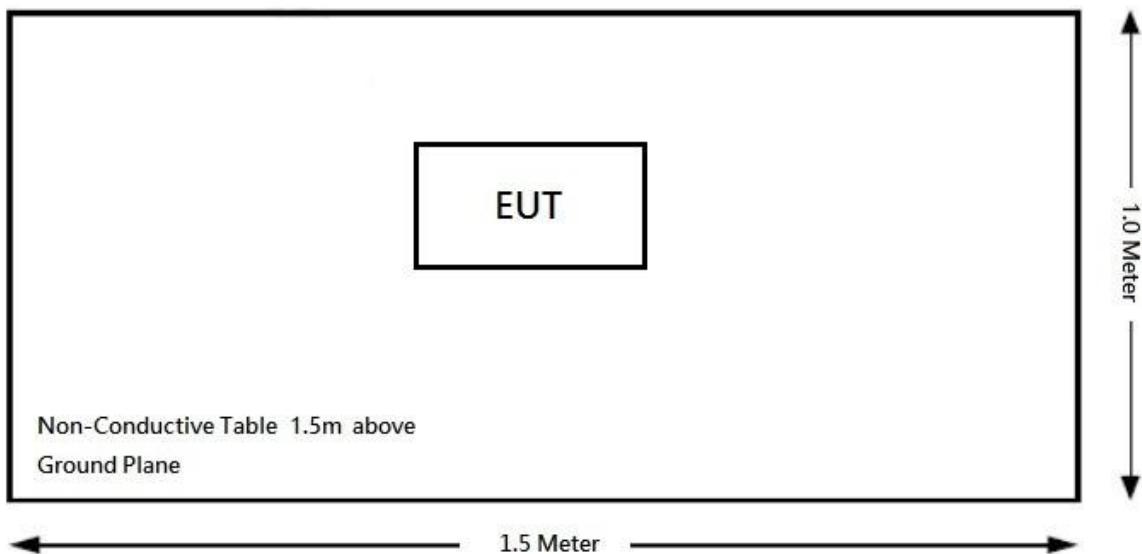
2.4 Support Equipment List and Details

Description	Manufacturer	Model Number	BSMI	FCC ID/DOC	S/N
N/A	N/A	N/A	N/A	N/A	N/A

2.5 External Cable List and Details

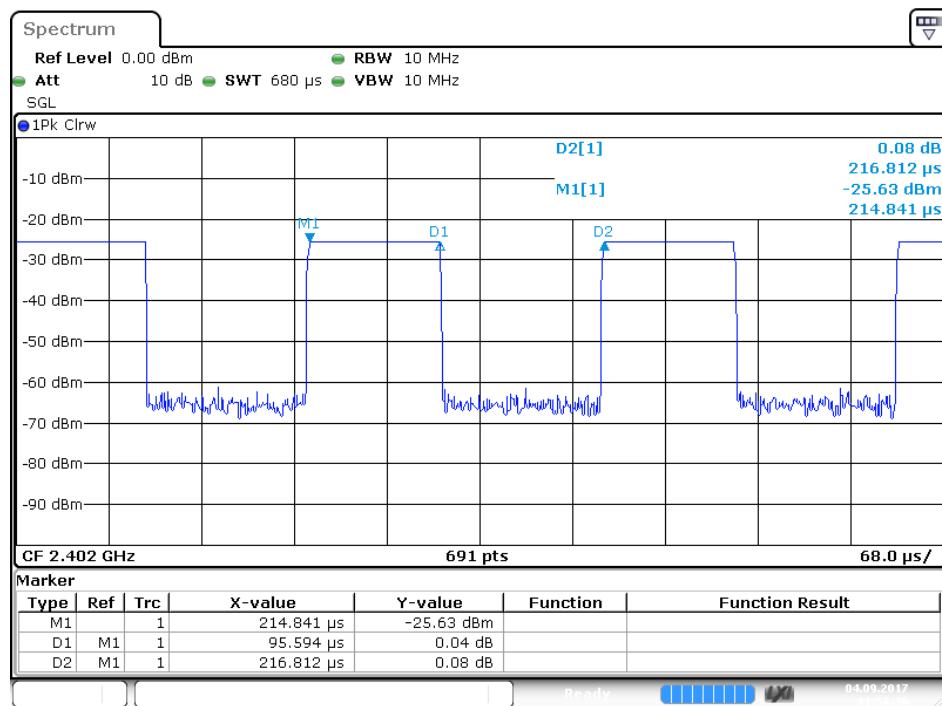

Cable Description	Length (m)	From	To
N/A	N/A	N/A	N/A

2.6 Block Diagram of Test Setup


See test photographs attached in Exhibit A for the actual connections between EUT and support equipment.

Radiation:

Below 1GHz:



Above 1GHz:

2.7 Duty Cycle

BLE Mode: Duty cycle = 0.44, Duty factor = $10 * \log(1/0.44) = 3.57\text{dB}$

Date: 4 SEP 2017 11:58:35

3 Summary of Test Results

FCC Rules	Description of Test	Result
§15.247(i), §1.1310 ,§ 2.1091	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Not applicable
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247(a)(2)	6 dB Emission Bandwidth	Compliance*
§15.247(b)(3)	Maximum Peak Output Power	Compliance*
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance*
§15.247(e)	Power Spectral Density	Compliance*

Note:

Compliance*: the EUT (Model: 24-21-005) has used a certified module with model 35-BTM-00100 (FCC ID: YQO35BTM00100), Date of Grant: 08/30/2017), the different tested data between them is “§15.209 Spurious Emissions”, “§15.247(i), §1.1310 ,§ 2.1091 Maximum Permissible Exposure (MPE)”, so all the other test data are referred to the report RTWA170707002-00 with model number 35-BTM-00100, issued on 2017-08-02.

Not applicable: This device uses battery.

4 FCC § 15.247(i), §1.1310, § 2.1091 - Maximum Permissible Exposure (MPE)

4.1 Applicable Standard

According to subpart 15.247(i) and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300–1500	/	/	f/1500	30
1500–100,000	/	/	1.0	30

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

$S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_i \frac{S_i}{S_{Limit,i}} \leq 1$$

4.2 RF Exposure Evaluation Result

MPE evaluation:

Mode	Frequency Range (MHz)	Antenna Gain		Target Power		Evaluation Distance (cm)	Power Density (mW/cm ²)	MPE Limit (mW/cm ²)
		(dBi)	(numeric)	(dBm)	(mW)			
BLE	2480	5.05	3.2	0	1.0	20	0.0006	1

BLE module with ANT + module will not be launched at the same time, so there will be no co-located.

Result: MPE evaluation meet the requirement of standard.

5 FCC §15.203 – Antenna Requirements

5.1 Applicable Standard

According to § 15.203,

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna does not exceed 6 dBi.

5.2 Antenna List and Details

Manufacturer	Type	Antenna Gain	Result
YAGEO	Chip Antenna	5.05 dBi	Compliance

6 FCC §15.209, §15.205, §15.247(d) – Spurious Emissions

6.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As Per FCC §15.205(a) and RSS-Gen except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 – 0.110	16.42 – 16.423	960 – 1240	4.5 – 5.15
0.495 – 0.505	16.69475 – 16.69525	1300 – 1427	5.35 – 5.46
2.1735 – 2.1905	25.5 – 25.67	1435 – 1626.5	7.25 – 7.75
4.125 – 4.128	37.5 – 38.25	1645.5 – 1646.5	8.025 – 8.5
4.17725 – 4.17775	73 – 74.6	1660 – 1710	9.0 – 9.2
4.20725 – 4.20775	74.8 – 75.2	1718.8 – 1722.2	9.3 – 9.5
6.215 – 6.218	108 – 121.94	2200 – 2300	10.6 – 12.7
6.26775 – 6.26825	123 – 138	2310 – 2390	13.25 – 13.4
6.31175 – 6.31225	149.9 – 150.05	2483.5 – 2500	14.47 – 14.5
8.291 – 8.294	156.52475 – 156.52525	2690 – 2900	15.35 – 16.2
8.362 – 8.366	156.7 – 156.9	3260 – 3267	17.7 – 21.4
8.37625 – 8.38675	162.0125 – 167.17	3.332 – 3.339	22.01 – 23.12
8.41425 – 8.41475	167.72 – 173.2	3.3458 – 3.358	23.6 – 24.0
12.29 – 12.293	240 – 285	3.600 – 4.400	31.2 – 31.8
12.51975 – 12.52025	322 – 335.4		36.43 – 36.5
12.57675 – 12.57725	399.9 – 410		Above 38.6
13.36 – 13.41	608 – 614		

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

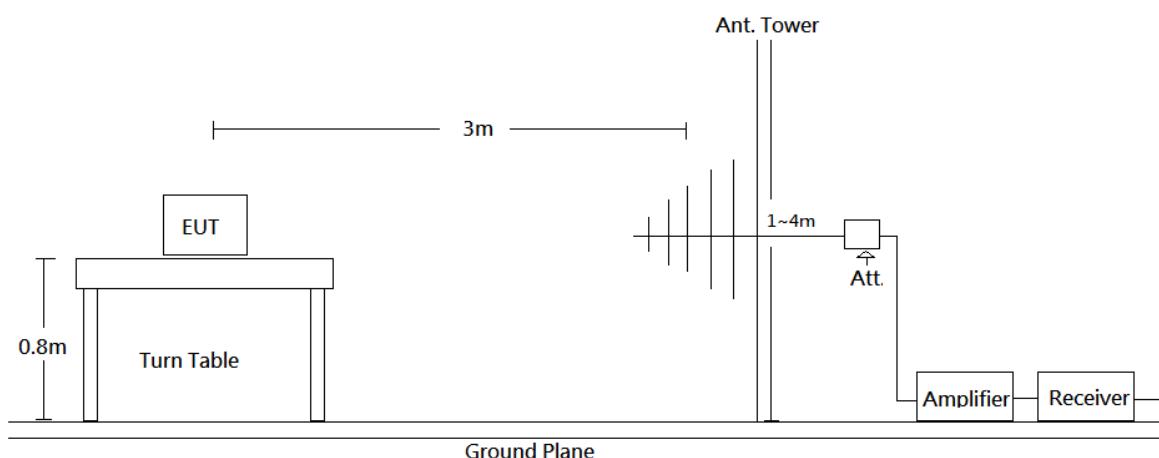
Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

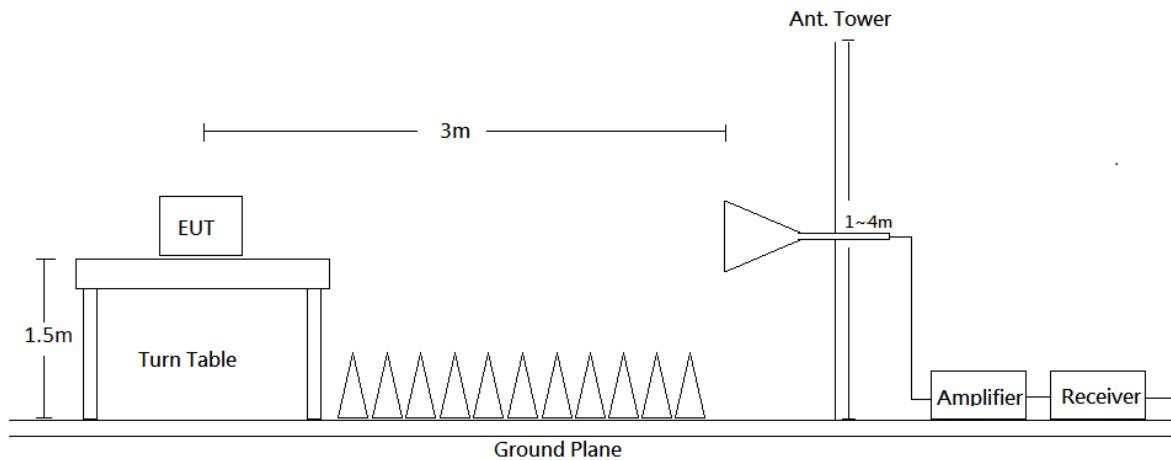
As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the

intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.2 Measurement Uncertainty


All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Taiwan) is shown in below table. And the uncertainty will not be taken into consideration for the test data recorded in the report.


Frequency	Measurement uncertainty
30 MHz~200 MHz	3.76 dB (k=2, 95% level of confidence)
200 MHz~1 GHz	4.12 dB (k=2, 95% level of confidence)
1 GHz~6 GHz	4.84 dB (k=2, 95% level of confidence)
6 GHz~18 GHz	5.16 dB (k=2, 95% level of confidence)
18 GHz~26 GHz	4.84 dB (k=2, 95% level of confidence)
26 GHz~40 GHz	4.30 dB (k=2, 95% level of confidence)

6.3 EUT Setup

Below 1 GHz:

Above 1 GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

6.4 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	IF BW	Detector	Duty cycle
30-1000 MHz	100 kHz	300 kHz	120 kHz	QP	
Above 1 GHz	1 MHz	3 MHz	/	PK	
	1 MHz	10 Hz	/	Ave	>98%
	1 MHz	1/T	/	Ave	<98%

6.5 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

6.6 Corrected Factor & Margin Calculation

The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Correct Factor} = \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Result} - \text{Limit}$$

6.7 Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.209 Limit. Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_m + U(L_m) \leq L_{lim} + U_{cispr}$$

In BACL, $U(L_m)$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

6.8 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due Date
966A Room					
Bilog Antenna	Sunol & Mini-Circuits	JB6/UNAT-6+	A050115 / 15542_01	2016/11/16	2017/11/15
Horn Antenna	EMCO	3115	9311-4158	2017/05/31	2018/05/30
Horn Antenna	ETS-Lindgren	3116	00062638	2016/09/05	2017/09/04
Preamplifier	Sonoma	310N	130602	2017/07/03	2018/07/02
Preamplifier	EMEC	EM01G18G	060697	2017/04/14	2018/04/16
Preamplifier	EMEC	EM18G40G	060656	2016/12/13	2017/12/12
EMI Test Receiver	R & S	ESR7	101419	2016/11/03	2017/11/03
Spectrum Analyzer	Rohde & Schwarz	FSV40	101203	2017/07/13	2018/07/12
Microflex Cable	UTIFLEX	UFB311A-Q-1440-300300	220490-006	2016/11/02	2017/11/01
Microflex Cable	UTIFLEX	UFA210A-1-3149-300300	MFR64639 226389-001	2016/11/29	2017/11/28
Microflex Cable	ROSNOL	K1K50-UP0264-K1K50-450CM	160309-1	2017/03/24	2018/03/23
Microflex Cable	ROSNOL	K1K50-UP0264-K1K50-80CM	160309-2	2017/01/20	2018/01/19
Turn Table	Champro	TT-2000	060772-T	N.C.R	N.C.R
Antenna Tower	Champro	AM-BS-4500-B	060772-A	N.C.R	N.C.R
Controller	Champro	EM1000	060772	N.C.R	N.C.R
Software	Farad	EZ EMC	BACL-03A1	N.C.R	N.C.R
Conducted Room					
Spectrum Analyzer	Rohde & Schwarz	FSEK30	825084/006	2016/12/15	2017/12/14
Cable	WOKEN	SFL402	S02-160323-07	2017/02/22	2018/02/21
Attenuator	MINI-CIRCUITS	BW-S10W5+	N/A	2017/03/09	2018/03/08

* **Statement of Traceability:** BACL Corp. attests that all calibrations have been performed according to TAF requirements, traceable to the ETC.

6.9 Test Environmental Conditions

Temperature:	25.2° C
Relative Humidity:	58 %
ATM Pressure:	1010 hPa

The testing was performed by Andy Shih on 2017-08-25.

6.10 Test Results

(Pre-scan with three orthogonal axis, and worse case as Y axis.)

Mode: Transmitting

Horizontal

Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Degree ($^{\circ}$)	Remark
BLE, Low channel								
211.39	39.03	-12.94	26.09	43.50	-17.41	100	171	QP
339.43	27.36	-9.00	18.36	46.00	-27.64	100	295	QP
376.29	27.61	-8.22	19.39	46.00	-26.61	100	115	QP
536.34	25.98	-5.19	20.79	46.00	-25.21	100	161	QP
664.38	26.78	-3.20	23.58	46.00	-22.42	100	43	QP
822.49	26.06	-0.13	25.93	46.00	-20.07	100	208	QP
2390.00	63.16	-4.89	58.27	74.00	-15.73	200	29	peak
2390.00	52.37	-4.89	47.48	54.00	-6.52	200	29	AVG
2402.00	91.28	-4.86	86.42	N/A	N/A	100	46	peak
2402.00	90.46	-4.86	85.60	N/A	N/A	100	46	AVG
4804.00	45.9	0.98	46.88	74	-27.12	138	245	peak
4804.00	34.13	0.98	35.11	54	-18.89	138	245	AVG
7206.00	36.41	6.56	42.97	74	-31.03	100	84	peak
7206.00	25.66	6.56	32.22	54	-21.78	100	84	AVG
BLE, Middle channel								
118.27	26.71	-11.01	15.70	43.50	-27.80	100	236	QP
214.30	37.70	-12.88	24.82	43.50	-18.68	100	207	QP
340.40	27.86	-8.97	18.89	46.00	-27.11	100	146	QP
452.92	27.38	-6.48	20.90	46.00	-25.10	100	319	QP
537.31	27.22	-5.17	22.05	46.00	-23.95	100	239	QP
633.34	27.67	-3.56	24.11	46.00	-21.89	100	360	QP
2442.00	91.32	-4.76	86.56	N/A	N/A	181	44	peak
2442.00	90.18	-4.76	85.42	N/A	N/A	181	44	AVG
4884.00	40.3	1.25	41.55	74	-32.45	114	229	peak
4884.00	27.12	1.25	28.37	54	-25.63	114	229	AVG
BLE, High channel								
212.36	37.73	-12.92	24.81	43.50	-18.69	100	187	QP
368.53	27.63	-8.38	19.25	46.00	-26.75	100	214	QP
459.71	27.04	-6.37	20.67	46.00	-25.33	100	53	QP
587.75	27.36	-4.23	23.13	46.00	-22.87	100	303	QP
862.26	26.99	0.66	27.65	46.00	-18.35	100	72	QP
932.10	26.31	2.20	28.51	46.00	-17.49	100	94	QP
2480.00	89.53	-4.68	84.85	N/A	N/A	136	46	peak
2480.00	88.66	-4.68	83.98	N/A	N/A	136	46	AVG
2483.50	63.36	-4.69	58.67	74.00	-15.33	116	209	peak
2483.50	52.23	-4.69	47.54	54.00	-6.46	116	209	AVG
4960.00	42	1.51	43.51	74	-30.49	100	231	peak
4960.00	30.48	1.51	31.99	54	-22.01	100	231	AVG

Result = Reading + Correct Factor

Margin = Result - Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported.

Vertical

Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Degree ($^{\circ}$)	Remark
BLE, Low channel								
97.90	43.85	-15.06	28.79	43.50	-14.71	100	283	QP
214.30	42.13	-12.88	29.25	43.50	-14.25	100	206	QP
314.21	32.71	-9.54	23.17	46.00	-22.83	100	315	QP
351.07	31.75	-8.76	22.99	46.00	-23.01	100	278	QP
552.83	28.49	-4.93	23.56	46.00	-22.44	100	184	QP
672.14	28.17	-3.12	25.05	46.00	-20.95	100	230	QP
2390.00	63.02	-4.89	58.13	74.00	-15.87	200	360	peak
2390.00	51.18	-4.89	46.29	54.00	-7.71	200	360	AVG
2402.00	83.39	-4.86	78.53	N/A	N/A	100	140	peak
2402.00	82.05	-4.86	77.19	N/A	N/A	100	140	AVG
4804.00	46.66	0.98	47.64	74.00	-26.36	200	182	peak
4804.00	35.48	0.98	36.46	54.00	-17.54	200	182	AVG
7206.00	37.46	6.56	44.02	74.00	-29.98	100	165	peak
7206.00	27.08	6.56	33.64	54.00	-20.36	100	165	AVG
BLE, Middle channel								
159.01	31.72	-11.27	20.45	43.50	-23.05	100	192	QP
210.42	41.15	-12.97	28.18	43.50	-15.32	100	48	QP
318.09	31.58	-9.46	22.12	46.00	-23.88	100	255	QP
468.44	27.48	-6.22	21.26	46.00	-24.74	100	211	QP
605.21	27.79	-3.91	23.88	46.00	-22.12	100	159	QP
836.07	27.54	0.14	27.68	46.00	-18.32	100	114	QP
2442.00	82.48	-4.76	77.72	N/A	N/A	157	56	peak
2442.00	80.94	-4.76	76.18	N/A	N/A	157	56	AVG
4884.00	45.11	1.25	46.36	74.00	-27.64	190	173	peak
4884.00	30.43	1.25	31.68	54.00	-22.32	190	173	AVG
7326.00	36.48	7.04	43.52	74.00	-30.48	100	165	peak
7326.00	21.62	7.04	28.66	54.00	-25.34	100	165	AVG
BLE, High channel								
159.01	32.48	-11.27	21.21	43.50	-22.29	100	198	QP
214.30	41.10	-12.88	28.22	43.50	-15.28	100	173	QP
351.07	28.80	-8.76	20.04	46.00	-25.96	100	163	QP
496.57	28.05	-5.77	22.28	46.00	-23.72	100	146	QP
618.79	27.11	-3.73	23.38	46.00	-22.62	100	220	QP
816.67	26.93	-0.24	26.69	46.00	-19.31	100	192	QP
2480.00	79.50	-4.68	74.82	N/A	N/A	100	55	peak
2480.00	78.23	-4.68	73.55	N/A	N/A	100	55	AVG
2483.50	64.11	-4.69	59.42	74.00	-14.58	100	136	peak
2483.50	52.39	-4.69	47.70	54.00	-6.30	100	136	AVG
4960.00	46.05	1.51	47.56	74.00	-26.44	195	180	peak
4960.00	37.91	1.51	39.42	54.00	-14.58	195	180	AVG

Result = Reading + Correct Factor

Margin = Result - Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported.

----- END OF REPORT -----