

FCC Test Report

Report No.: RF181219C02D

FCC ID: 2ANBG-OR100

Regulatory Model: APOR100

Marketing Model: APOR100-B18, APOR100-X00, APOR100-C23, APOR100-C18

Received Date: Dec. 20, 2018

Test Date: Jan. 29, 2019 (For Conducted power)

Jun. 03, 2020 (For AC Power Conducted Emission and Radiated Emissions below 1GHz)

Issued Date: Jun. 08, 2020

Applicant: KeyWest Networks, Inc.

Address: 3033 Oliver Dr, San Jose, CA - 95135 USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City
33383, TAIWAN

FCC Registration / 788550 / **TW0003**
Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Release Control Record	3
1 Certificate of Conformity.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	5
2.2 Modification Record	5
3 General Information.....	6
3.1 General Description of EUT	6
3.2 Description of Test Modes	8
3.2.1 Test Mode Applicability and Tested Channel Detail.....	9
3.3 Description of Support Units	10
3.3.1 Configuration of System under Test	10
3.4 General Description of Applied Standards and References	11
4 Test Types and Results	12
4.1 Radiated Emission and Bandedge Measurement.....	12
4.1.1 Limits of Radiated Emission and Bandedge Measurement	12
4.1.2 Test Instruments	13
4.1.3 Test Procedures.....	14
4.1.4 Deviation from Test Standard	14
4.1.5 Test Setup.....	15
4.1.6 EUT Operating Conditions.....	15
4.1.7 Test Results	16
4.2 Conducted Emission Measurement	18
4.2.1 Limits of Conducted Emission Measurement	18
4.2.2 Test Instruments	18
4.2.3 Test Procedures.....	19
4.2.4 Deviation from Test Standard	19
4.2.5 Test Setup.....	19
4.2.6 EUT Operating Conditions.....	19
4.2.7 Test Results	20
4.3 Conducted Output Power Measurement.....	22
4.3.1 Limits of Conducted Output Power Measurement	22
4.3.2 Test Setup.....	22
4.3.3 Test Instruments	22
4.3.4 Test Procedures.....	22
4.3.5 Deviation from Test Standard	22
4.3.6 EUT Operating Conditions.....	22
4.3.7 Test Results	23
5 Pictures of Test Arrangements.....	24
Appendix – Information of the Testing Laboratories	25

Release Control Record

Issue No.	Description	Date Issued
RF181219C02D	Original release	Jun. 08, 2020

1 Certificate of Conformity

Product: Outdoor Wireless Radios

Brand: KeyWest Radios

Regulatory Model: APOR100

Marketing Model: APOR100-B18, APOR100-X00, APOR100-C23, APOR100-C18

Sample Status: Engineering sample

Applicant: KeyWest Networks, Inc.

Test Date: Jan. 29, 2019 (For Conducted power)

Jun. 03, 2020 (For AC Power Conducted Emission and Radiated Emissions below 1GHz)

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

This report is issued as a supplementary report of RF181219C02. This report shall be used combined together with its original report.

Prepared by : Celine Chou, **Date:** Jun. 08, 2020
Celine Chou / Senior Specialist

Approved by : Bruce Chen, **Date:** Jun. 08, 2020
Bruce Chen / Senior Project Engineer

Note: Radiated emission below 1GHz and conducted emission are performed for the addendum. Refer to original report for the other test data.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)			
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -13.02dB at 0.39400MHz.
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -1.8dB at 56.71MHz.
15.247(d)	Antenna Port Emission	N/A	Refer to Note 1
15.247(a)(2)	6dB bandwidth	N/A	Refer to Note 1
15.247(b)	Conducted power	Pass	Refer to Note 2
15.247(e)	Power Spectral Density	N/A	Refer to Note 1
15.203	Antenna Requirement	Pass	Antenna connector is IPEX not standard connector.

Note:

1. Radiated emission below 1GHz and conducted emission are performed for the addendum. Refer to original report for the other test data.
2. According to customer requirements, we recorded 2.4GHz conducted power in this report, the test data were copy from the original test report (Report No.: RF181219C02).
3. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.79 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.04 dB
	30MHz ~ 200MHz	3.86 dB
	200MHz ~1000MHz	3.87 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Outdoor Wireless Radios
Brand	KeyWest Radios
Regulatory Model	APOR100
Marketing Model	APOR100-B18, APOR100-X00, APOR100-C23, APOR100-C18
Model Difference	Refer to note for more details
Sample Status	Engineering sample
Power Supply Rating	48Vdc (PoE)
Modulation Type	CCK, DQPSK, DBPSK for DSSS 256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM
Modulation Technology	DSSS, OFDM
Transfer Rate	802.11b:11/5.5/2/1Mbps 802.11g: 54/48/36/24/18/12/9/6Mbps 802.11n: up to 200Mbps
Operating Frequency	2412 ~ 2462MHz
Number of Channel	11 for 802.11b, 802.11g, 802.11n (HT20), 802.11n (VHT20) 7 for 802.11n (HT40), 802.11n (VHT40)
Output Power	207.014mW
Antenna Type	PCB antenna with 6dBi gain (Brand: LYNwave Technology Ltd., Model: ALA150-05102C-00) (The Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.)
Antenna Connector	IPEX
Accessory Device	PoE
Cable Supplied	NA

Note:

1. This report is prepared for FCC class II permissive change. The difference compared with the original report (BV CPS report no.: RF181219C02) are listing as below. Radiated emission below 1GHz and conducted emission are performed for the addendum. Refer to original report for the other test data.
 - Added one PoE.
 - Added two antennas.
 - Software enable 5.25GHz to 5.35GHz and 5.47GHz to 5.725GHz bands.
 - Added 5G Band 1, 4 channels via software changing.

2. All models are listed as below.

Brand	Regulatory Model	Marketing Model	Ant. (For 5GHz Band only)	Remark
KeyWest Radios	APOR100	APOR100-B18	18dBi (MA-WC56-DP17 Ant. with i-pex(MHF) connector) 2x2 V&H Polarized Sector antenna	For outdoor only
			17dBi (MT055S17VH/KYU Ant. with MMCX connector) 2x2 V&H Polarized Sector antenna	
		APOR100-X00	10dBi (APOR100-X00 Ant. with i-pex(MHF) connector) 2x2 V&H Polarized Omni antenna	For outdoor only
		APOR100-C23	23dBi (MA-WA56-DP23 Ant. with i-pex(MHF) connector) 2x2 V&H Polarized panel antenna	For P to P only
			22.5dBi (MT-465039/CVH/F Ant. with MMCX connector) 2x2 V&H Polarized panel antenna	
		APOR100-C18	18dBi (MT-485053-CVH-B_ICD_KW Ant. with i-pex(MHF) connector) 2x2 V&H Polarized panel antenna	For P to P only

3. The EUT provides one completed transmitter and one receiver.

Modulation Mode	TX Function
802.11b	1TX
802.11g	1TX
802.11n (HT20)	1TX
802.11n (HT40)	1TX
802.11n (VHT20)	1TX
802.11n (VHT40)	1TX

* The bandwidth and modulation are similar for HT20/HT40 on 802.11n mode and VHT20/VHT40 on 802.11n mode. Therefore the investigated worst case is the representative mode in test report. (Final test mode refer section 3.2.1)

4. The EUT is powered by the following PoE. (The new PoE is PoE 2)

PoE 1	
Brand	Powertron Electronics Corp.
Model	POE1024-480T1A050
Input Power	100-240Vac, 50-60Hz, 1.0A
Output Power	+48Vdc, 0.50A

PoE 2	
Brand	KEYWEST
Model	KW-P1024-48056K
Input Power	100-240Vac, 50-60Hz, 1.0A
Output Power	+48Vdc, 0.50A

3.2 Description of Test Modes

11 channels are provided for 802.11b, 802.11g, 802.11n (HT20) and 802.11n (VHT20):

Channel	Frequency	Channel	Frequency
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz		

7 channels are provided for 802.11n (HT40) and 802.11n (VHT40):

Channel	Frequency	Channel	Frequency
3	2422MHz	7	2442MHz
4	2427MHz	8	2447MHz
5	2432MHz	9	2452MHz
6	2437MHz		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure Mode	Applicable to		Description
	RE<1G	PLC	
-	√	√	Powered by POE 2

Where RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**.

Radiated Emission Test (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-	802.11b	1 to 11	6	DSSS	DBPSK	1.0

Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-	802.11b	1 to 11	6	DSSS	DBPSK	1.0

Test Condition:

Applicable to	Environmental Conditions	Input Power	Tested by
RE<1G	23 deg. C, 66% RH	120Vac, 60Hz	Titan Hsu
PLC	23 deg. C, 66% RH	120Vac, 60Hz	Titan Hsu

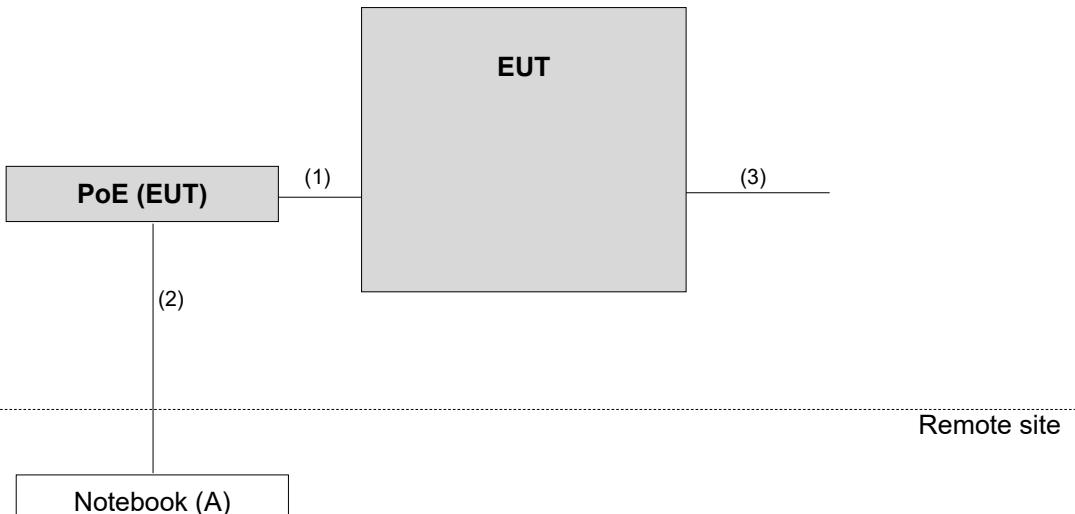
3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Notebook	Lenovo	80Q7	PF0KUGU6	FCC DoC Approved	-

Note:

1. All power cords of the above support units are non-shielded (1.8m).
2. Item A acted as a communication partner to transfer data.


ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	RJ45 Cable	1	1.5	N	0	-
2.	RJ45 Cable	1	6	N	0	-
3.	Ground Cable	1	1.81	N	0	Provided by client

3.3.1 Configuration of System under Test

For AC Power Conducted Emission

For Radiated Emissions

3.4 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 30dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_{UV}/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESR3	102579	Jun. 27, 2019	Jun. 26, 2020
BILOG Antenna SCHWARZBECK	VULB9168	9168-171	Nov. 11, 2019	Nov. 10, 2020
HORN Antenna SCHWARZBECK	9120D	209	Nov. 24, 2019	Nov. 23, 2020
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Nov. 24, 2019	Nov. 23, 2020
Loop Antenna TESEQ	HLA 6121	45745	Jul. 01, 2019	Jun. 30, 2020
Preamplifier Agilent (Below 1GHz)	8447D	2944A10738	Aug. 20, 2019	Aug. 19, 2020
Preamplifier Agilent (Above 1GHz)	8449B	3008A02367	Feb. 18, 2020	Feb. 17, 2021
RF Coaxial Cable WOKEN With 5dB PAD	8D-FB	Cable-CH3-01	Aug. 20, 2019	Aug. 19, 2020
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH3-03 (223653/4)	Aug. 20, 2019	Aug. 19, 2020
RF signal cable HUBER+SUHNER& EMCI	SUCOFLEX 104&EMC104-SM-S M-8000	Cable-CH3-03 (309224+170907)	Aug. 20, 2019	Aug. 19, 2020
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA	NA
Antenna Tower Controller BV ADT	AT100	AT93021702	NA	NA
Turn Table BV ADT	TT100	TT93021702	NA	NA
Turn Table Controller BV ADT	SC100	SC93021702	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 2. The test was performed in HwaYa Chamber 3.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

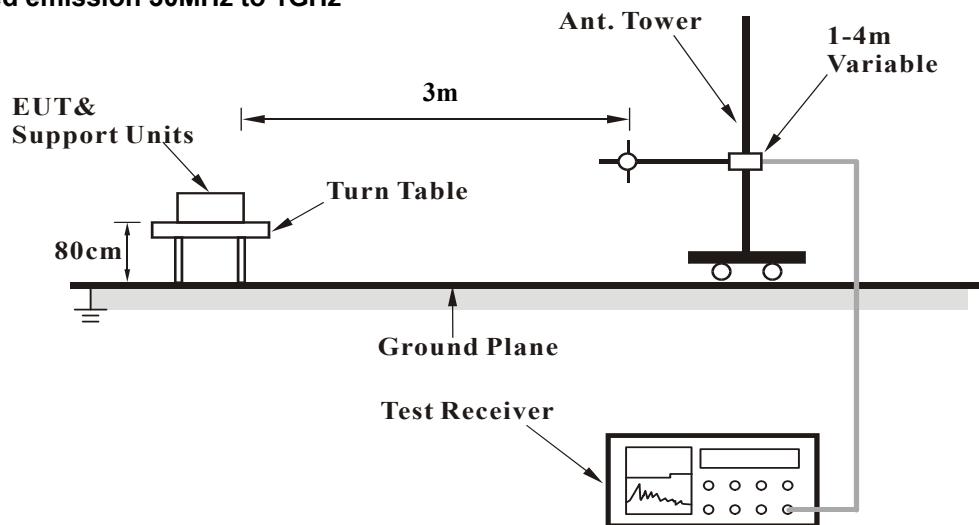
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission 30MHz to 1GHz

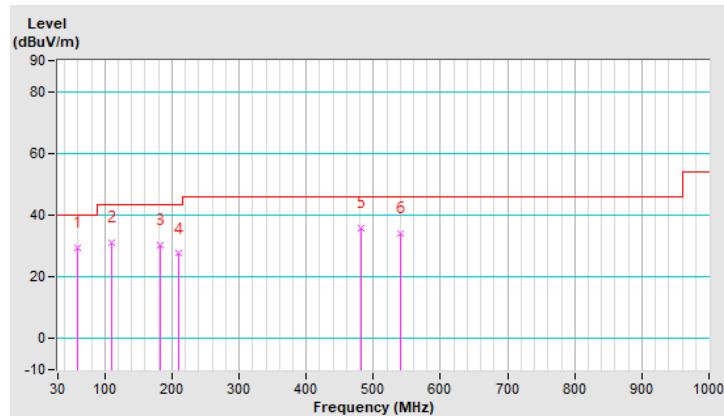
For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- Placed the EUT on the testing table.
- Prepared a notebook to act as a communication partner and placed it outside of testing area.
- The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.
- The communication partner sent data to EUT by command "PING".

4.1.7 Test Results

Below 1GHz worst-case data:

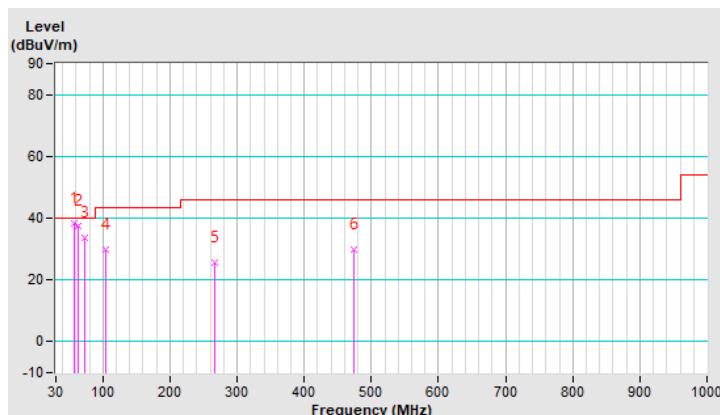

802.11b

CHANNEL	TX Channel 6	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	9kHz ~ 1GHz		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	59.52	29.6 QP	40.0	-10.4	1.00 H	61	38.8	-9.2
2	110.13	30.9 QP	43.5	-12.6	1.00 H	233	42.7	-11.8
3	183.23	30.1 QP	43.5	-13.4	1.50 H	104	40.3	-10.2
4	209.94	27.5 QP	43.5	-16.0	1.50 H	232	39.0	-11.5
5	482.67	35.8 QP	46.0	-10.2	2.00 H	150	37.7	-1.9
6	540.30	34.2 QP	46.0	-11.8	1.50 H	175	34.9	-0.7

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB).
3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
4. Margin value = Emission Level – Limit value.
5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



CHANNEL	TX Channel 6	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	9kHz ~ 1GHz		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	56.71	38.2 QP	40.0	-1.8	1.00 V	328	47.3	-9.1
2	63.74	37.5 QP	40.0	-2.5	1.00 V	288	47.0	-9.5
3	73.58	33.5 QP	40.0	-6.5	1.50 V	162	45.2	-11.7
4	104.51	29.9 QP	43.5	-13.6	2.00 V	73	42.3	-12.4
5	267.58	25.4 QP	46.0	-20.6	1.50 V	150	34.0	-8.6
6	474.23	29.8 QP	46.0	-16.2	1.00 V	159	31.8	-2.0

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB).
3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
4. Margin value = Emission Level – Limit value.
5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

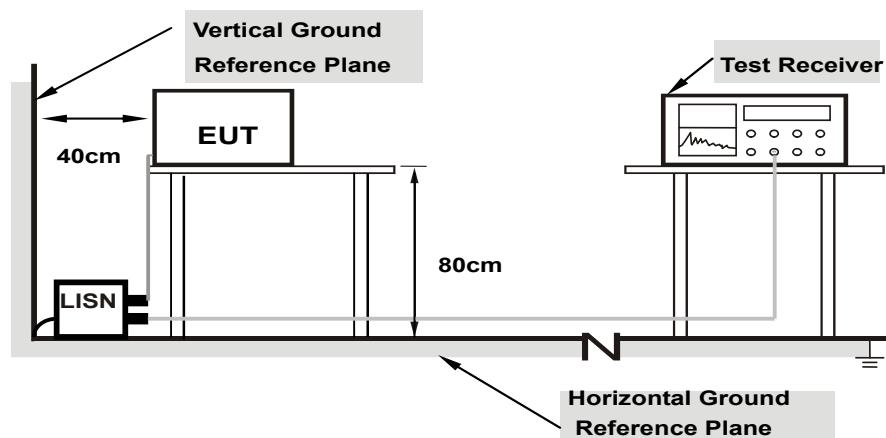
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 11, 2019	Dec. 10, 2020
RF signal cable Woken	5D-FB	Cable-cond1-01	Sep. 05, 2019	Sep. 04, 2020
LISN ROHDE & SCHWARZ (EUT)	ENV216	101826	Feb. 20, 2020	Feb. 19, 2021
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 22, 2019	Aug. 21, 2020
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 2. The test was performed in HwaYa Shielded Room 1.
 3. The VCCI Site Registration No. is C-12040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1. Support units were connected to second LISN.

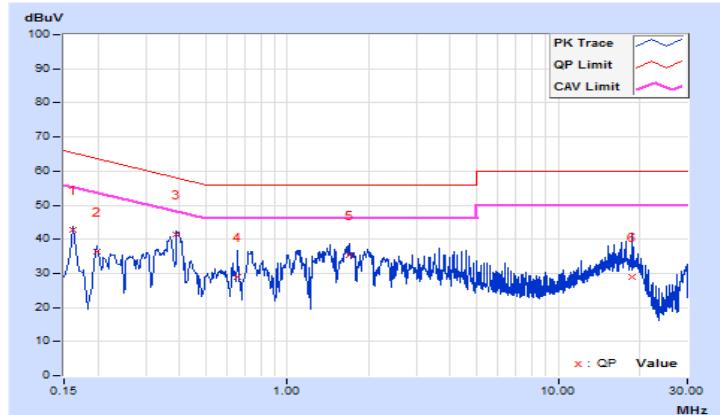
For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Worst-case data:

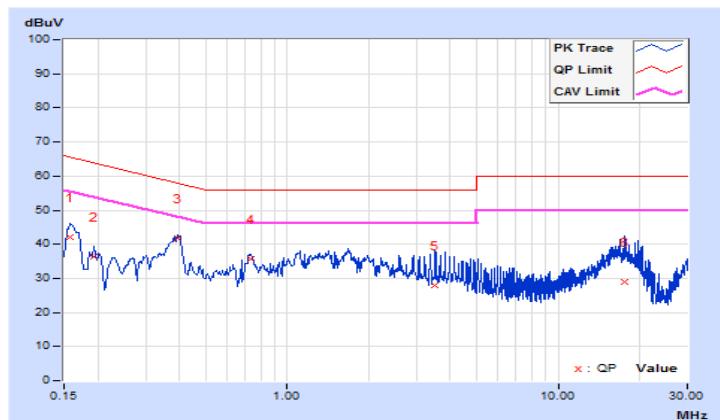

802.11b

Phase		Line (L)		Detector Function		Quasi-Peak (QP) / Average (AV)	
-------	--	----------	--	-------------------	--	--------------------------------	--

No	Freq. [MHz]	Corr. Factor (dB)	Reading Value		Emission Level		Limit		Margin	
			[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16200	9.63	33.11	22.76	42.74	32.39	65.36	55.36	-22.62	-22.97
2	0.19780	9.62	26.64	19.02	36.26	28.64	63.70	53.70	-27.44	-25.06
3	0.39000	9.65	31.83	22.85	41.48	32.50	58.06	48.06	-16.58	-15.56
4	0.65800	9.66	19.24	8.63	28.90	18.29	56.00	46.00	-27.10	-27.71
5	1.69800	9.71	25.59	17.30	35.30	27.01	56.00	46.00	-20.70	-18.99
6	18.86200	9.91	18.88	13.08	28.79	22.99	60.00	50.00	-31.21	-27.01

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value.



Phase	Neutral (N)		Detector Function		Quasi-Peak (QP) / Average (AV)	
-------	-------------	--	-------------------	--	--------------------------------	--

No	Freq.	Corr. Factor	Reading Value		Emission Level		Limit		Margin	
			[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
			[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15800	9.66	32.44	17.86	42.10	27.52	65.57	55.57	-23.47	-28.05
2	0.19400	9.64	26.56	17.23	36.20	26.87	63.86	53.86	-27.66	-26.99
3	0.39400	9.67	32.13	25.29	41.80	34.96	57.98	47.98	-16.18	-13.02
4	0.73000	9.69	25.90	18.30	35.59	27.99	56.00	46.00	-20.41	-18.01
5	3.51800	9.81	18.29	12.50	28.10	22.31	56.00	46.00	-27.90	-23.69
6	17.58200	10.01	18.87	12.76	28.88	22.77	60.00	50.00	-31.12	-27.23

Remarks:

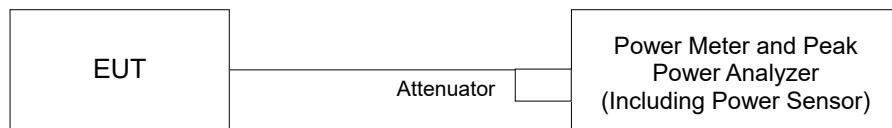
1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value.

4.3 Conducted Output Power Measurement

4.3.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

Per KDB 662911 D01 Multiple Transmitter Output Method of conducted output power measurement on IEEE 802.11 devices,


Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \leq 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT} ;

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less for 20-MHz channel widths with $N_{ANT} \geq 5$.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS})$ dB.

4.3.2 Test Setup

4.3.3 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
USB Wideband Power Sensor KEYSIGHT	U2021XA	MY55050005/MY55190004/MY55190007/MY55210005	Jul. 17, 2018	Jul. 16, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.4 Test Procedures

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

Same as item 4.3.6.

4.3.7 Test Results

802.11b

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)	Limit (dBm)	Pass / Fail
1	2412	28.054	14.48	30	Pass
6	2437	27.353	14.37	30	Pass
11	2462	56.624	17.53	30	Pass

802.11g

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)	Limit (dBm)	Pass / Fail
1	2412	119.399	20.77	30	Pass
6	2437	196.789	22.94	30	Pass
11	2462	143.880	21.58	30	Pass

802.11n (HT20)

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)	Limit (dBm)	Pass / Fail
1	2412	108.143	20.34	30	Pass
6	2437	203.236	23.08	30	Pass
11	2462	141.906	21.52	30	Pass

802.11n (HT40)

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)	Limit (dBm)	Pass / Fail
3	2422	74.302	18.71	30	Pass
6	2437	207.014	23.16	30	Pass
9	2452	103.276	20.14	30	Pass

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232

Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---