

FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

UL Listed 10000 mAh Fast Wireless Power Bank Stand Kit

MODEL NUMBER: MSL-W184Q

FCC ID: 2AN8FMSL-W184Q

REPORT NUMBER: 4789185994.1-2

ISSUE DATE: November 21, 2019

Prepared for

**ShenZhen Mossloo Industrial CO., Ltd.
Rd One No.4 Science Industrial Park Shangxue Village Bantian St Longgang
District Shenzhen Guangdong**

Prepared by

**UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch
Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China**

Tel: +86 769 22038881

Fax: +86 769 33244054

Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	11/21/2019	Initial Issue	

Summary of Test Results		
Description of Test Item	Standard	Results
Power Line Conducted Emission Test	FCC 15.207	PASS
Radiated Emission Test	FCC 15.209	PASS
20dB Bandwidth	FCC 15.215	PASS

This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

TABLE OF CONTENTS

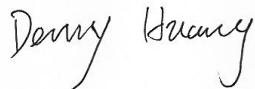
1. ATTESTATION OF TEST RESULTS.....	5
2. TEST METHODOLOGY.....	6
3. FACILITIES AND ACCREDITATION.....	6
4. CALIBRATION AND UNCERTAINTY	7
4.1. MEASURING INSTRUMENT CALIBRATION	7
4.2. MEASUREMENT UNCERTAINTY.....	7
5. EQUIPMENT UNDER TEST	8
5.1. DESCRIPTION OF EUT	8
5.2. TEST MODE.....	8
5.3. TEST ENVIRONMENT	9
5.4. ACCESSORY	9
5.5. MEASURING INSTRUMENT LIST.....	11
6. 20dB BANDWIDTH TEST	12
7. EMISSION TEST	14
7.1. SPURIOUS EMISSIONS BELOW 30MHz.....	17
7.2. SPURIOUS EMISSIONS 30MHz - 1GHz	20
8. AC POWER LINE CONDUCTED EMISSIONS	22

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: ShenZhen Mossloo Industrial CO., Ltd.
Address: Rd One No.4 Science Industrial Park Shangxue Village Bantian
St Longgang District Shenzhen Guangdong

Manufacturer Information


Company Name: ShenZhen Mossloo Industrial CO., Ltd.
Address: Rd One No.4 Science Industrial Park Shangxue Village Bantian
St Longgang District Shenzhen Guangdong

EUT Description

EUT Name: UL Listed 10000 mAh Fast Wireless Power Bank Stand Kit
Model: MSL-W184Q
Brand Name: MSL
Sample Status: Normal
Sample ID: 2581812
Sample Received Date: September 26, 2019
Date of Tested: September 27, 2019 ~ November 21, 2019

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 FCC PART 15 SUBPART C	PASS

Prepared By:

Denny Huang
Project Engineer

Checked By:

Shawn Wen
Laboratory Leader

Approved By:

Stephen Guo
Laboratory Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard FCC CFR 47 Part 2, FCC CFR 47 Part 15C KDB414788 D01 Radiated Test Site v01 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

Test Location	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Address	Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
Accreditation Certificate	<p>A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA.</p> <p>FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules</p> <p>IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320.</p> <p>VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793.</p> <p>Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B , the VCCI registration No. is C-20012 and T-20011</p>

Note:

1. All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
2. The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Measurement Frequency Range	K	U(dB)
Conducted disturbance at mains terminals ports	0.15MHz ~ 30MHz	2	3.62
Radiated disturbance test	9kHz-150kHz	2	3.32
	150kHz-30MHz	2	3.72
Radiated Emission Test	30MHz~1GHz	2	4.00

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	UL Listed 10000 mAh Fast Wireless Power Bank Stand Kit
EUT Description	The EUT is a power bank with wireless charging function.
Model	MSL-W184Q
Operation Frequency	110 ~ 205kHz
Antenna type	Coil
Ratings	Capacity: 10000mAh/3.7V/74Wh Type-C Input: 5V/2A, 9V/2A USB A Output: 5V/2.4A (Max) Wireless Output: 5W/7.5W/10W

Note 1: The EUT have 2 coils, but only 1 coil active at any moment in time, both the coils and circuit before antenna are the same.

Note 2: Because of the limited of the circuit, the 2 coils can't be active at the same time.

5.2. TEST MODE

Mode	Description
Mode 1	Power Bank charging by charging base and with 5W wireless charging load
Mode 2	Power Bank charging by type-C (5V/2A) and with 5W wireless charging load
Mode 3	Power Bank charging by type-C (9V/2A) and with 5W wireless charging load
Mode 4	Power Bank with USB A 5V/2.4A load and 5W wireless charging load
Mode 5	Power Bank with 7.5W wireless charging load
Mode 6	Power Bank with 10W wireless charging load

Note 1: Because the coils and circuit before antenna are the same, Coil 1, Coil 2 and Coil 1+Coil 2 (Only one coil can be activated) modes had been conducted pre-scanned to determine the worst-case mode from both coils, but only the worst data were recorded in this report.

Note 2: The wireless charging function only support 5W output but USB A port can't work when the power bank was under charged.

Note 3: The wireless charging function only support 5W output when the USB A port discharging.

Note 4: When the wireless charging output is more than 7.5W, the USB A output port can't work normally.

5.3. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests	
Relative Humidity	55 ~ 65%	
Atmospheric Pressure:	1018Pa	
Temperature	TN	22 ~ 28°C
Voltage :	VL	/
	VN	DC 5V & DC 9V
	VH	/

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

5.4. ACCESSORY

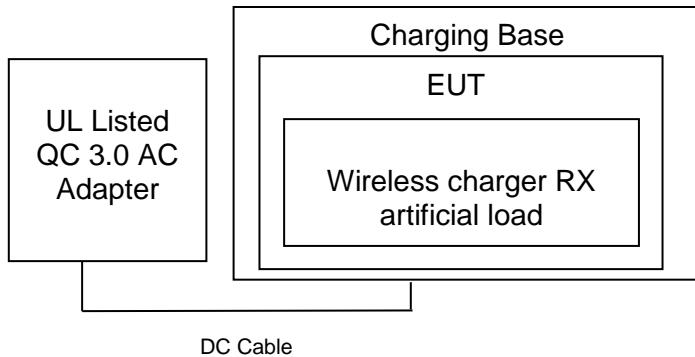
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Series No.
1	Wireless charger RX artificial load	/	/	/
2	Electric Resistance Load	/	/	/

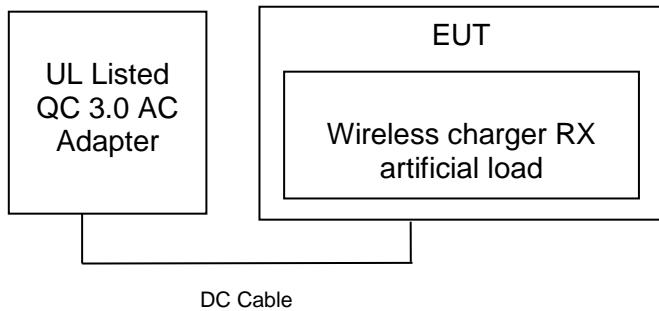
I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB A	USB	Shielded	1.0 m	/
2	USB type-C	USB type-C	Shielded	1.0 m	/

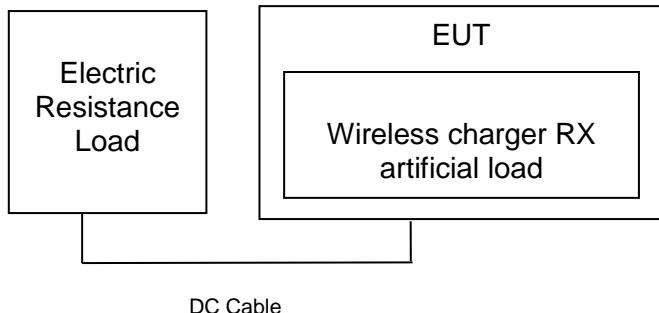
ACCESSORY

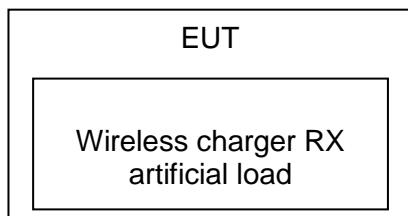

Item	Accessory	Brand Name	Model Name	Description
1	UL Listed QC 3.0 AC Adapter	/	GW-TCQC3-A1	Input: AC 100~240V, 50/60Hz, 0.8A MAX Output: DC 5V/3A, DC 9V/2A, 12V/1.5A

TEST SETUP


The EUT support wireless charging.

SETUP DIAGRAM FOR TEST


Mode 1


Mode 2 and Mode 3

Mode 4

Mode 5 and Mode 6

5.5. MEASURING INSTRUMENT LIST

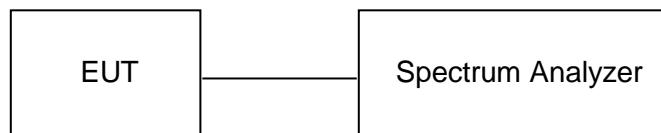
Conducted Emissions										
Instrument										
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.				
<input checked="" type="checkbox"/>	EMI Test Receiver	R&S	ESR3	101961	Dec.10,2018	Dec.10,2019				
<input checked="" type="checkbox"/>	Two-Line V-Network	R&S	ENV216	101983	Dec.10,2018	Dec.10,2019				
Software										
Used	Description		Manufacturer	Name	Version					
<input checked="" type="checkbox"/>	Test Software for Conducted disturbance		Farad	EZ-EMC	Ver. UL-3A1					
Radiated Emissions										
Instrument										
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.				
<input checked="" type="checkbox"/>	MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Dec.10,2018	Dec.10,2019				
<input checked="" type="checkbox"/>	Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Sep.17,2018	Sep.17,2021				
<input checked="" type="checkbox"/>	Preamplifier	HP	8447D	2944A09099	Dec.10,2018	Dec.10,2019				
<input checked="" type="checkbox"/>	Loop antenna	Schwarzbeck	1519B	00008	Jan.17, 2019	Jan.17,2022				
<input checked="" type="checkbox"/>	Preamplifier	TDK	PA-02-001-3000	TRS-302-00050	Jan. 07,2019	Jan.07,2020				
Software										
Used	Description		Manufacturer	Name	Version					
<input checked="" type="checkbox"/>	Test Software for Radiated disturbance		Farad	EZ-EMC	Ver. UL-3A1					
Other instruments										
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.				
<input checked="" type="checkbox"/>	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.10,2018	Dec.10,2019				

6. 20dB BANDWIDTH TEST

LIMITS

20dB Bandwidth

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.215, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	1% to 5% of the occupied bandwidth
VBW	approximately 3xRBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 99%/20 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

RESULTS

Frequency (KHz)	20dB Bandwidth (Hz)	99% Bandwidth (Hz)
146.5	77	191

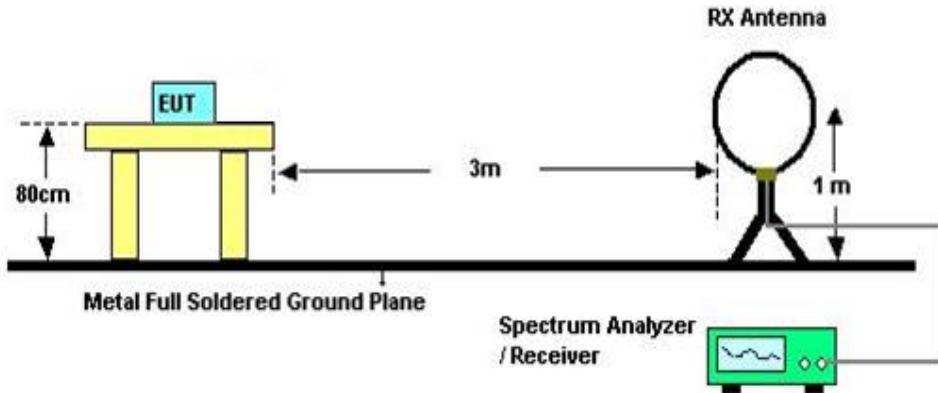
Note: All the modes have been tested, only the worst data record in the report.

7. EMISSION TEST

LIMITS

Please refer to FCC §15.205 and §15.209

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

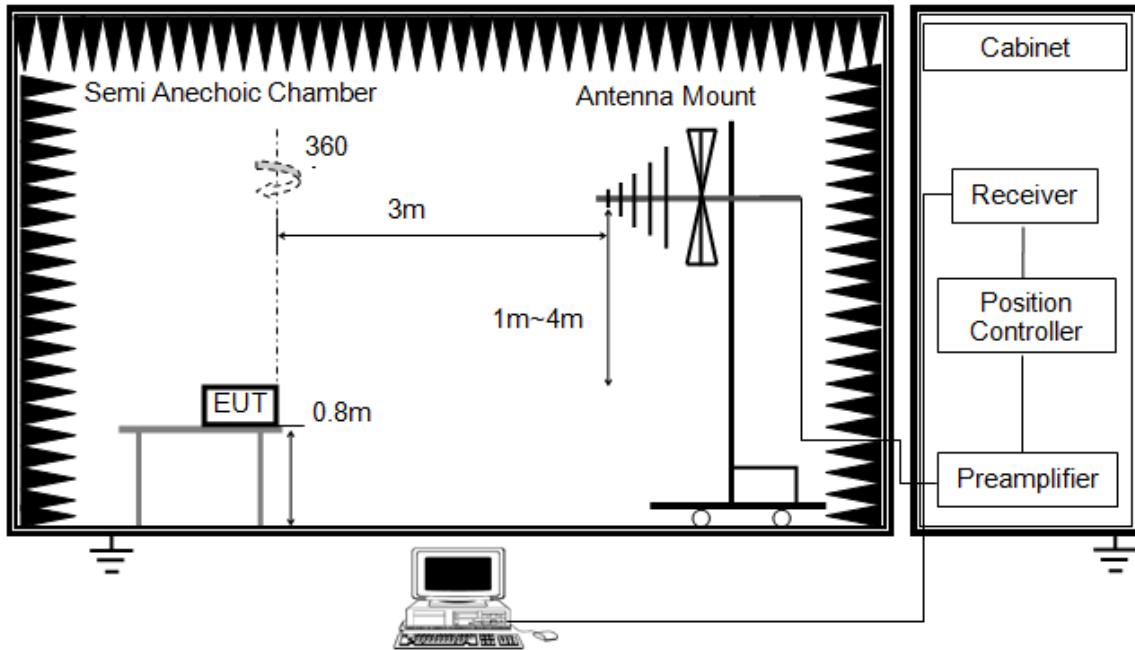

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

TEST SETUP AND PROCEDURE

Below 30MHz (Loop Antenna)



The setting of the spectrum analyzer

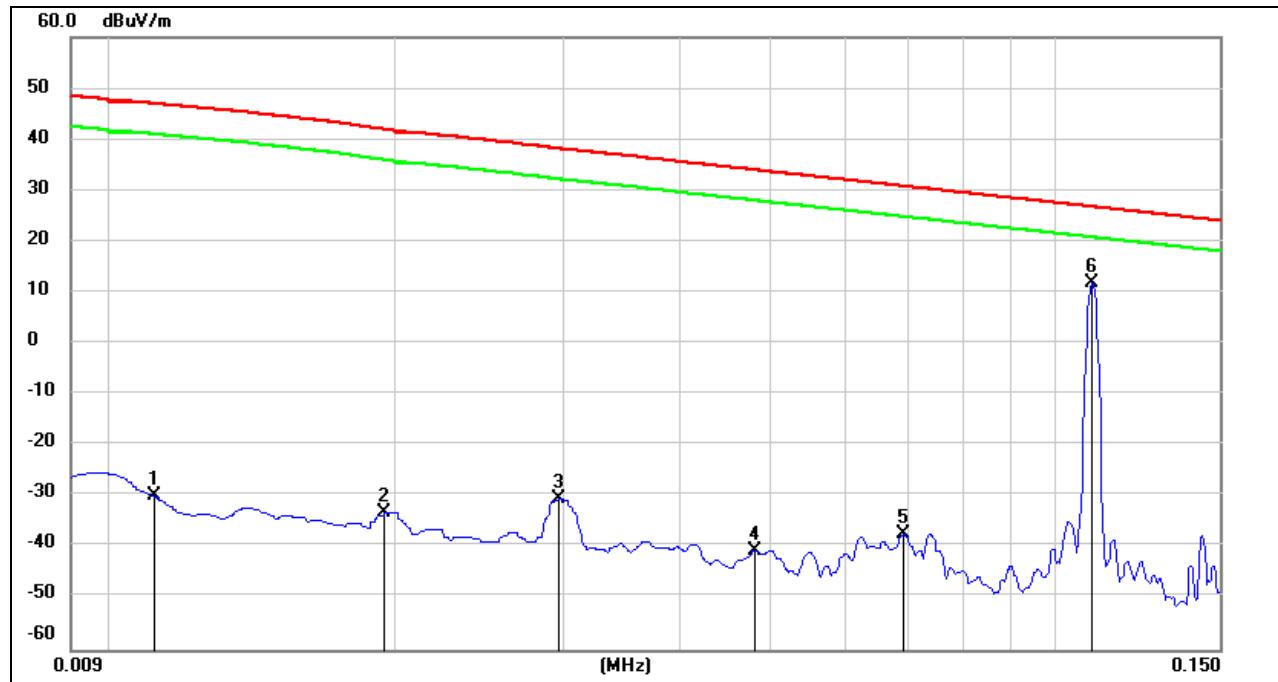
RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 and 414788 D01 Radiated Test Site v01.
2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 80cm meter above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1m height antenna tower.
5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
7. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Below 1G and above 30MHz

The setting of the spectrum analyzer

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

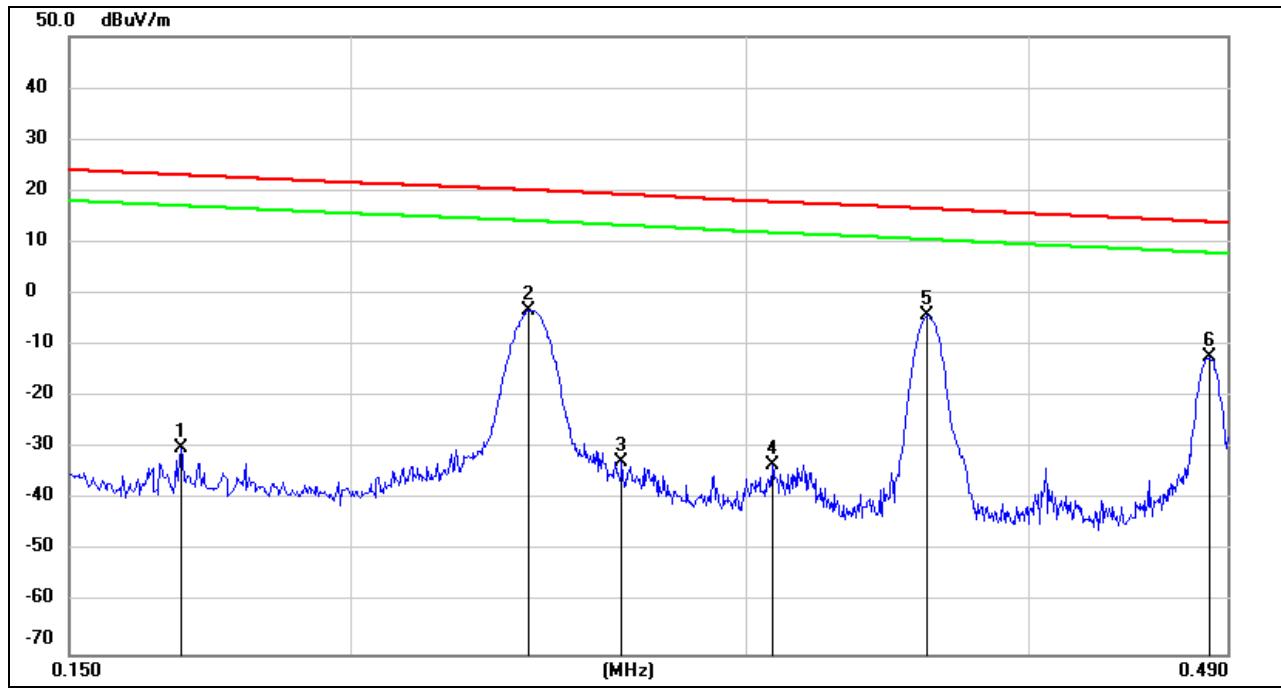

1. The testing follows the guidelines in ANSI C63.10-2013.
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 0.8m above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

RESULTS

7.1. SPURIOUS EMISSIONS BELOW 30MHz

FCC PART 15C BELOW 30MHz SPURIOUS EMISSIONS (MODE 6, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

9kHz~ 150kHz


No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	0.0110	71.58	-101.52	-29.94	47.00	-76.94	peak
2	0.0194	67.80	-101.02	-33.22	41.94	-75.16	peak
3	0.0298	70.74	-101.11	-30.37	38.13	-68.50	peak
4	0.0480	60.75	-101.35	-40.60	34.01	-74.61	peak
5	0.0693	63.59	-100.99	-37.40	30.79	-68.19	peak
6	0.1118	113.32	-101.41	11.91	26.80	-14.89	peak

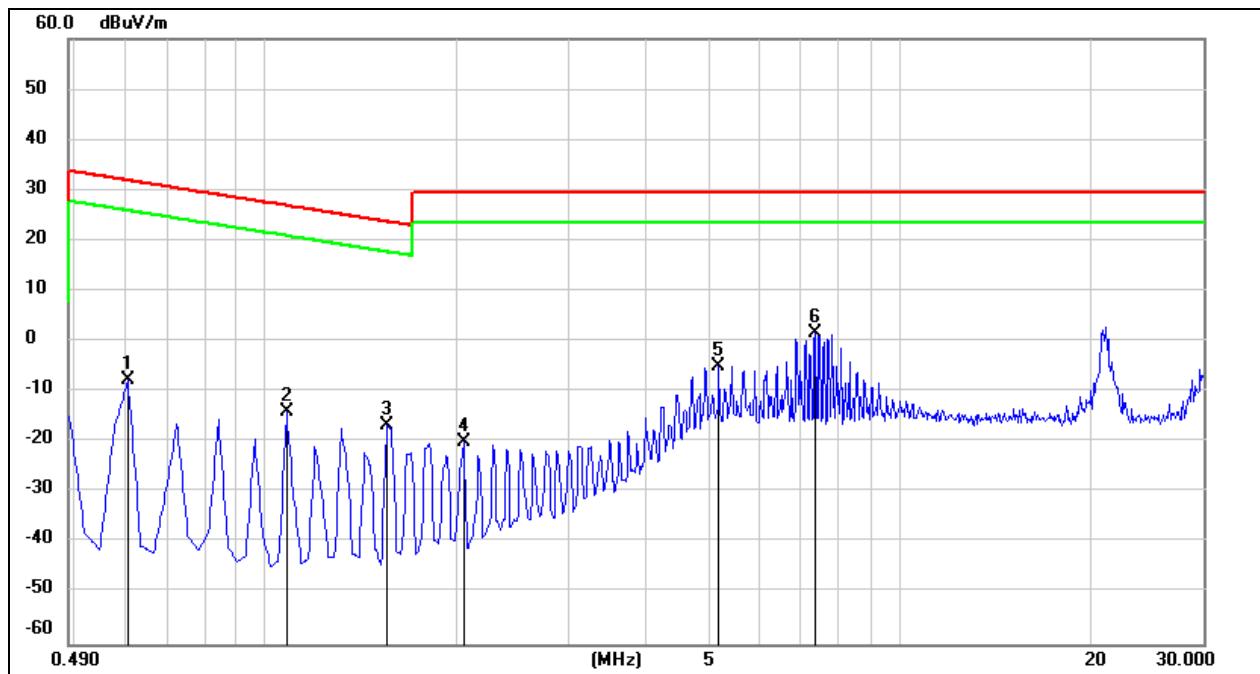
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. The test was performed at 3m test site, but we added the corresponding factor to extrapolated the result to the specified distance according to FCC 15.31(f)(2).

150kHz ~ 490kHz


No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	0.1684	71.90	-101.87	-29.97	23.08	-53.05	peak
2	0.2398	98.69	-101.80	-3.11	20.18	-23.29	peak
3	0.2639	69.06	-101.78	-32.72	19.33	-52.05	peak
4	0.3078	68.67	-101.78	-33.11	17.86	-50.97	peak
5	0.3608	97.54	-101.76	-4.22	16.54	-20.76	peak
6	0.4808	89.47	-101.71	-12.24	13.98	-26.22	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

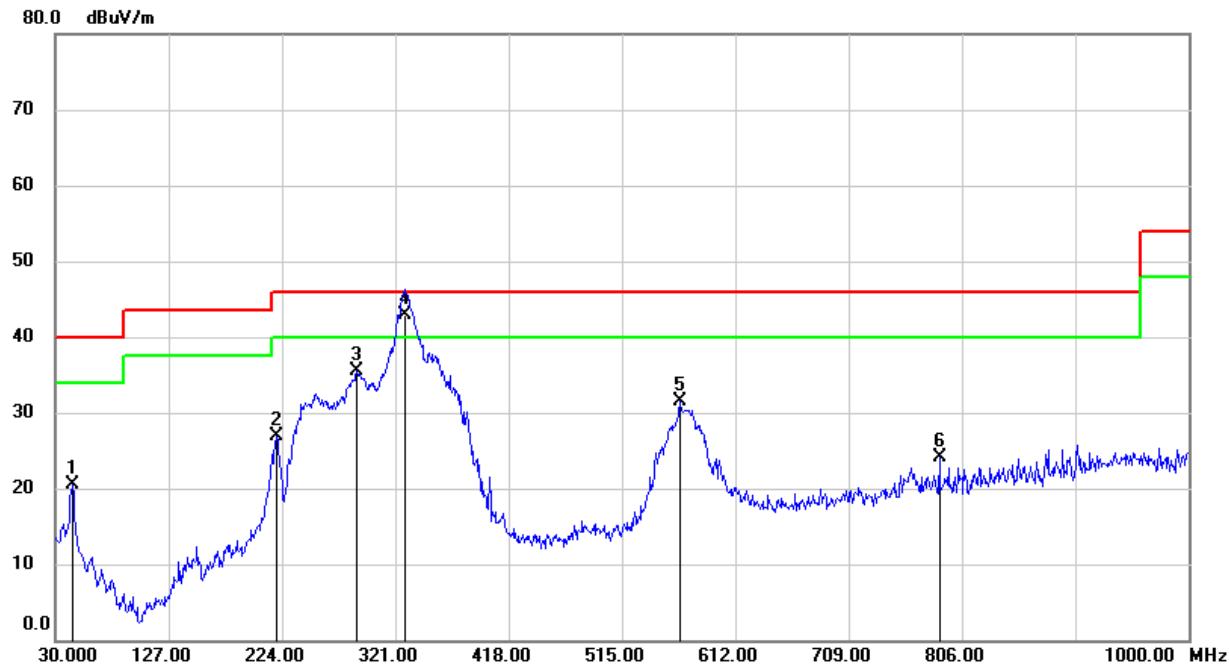
4. The test was performed at 3m test site, but we added the corresponding factor to extrapolated the result to the specified distance according to FCC 15.31(f)(2).

490kHz ~ 30MHz

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	0.6080	93.13	-100.87	-7.74	31.93	-39.67	peak
2	1.0802	82.57	-96.65	-14.08	26.94	-41.02	peak
3	1.5524	75.59	-92.37	-16.78	23.79	-40.57	peak
4	2.0540	67.98	-87.85	-19.87	29.54	-49.41	peak
5	5.1821	57.04	-61.90	-4.86	29.54	-34.40	peak
6	7.3658	63.14	-61.58	1.56	29.54	-27.98	peak

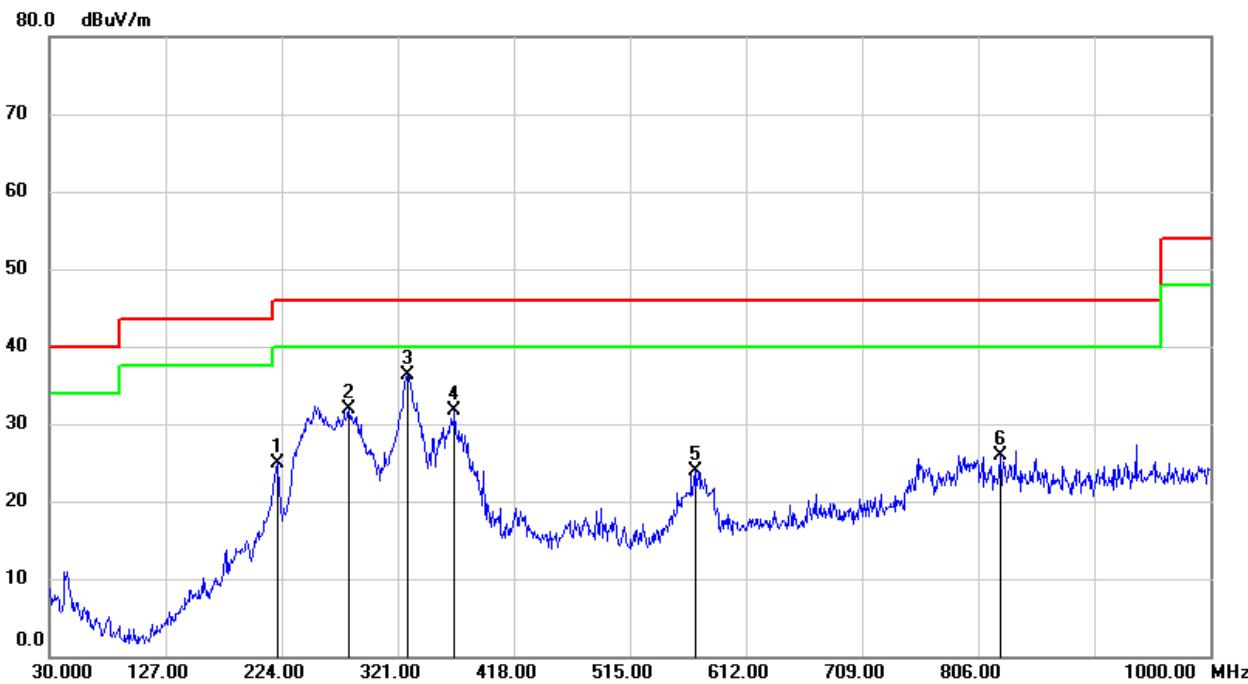
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.


3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. The test was performed at 3m test site, but we added the corresponding factor to extrapolated the result to the specified distance according to FCC 15.31(f)(2).

Note: All the modes have been tested, only the worst data record in the report.


7.2. SPURIOUS EMISSIONS 30MHz - 1GHz

FCC PART15C SPURIOUS EMISSIONS (MODE 6, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	44.5500	38.55	-18.05	20.50	40.00	-19.50	QP
2	219.1500	43.76	-16.87	26.89	46.00	-19.11	QP
3	288.0200	50.01	-14.50	35.51	46.00	-10.49	QP
4	328.7600	56.40	-13.57	42.83	46.00	-3.17	QP
5	564.4699	40.64	-9.17	31.47	46.00	-14.53	QP
6	786.6000	29.66	-5.56	24.10	46.00	-21.90	QP

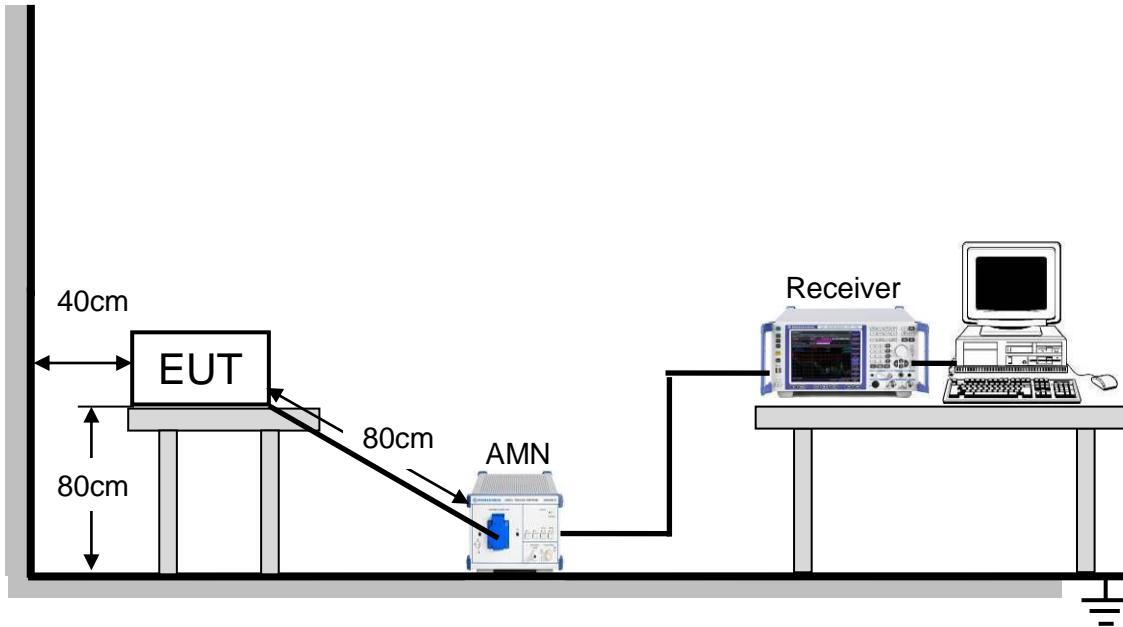
Note: 1. Result Level = Read Level + Correct Factor.
 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
 4. All the noise are created from the digital circuit. It is not created by wireless charging circuit.

FCC PART15C SPURIOUS EMISSIONS (MODE 6, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	220.1200	41.93	-16.93	25.00	46.00	-21.00	QP
2	280.2600	46.76	-14.85	31.91	46.00	-14.09	QP
3	328.7600	49.87	-13.57	36.30	46.00	-9.70	QP
4	368.5300	44.56	-12.83	31.73	46.00	-14.27	QP
5	569.3200	32.99	-9.01	23.98	46.00	-22.02	QP
6	824.4300	30.82	-4.86	25.96	46.00	-20.04	QP

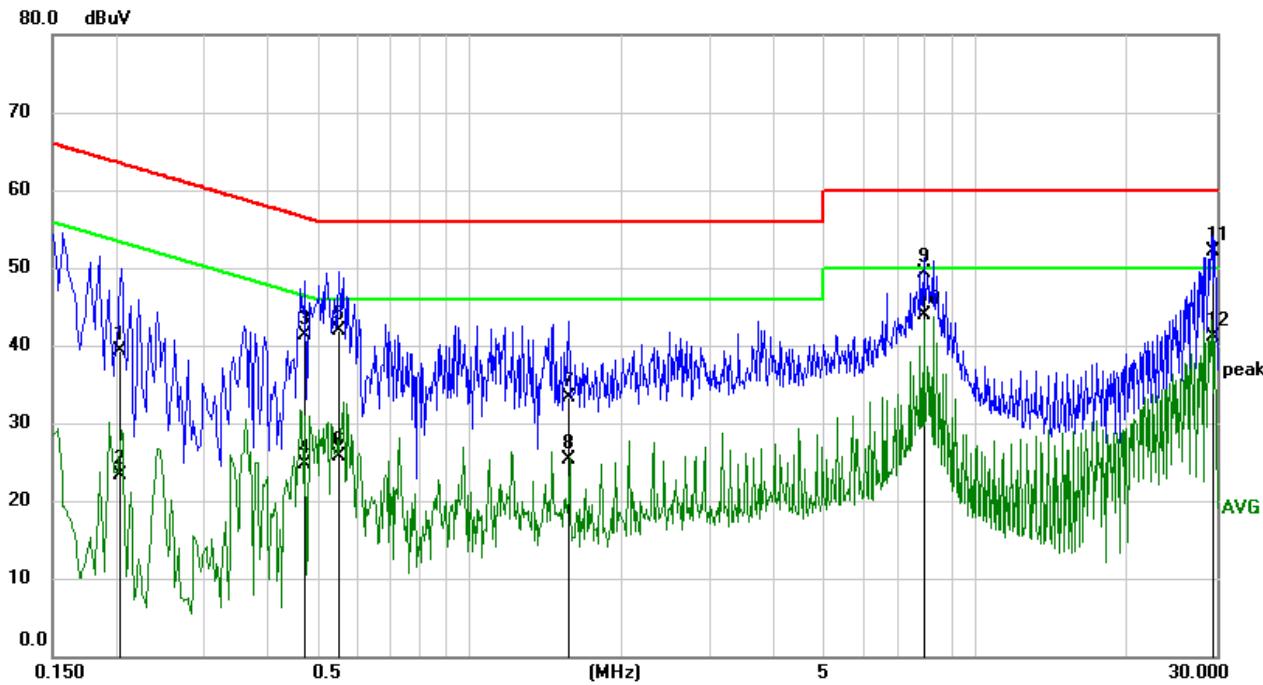
Note: 1. Result Level = Read Level + Correct Factor.
2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto
4. All the noise are created from the digital circuit. It is not created by wireless charging circuit.

Note: All the modes had been tested, but only the worst data recorded in the report.

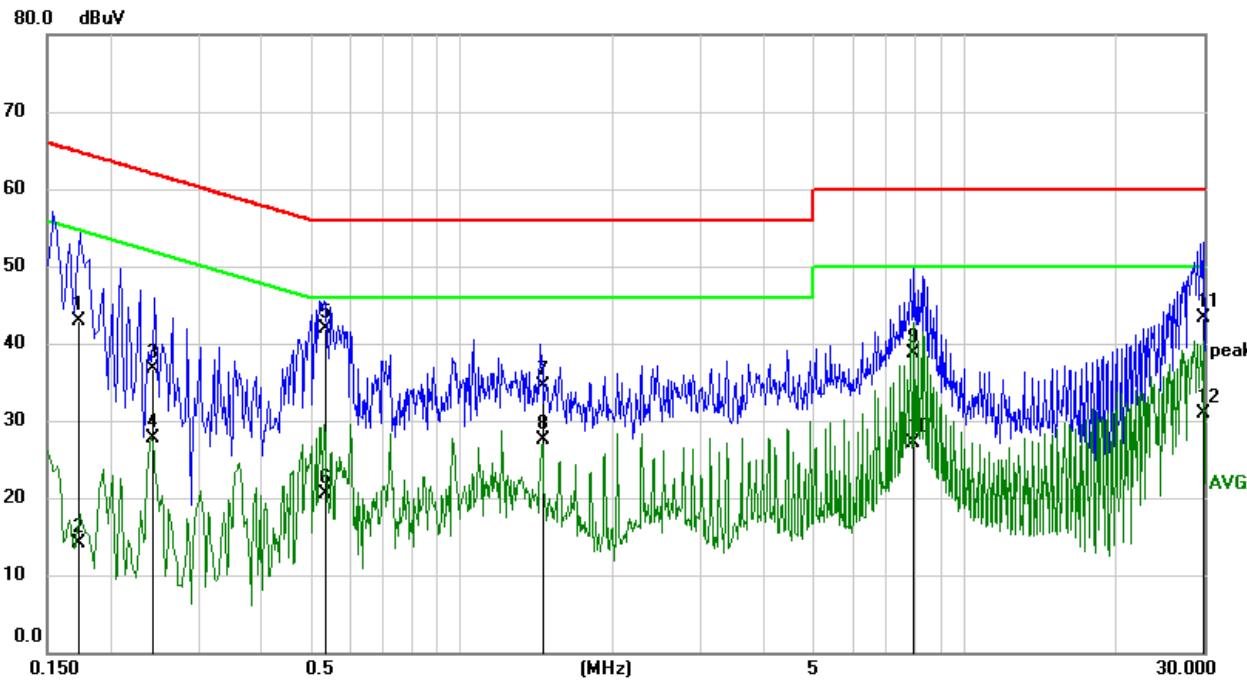

8. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

Please refer to FCC §15.207 (a) .


FREQUENCY (MHz)	(dBuV)	
	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE


The EUT is put on a table of non-conducting material that is 0.8m high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.). An EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST RESULTS**LINE L RESULTS (MODE 1, WORST-CASE CONFIGURATION)**

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	0.2031	29.68	9.60	39.28	63.48	-24.20	QP
2	0.2031	13.74	9.60	23.34	53.48	-30.14	AVG
3	0.4706	31.73	9.60	41.33	56.50	-15.17	QP
4	0.4706	15.08	9.60	24.68	46.50	-21.82	AVG
5	0.5568	32.34	9.60	41.94	56.00	-14.06	QP
6	0.5568	16.16	9.60	25.76	46.00	-20.24	AVG
7	1.5806	23.66	9.62	33.28	56.00	-22.72	QP
8	1.5806	15.75	9.62	25.37	46.00	-20.63	AVG
9	7.9033	39.58	9.72	49.30	60.00	-10.70	QP
10	7.9033	34.18	9.72	43.90	50.00	-6.10	AVG
11	29.6677	42.28	9.79	52.07	60.00	-7.93	QP
12	29.6677	31.28	9.79	41.07	50.00	-8.93	AVG

Note: 1. Result = Reading +Correct Factor.
 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.
 5. The extension cord/outlet strip was calibrated with the LISN as required by ANSI C63.10:2013 Clause 6.2.2.

LINE N RESULTS (MODE 1, WORST-CASE CONFIGURATION)

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	0.1723	33.21	9.60	42.81	64.85	-22.04	QP
2	0.1723	4.60	9.60	14.20	54.85	-40.65	Avg
3	0.2427	27.13	9.60	36.73	62.00	-25.27	QP
4	0.2427	18.16	9.60	27.76	52.00	-24.24	Avg
5	0.5379	32.40	9.60	42.00	56.00	-14.00	QP
6	0.5379	10.86	9.60	20.46	46.00	-25.54	Avg
7	1.4515	24.87	9.61	34.48	56.00	-21.52	QP
8	1.4515	17.84	9.61	27.45	46.00	-18.55	Avg
9	7.9835	29.03	9.72	38.75	60.00	-21.25	QP
10	7.9835	17.39	9.72	27.11	50.00	-22.89	Avg
11	29.9549	33.38	9.87	43.25	60.00	-16.75	QP
12	29.9549	21.07	9.87	30.94	50.00	-19.06	Avg

Note: 1. Result = Reading +Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).

4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

5. The extension cord/outlet strip was calibrated with the LISN as required by ANSI C63.10:2013 Clause 6.2.2.

Note: All the modes had been tested, but only the worst data recorded in the report.

END OF REPORT