

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No.....: TRE17120157 R/C.....: 97153

FCC ID.....: 2AN6WXF-638

Applicant's name.....: Shenzhen XinFuChuang Electronic Co., Ltd.

Address...... 5 Floor, Building 2#, Road 1 No.5 ShangXue Technology Park,

Bantian Street, LongGang District, Shenzhen, China

Manufacturer...... Shenzhen XinFuChuang Electronic Co., Ltd.

Address...... 5 Floor, Building 2#, Road 1 No.5 ShangXue Technology Park,

Bantian Street, LongGang District, Shenzhen, China

Test item description: WALKIE TALKIE

Trade Mark: -

Model/Type reference..... XF-638

XF-388, XF-508, XF-608, XF-368, XF-688, XF-868, XF-768, Listed Model(s)

XF-588, XF-668

Standard: FCC Part 95

Date of receipt of test sample.......... Dec. 18, 2017

Date of testing...... Dec. 19, 2017 – Dec. 28, 2017

Date of issue...... Dec. 28, 2017

Result.....: PASS

Compiled by

(position+printed name+signature)..: File administrators Shayne Zhu

Supervised by

(position+printed name+signature)..: Project Engineer Jerry Wang

Approved by

(position+printed name+signature)..: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Address...... 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Contents

<u>1.</u>	IEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
_		
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Test frequency list	6
3.4.	EUT operation mode	6
3.5.	EUT configuration	6
<u>4 .</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4. 1. 4.2.	Test Facility	7
4.2. 4.3.	Environmental conditions	8
4.3. 4.4.	Statement of the measurement uncertainty	8
4.4. 4.5.	Equipments Used during the Test	9
4.3.	Equipments used during the rest	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Maximum Transmitter Power (Effective Radiated Power)	11
5.1. 5.2.	Emission Bandwidth	13
5.2. 5.3.	Emission Bandwidth Emission Mask	15
5.3. 5.4.	Transmitter Radiated Spurious Emission	17
5. 4 . 5.5.	Spurious Emission on Antenna Port	22
5.6.	Modulation Limit	23
5.7.	Frequency Stability	26
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	28
		_ <u>- v</u>
7.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	29

Report No: TRE17120157 Page 3 of 33 Issued: 2017-12-28

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 95 PERSONAL RADIO SERVICES.

<u>TIA/EIA-603-E-2016</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

<u>ANSI C63.26</u> American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services.

FCC Part 2 Frequency allocations and radio treaty matters, general rules and regulations.

1.2. Report version

Version No.	Date of issue	Description
00	Dec. 28, 2017	Original

Report No: TRE17120157 Page 4 of 33 Issued: 2017-12-28

2. Test Description

Transmitter Requirement				
Test item	Standarda requirement	Result		
rest item	Standards requirement	Pass	N/A	
Maximum Transmitter Power	FCC Part 95.567	\boxtimes		
Modulation Limit	FCC Part 95.575	\boxtimes		
Emission Bandwidth	FCC Part 95.573	\boxtimes		
Emission Mask	FCC Part 95.579	\boxtimes		
Transmitter Radiated Spurious Emission	FCC Part 95.579	\boxtimes		
Spurious Emission On Antenna Port	FCC Part 95.579		\boxtimes	
Frequency Stability	FCC Part 95.565	\boxtimes		

Note:

The test measurements were made in accordance with the above-mentioned departmental standard(s), and the equipment identified in this application has been subject to all the applicable test conditions specified in the departmental standards and all of the requirements of the standards have been met.

Report No: TRE17120157 Page 5 of 33 Issued: 2017-12-28

3. **SUMMARY**

3.1. Client Information

Applicant: Shenzhen XinFuChuang Electronic Co., Ltd.	
Address: 5 Floor, Building 2#, Road 1 No.5 ShangXue Technology Park, Bantian Street, LongGang District, Shenzhen, China	
Manufacturer:	Shenzhen XinFuChuang Electronic Co., Ltd.
Address:	5 Floor, Building 2#, Road 1 No.5 ShangXue Technology Park, Bantian Street, LongGang District, Shenzhen, China

3.2. Product Description

Name of EUT:	WALKIE TALKIE			
Trade mark:	-			
Model/Type reference:	XF-638			
Listed model(s):	XF-388, XF-508, XF-608, XF-368, XF-688, XF-868, XF-768, XF-588, XF-668			
Power supply:	DC 3.6V			
Battery information:	-			
Charger information:	-			
Adapter information:	-			
Operation Frequency Range:	FRS:	462.5500MHz~462.7250MHz 467.5625MHz~467.7125MHz		
Rated Output Power:	FRS:	0.5W(27dBm)		
Modulation Type:	FRS:	FM		
Channel Separation:	FRS:	12.5kHz		
Support Function:		☐ Digital Data		
Emission Designator:	FRS:	9K69F3E		
Maximum Transmitter Power (ERP):	FRS: 21.8dBm			
Antenna Type:	Integral			
Antenna Gain:	2.5dBi			

3.3. Test frequency list

Operation Mode	Modulation	Channel Separation (kHz	Operation Frequency Range (MHz)	Test Channel	Test Frequency (MHz)
		12.5	462.5500~462.7250 467.5625~467.7125	CH _L	462.6375(CH4)
FRS	FM			CH _M	467.6375(CH11)
				CH _H	462.6500(CH19)

The Product channel frequency table:

Channel	Frequency	Description	Channel	Frequency	Description
1	462.5625	FRS	12	467.6625	FRS
2	462.5875	FRS	13	467.6875	FRS
3	462.6125	FRS	14	467.7125	FRS
4	462.6375	FRS	15	462.5500	FRS
5	462.6625	FRS	16	462.5750	FRS
6	462.6875	FRS	17	462.6000	FRS
7	462.7125	FRS	18	462.6250	FRS
8	467.5625	FRS	19	462.6500	FRS
9	467.5875	FRS	20	462.6750	FRS
10	467.6125	FRS	21	462.7000	FRS
11	467.6375	FRS	22	462.7250	FRS

3.4. EUT operation mode

Test mode	Transmitting	Receiving	FRS
TX	√		√
RX		√	√

 $[\]sqrt{:}$ is operation mode.

3.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- - supplied by the lab

0	Power Cable	Length (m):	-
		Shield :	Unshielded
		Detachable :	Undetachable
0	Multimeter	Manufacturer:	-
		Model No.:	-

Report No: TRE17120157 Page 7 of 33 Issued: 2017-12-28

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No: TRE17120157 Page 8 of 33 Issued: 2017-12-28

4.3. Environmental conditions

Normal Conditon			
Relative humidity:	20 % to 75 %.		
Air Pressure:	950~1050mba		
Voltage:	DC 6.0V		

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power Radiated	2.20 dB	(1)
Radiated Emission 30~1000MHz	4.65 dB	(1)
Occupied Bandwidth	35 Hz	(1)
FM deviation	25 Hz	(1)
Audio level	0.62 dB	(1)
Low Pass Filter Response	0.76 dB	(1)
Modulation Limiting	0.42 %	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No: TRE17120157 Page 9 of 33 Issued: 2017-12-28

4.5. Equipments Used during the Test

Modulation Characteristic						
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal. (mm/dd/yy)		
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	11/11/2017		

Frequency Stability						
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal. (mm/dd/yy)		
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	11/11/2017		
Signal Generator	Rohde&Schwarz	SMT03	100059	11/11/2017		
Climate Chamber	ESPEC	EL-10KA	05107008	11/10/2017		

Maximum Transmitter Power & Transmitter Radiated Spurious Emission					
Name of Equipment	Manufacturer	Manufacturer Model		Last Cal. (mm/dd/yy)	
Horn Antenna	SCHWARZBECK	9120D	1011	3/27/2017	
Spectrum Analyzer	R&S	FSP40	100597	11/11/2017	
Broadband Preamplifer	SCHWARZBECK	BBV 9718	9718-248	10/18/2017	
Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	
Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	
Test Software	R&S	E3	N/A	N/A	
Ultra-Broadband Antenna	SCHWARZBECK	VULB9163	538	4/5/2017	
Pre-amplifer	SCHWARZBECK	BBV 9743	9743-0022	10/18/2017	
RF Connection Cable	HUBER+SUHNER	3m 18GHz S Serisa	N/A	11/21/2017	
RF Connection Cable	HUBER+SUHNER	3m 3GHz S Serisa	N/A	11/21/2017	
RF Connection Cable	HUBER+SUHNER	3m 3GHz RG Serisa	N/A	11/21/2017	
RF Connection Cable	HUBER+SUHNER	6m 18GHz S Serisa	N/A	11/21/2017	
RF Connection Cable	HUBER+SUHNER	6m 18GHz S Serisa	N/A	N/A	
RF Connection Cable	HUBER+SUHNER	3m 18GHz S Serisa	N/A	N/A	
High-Pass Filter	Anritsu	MP526D	6220878392	11/11/2017	
High-Pass Filter	OCEN	OSP- HPF26300P20-LC		N/A	
High-Pass Filter	OCEN	OSP- HPF60300P20-LC		N/A	
RF Connection Cable	HUBER+SUHNER	MULTIFLEX 141	N/A	11/21/2017	

Emission Bandwidth & Emission Mask						
Name of Equipment	Last Cal					
Receiver	Rohde&Schwarz	ESI 26	100009	11/11/2017		
Attenuator	R&S	ESH3-22	100449	11/11/2017		
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	11/11/2017		
Spectrum Analzyer	Rohde&Schwarz	FSP40	1164.4391.40	11/11/2017		

The calibration interval was one year.

Report No: TRE17120157 Page 11 of 33 Issued: 2017-12-28

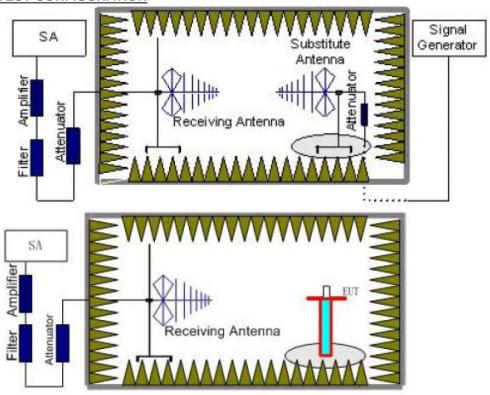
5. TEST CONDITIONS AND RESULTS

5.1. Maximum Transmitter Power (Effective Radiated Power)

Applicants for licenses must request and use no more power than the actual power necessary for satisfactory operation.

LIMIT

FCC Part 95.567:


Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8 through 14 does not exceed 0.5 Watts and the ERP on channels 1 through 7 and 15 through 22 does not exceed 2.0 Watts.

TEST PROCEDURE

- 1. EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1. 0 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in six channels were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
 - The measurement results are obtained as described below:
 - Power(EIRP)=PMea- PAg Pcl Ga
 - We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl Ga
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

Report No : TRE17120157 Page 12 of 33 Issued: 2017-12-28

TEST CONFIGURATION

TEST MODE:

Please reference to the section 3.4

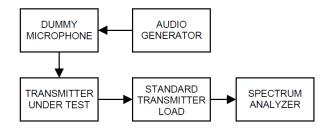
TEST RESULTS

Operation Mode	Test Channel	Measured ERP (dBm)	Limit (dBm)	Result
	CH _L	21.5	33.0	
TX	CH _M	21.8	27.0	Pass
	CH _H	21.3	33.0	

Report No: TRE17120157 Page 13 of 33 Issued: 2017-12-28

5.2. Emission Bandwidth

The Emission Bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits.


LIMIT

FCC Part 95.573:

FRS:

The authorized bandwidth for an FRS unit is 12.5 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was modulated by 2.5kHz sine wave audio signal; the level of the audio signal employed is 16dB greater than that necessary to produce 50% of rated system deviation.

 Rated system deviation is 2.5kHz and 5kHz).
- 2 Spectrum set as follow:

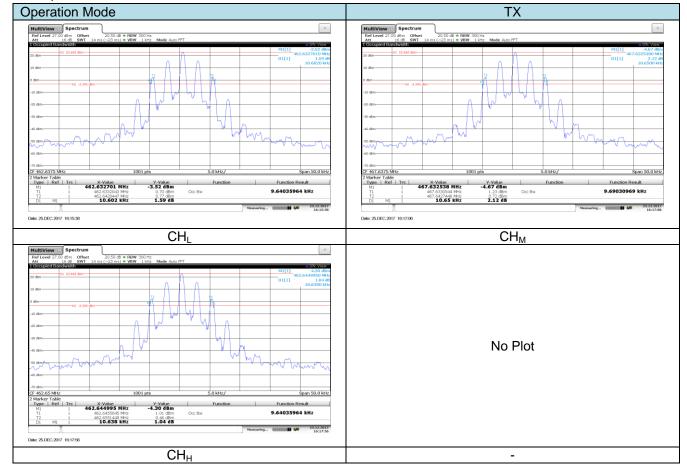
Centre frequency = fundamental frequency, span=50kHz,

RBW=100Hz, VBW=300Hz, Sweep = auto,

Detector function = peak, Trace = max hold

- 3 Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth
- 4 Measure and record the results in the test report.

TEST MODE:


Please reference to the section 3.4

TEST RESULTS

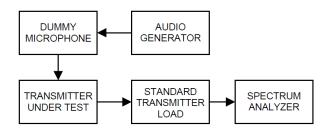
Operation Mode	Test Channel Occupied Band		Bandwidth	Limit(kHz)	Result	
	rest Chamilei	99%	26dB	LIIIII(KHZ)	Nesuit	
	CH _L	9.640	10.602	≤12.5		
TX	CH _M	9.690	10.650	≤12.5	Pass	
	СНн	9.640	10.638	≤12.5		

Test plot as follows:

Report No: TRE17120157 Page 15 of 33 Issued: 2017-12-28

5.3. Emission Mask

Transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section.

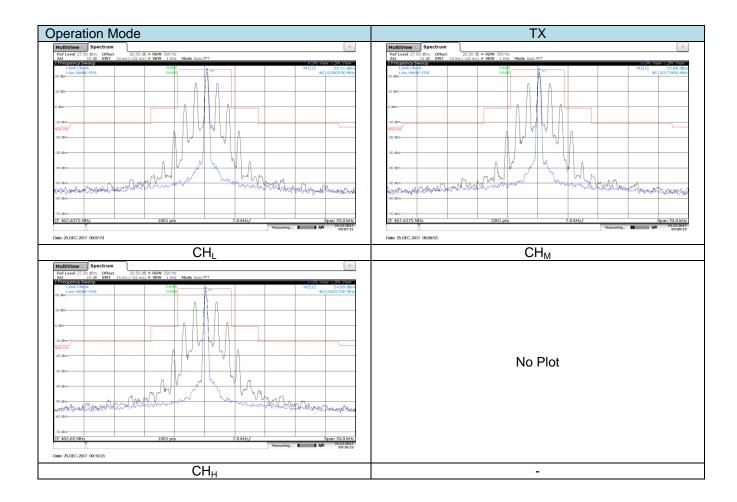

LIMIT

FCC Part 95.579:

Each FRS transmitter type must be designed to satisfy the applicable unwanted emissions limits in this paragraph.

- (a) Attenuation requirements. The power of unwanted emissions must be attenuated below the carrier power output in Watts (P) by at least:
- (1) 25 dB (decibels) in the frequency band 6.25 kHz to 12.5 kHz removed from the channel center frequency.
- (2) 35 dB in the frequency band 12.5 kHz to 31.25 kHz removed from the channel center frequency.
- (3) 43 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 31.25 kHz.

TEST CONFIGURATION


TEST PROCEDURE

- 1 Connect the equipment as illustrated.
- 2 Spectrum set as follow:
 - Centre frequency = fundamental frequency, span=125kHz for 12.5kHz channel spacing, RBW=300Hz, VBW=1000Hz, Sweep = auto,
 - Detector function = peak, Trace = max hold
- 3 Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement.
- 4 Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation(Rated system deviation is 2.5 kHz for 12.5kHz channel spacing). The input level shall be established at the frequency of maximum response of the audio modulating circuit. Transmitters employing digital modulation techniques that bypass the limiter and the audio low-pass filter shall be modulated as specified by the manufacturer
- 5 Measure and record the results in the test report.

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Report No: TRE17120157 Page 17 of 33 Issued: 2017-12-28

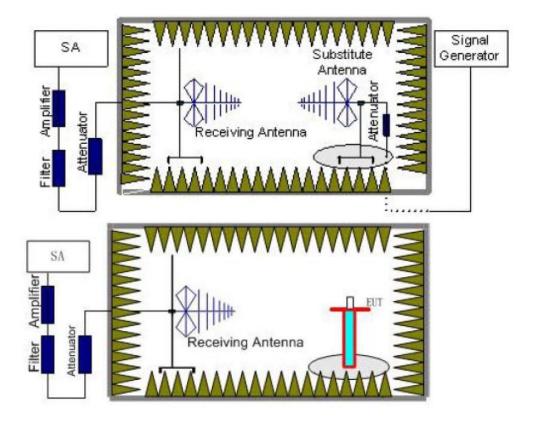
5.4. Transmitter Radiated Spurious Emission

Radiated spurious emissions are emissions from the equipment when transmitting into a nonradiating load on a frequency or frequencies that are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

LIMIT

FCC Part 95.579:

43 + 10 log (Pwatts)


Calculation: Limit (dBm) =EL-43-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is P(dBm).

Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13 dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in six channels were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the

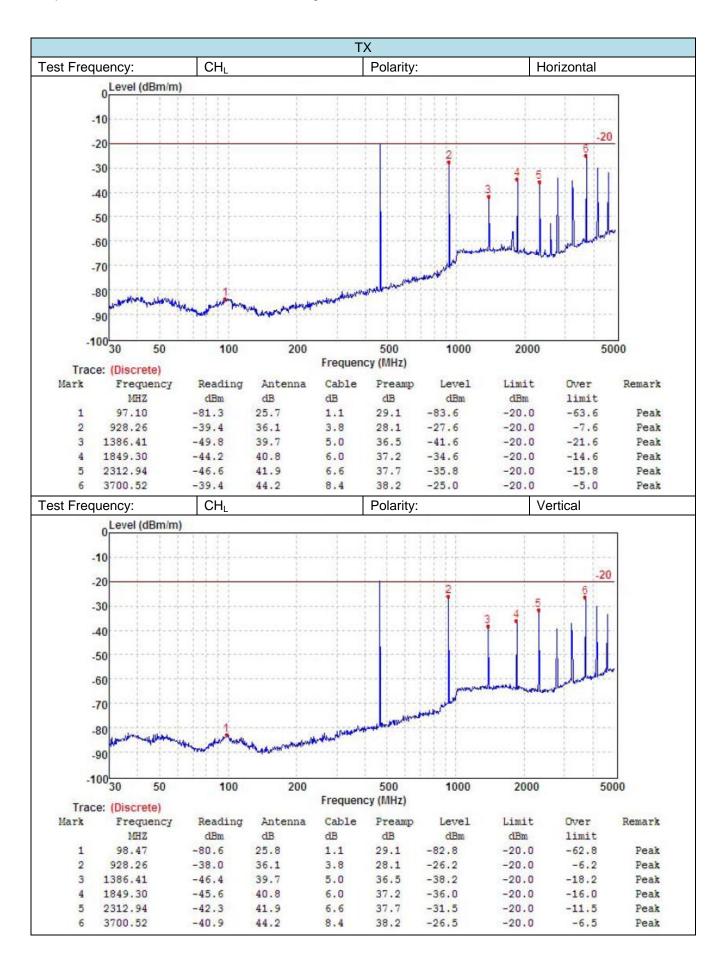
- substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) , the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

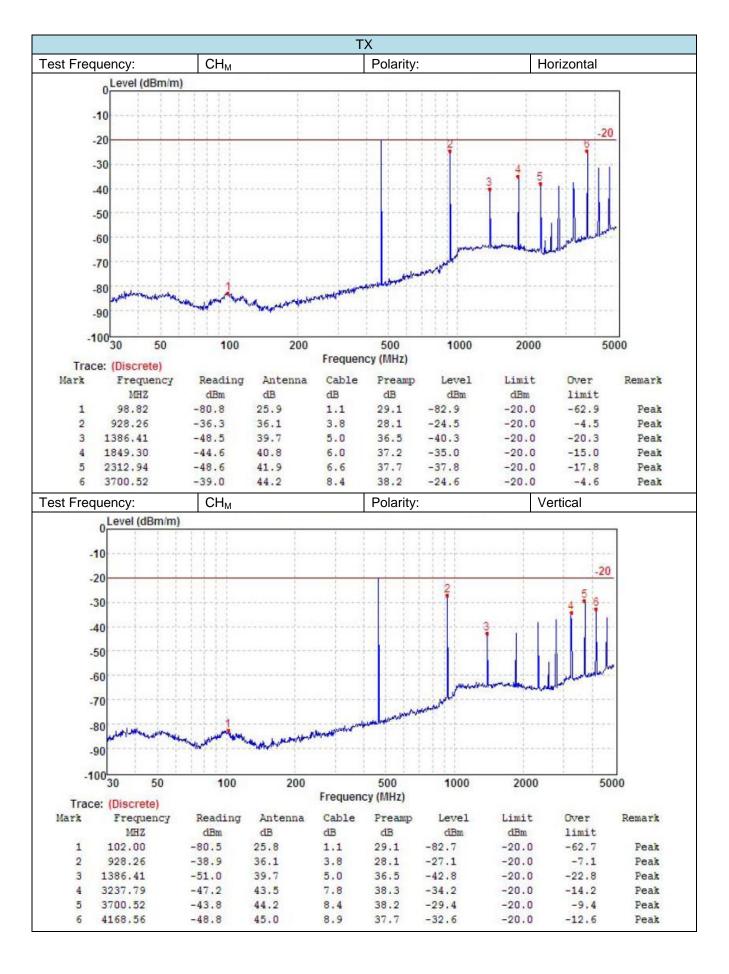
The measurement results are obtained as described below:

Power(EIRP)=P_{Mea}- P_{Ag} - P_{cl} - G_a

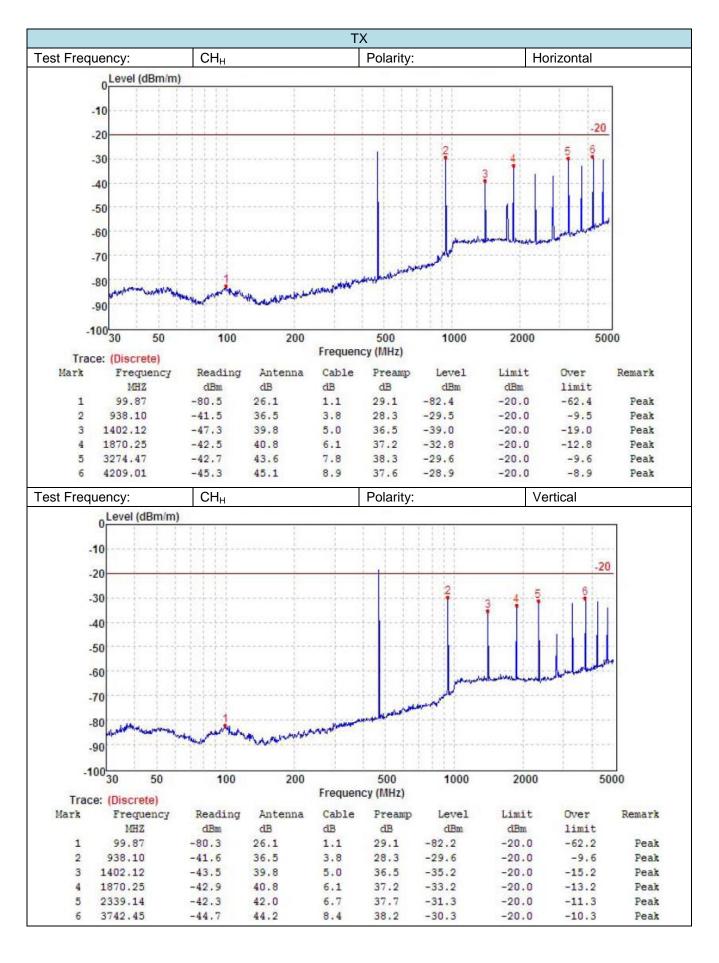
- We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: $Power(EIRP) = P_{Mea} P_{cl} G_{a}$
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST MODE:


Please reference to the section 3.4


TEST RESULTS

$oxed{oxed}$ Passed	■ Not Applicable
---------------------	------------------


Note:

- 1. In general, the worse case attenuation requirement shown above was applied.
- 2. The measurement frequency range from 30 MHz to 5 GHz.
- 3. Absolute Level=SG Level-Cable loss+Antenna Gain, Margin=Limit-Absulute Level

Report No: TRE17120157 Page 22 of 33 Issued: 2017-12-28

5.5. Spurious Emission on Antenna Port

Conducted spurious emissions are emissions at the antenna terminals on a frequency or frequencies that are outside a band sufficient to ensure transmission of information of required quality for the class of communication desired

LIMIT

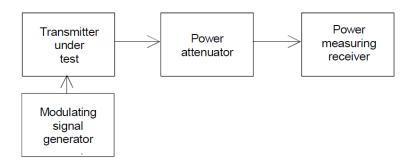
FCC Part 95.579:

43 + 10 log (Pwatts)

Calculation: Limit (dBm) =EL-43-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is P(dBm).


Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13 dBm

TEST PROCEDURE

1. The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation.

- 2. The resolution bandwidth of the spectrum analyzer was set to 100 kHz. Sufficient scans were taken to show any out of band emission up to 10th. Harmonic for the lower and the highest frequency range. Set RBW 100 kHz, VBW 300 kHz in the frequency band 30MHz to 1GHz, while set RBW=1MHz.VBW=3MHz from the 1GHz to 10th Harmonic.
- 3. The audio input was set to 0 to get the unmodulated carrier, the resulting picture is print out for each channel separation.

TEST CONFIGURATION

TEST MODE:

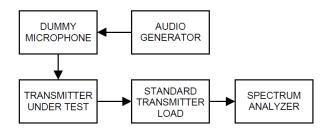
Please reference to the section 3.4

TEST RESULTS

This equipment is integral antenna.

Report No: TRE17120157 Page 23 of 33 Issued: 2017-12-28

5.6. Modulation Limit


Modulation limiting is the transmitter circuit's ability to limit the transmitter from producing deviations in excess of a rated system deviation.

LIMIT

FCC Part 95.575, FCC Part 2.1047(b)

Each FRS transmitter type must be designed such that the peak frequency deviation does not exceed 2.5 kHz, and the highest audio frequency contributing substantially to modulation must not exceed 3.125 kHz.

TEST CONFIGURATION

TEST PROCEDURE

Modulation Limit test procedure:

- 1) Connect the equipment as illustrated.
- 2) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 3) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤0.25 Hz to ≥15,000 Hz. Turn the de-emphasis function off.
- 4) Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, this level is as a reference (0dB) and vary the input level from –20 to +20dB.
- 5) Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level
- 6) Repeat step 4-5 with input frequency changing to 300Hz, 1004Hz, 1500Hz and 2500Hz in sequence.

Audio Frequency Response:

- 1) Connect the equipment as illustrated.
- 2) Adjust the audio input for 20% of rated system deviation at 1kHz using this level as a reference.
- 3) Vary the Audio frequency from 100Hz to 5 kHz and record the frequency deviation.
- 4) Audio Frequency Response =20log₁₀ (V_{FREO}/V_{REF}).

TEST MODE:

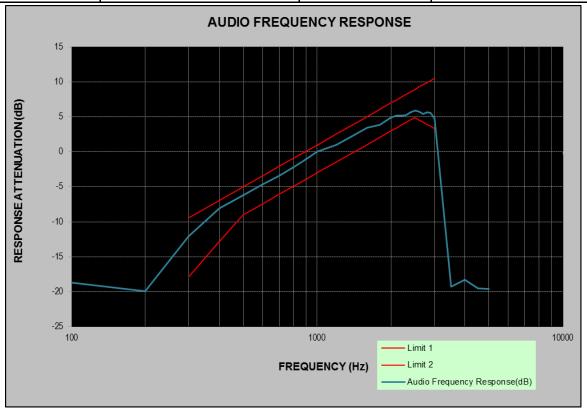
Please reference to the section 3.4

TEST RESULTS

Note: have pre-tested all test frequency, record the worst case mode CH_M on the report.

Report No : TRE17120157 Page 24 of 33 Issued: 2017-12-28

Modulation Limit:


Modulation Ellint.						
			TX: CH _M			
Modulation Level	Peak frequency deviation (kHz)				12-20/111	D #
(dB)	300Hz	1004Hz	1500Hz	2500 Hz	Limit (kHz)	Result
-20	0.378	0.435	0.471	0.532		
-15	0.397	0.514	0.583	0.708		
-10	0.429	0.624	0.768	0.981		
-5	0.478	0.853	1.092	1.486		
0	0.563	1.251	1.666	2.094	2.5	Pass
5	0.731	1.968	2.327	2.242		
10	0.902	2.12	2.362	2.357		
15	0.923	2.123	2.358	2.401		
20	0.912	2.141	2.371	2.402		

Test plot as follows:

Audio Frequency Response:

	TX: CH _M							
Audio Frequency (Hz)	Audio Frequency Response (dB)	Audio Frequency (Hz)	Audio Frequency Response (dB)					
100	-18.72	2100	5.18					
200	-19.93	2200	5.15					
300	-12.11	2300	5.29					
400	-8.05	2400	5.65					
500	-6.23	2500	5.92					
600	-4.67	2600	5.73					
700	-3.44	2700	5.40					
800	-2.21	2800	5.63					
900	-1.03	2900	5.61					
1000	0.00	3000	4.74					
1200	1.02	3500	-19.25					
1400	2.28	4000	-18.32					
1600	3.45	4500	-19.55					
1800	3.83	5000	-19.58					
2000	4.94	-	-					

Note: The highest audio frequency response at 3kHz<3.125kHz, so meet the requirement.

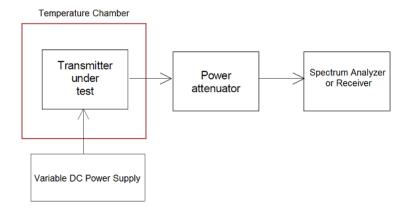
Report No: TRE17120157 Page 26 of 33 Issued: 2017-12-28

5.7. Frequency Stability

The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

LIMIT

FCC Part 95.565:


FRS:

The carrier frequency tolerance shall be better than ±2.5 ppm.

TEST PROCEDURE

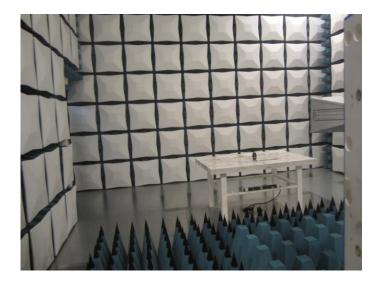
- 1. According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to +50°C centigrade.
- 2. According to FCC Part 2 Section 2.1055 (d) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3. Vary primary supply voltage from 3.6V to 4.5V.
- 4. The EUT was set in the climate chamber and connected to an external DC power supply. The RF output was directly connected to Spectrum Analyzer The coupling loss of the additional cables was recorded and taken in account for all the measurements. After temperature stabilization (approx. 20 min for each stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply and the voltage was adjusted in the required ranges. The result was recorded.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 3.4

TEST RESULTS


TX						
Test cor	Test conditions Frequency error (ppm)			Limit	Daguit	
Voltage(V)	Temp(°C)	CH∟	CH _M	СНн	(ppm)	Result
	-30	0.832	0.763	0.768		
	-20	0.763	0.754	0.758		
	-10	0.802	0.837	0.816		
	0	0.779	0.756	0.759		
4.50	10	0.814	0.804	0.810		
	20	0.782	0.789	0.817	±2.5	Pass
	30	0.781	0.779	0.777		
	40	0.751	0.819	0.816		
	50	0.849	0.780	0.755		
3.83	20	0.764	0.755	0.764		
3.60	20	0.756	0.763	0.850		

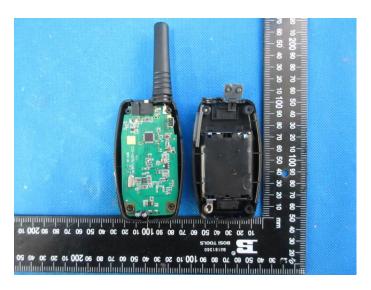
Report No: TRE17120157 Page 28 of 33 Issued: 2017-12-28

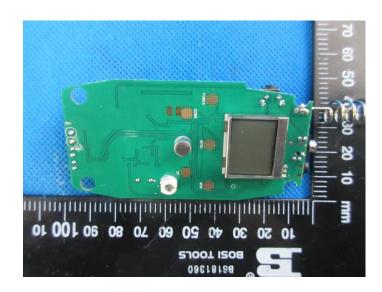
6. Test Setup Photos of the EUT

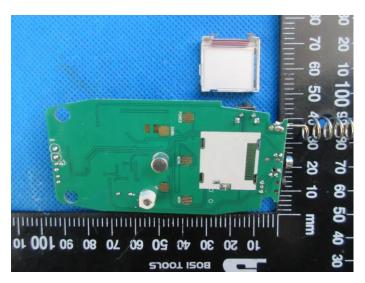
Transmitter Radiated Spurious Emission:

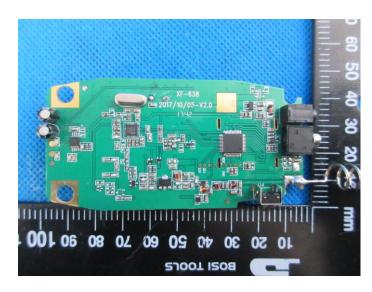
Report No : TRE17120157 Page 29 of 33 Issued: 2017-12-28

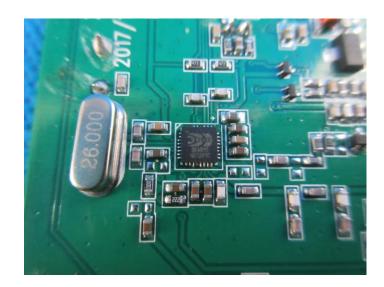
7. External and Internal Photos of the EUT External photos of the EUT




Internal photos of the EUT







Report No : TRE17120157 Page 32 of 33 Issued: 2017-12-28

-----End of Report-----