

RF Exposure Evaluation Declaration

Product Name: 915MHz LoRa Module

Model No. : LTRF8888A1

FCC ID : 2AN2J-LTRF8888A1

Applicant: Yueqing Blue Sky Hi-Tech CO.,LTD

Address: Sulv industry zone, Liushi Town, Yueqing, Zhejiang

province, China

Date of Receipt: Aug. 23, 2017

Test Date : Aug. 23, 2017~ Oct. 20, 2017

Issued Date : Aug. 24, 2018

Report No. : 1782106R-RF-US-P20V01

Report Version: V1.1

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by CNAS, TAF, A2LA or any agency of the The test report shall not be reproduced without the written approval of DEKRA Testing & Certification (Suzhou) Co., Ltd.

Test Report Certification

Issued Date: Aug. 24, 2018

Report No.: 1782106R-RF-US-P20V01

roduct Name : 915MHz LoRa Module

Applicant : Yueqing Blue Sky Hi-Tech CO.,LTD

Address : Sulv industry zone, Liushi Town, Yueqing, Zhejiang province,

China

Manufacturer : Shanghai Coremoon Electronic & Technology Co., Ltd Address : No. 165, Lane 111, Sunjian Road, Pudong District

Shanghai

Model No. : LTRF8888A1

FCC ID : 2AN2J-LTRF8888A1 EUT Voltage : 2.8V-3.7VDC, 130mA

Brand Name

UnGha

Applicable Standard : KDB 447498D01V06

FCC Part1.1310(b)

Test Result : Complied

Performed Location : DEKRA Testing & Certification (Suzhou) Co., Ltd.

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006,

Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: CN1199;

Documented By : Kathy Feng

(Project Assistant: Kathy Feng)

Reviewed By :

(Senior Project Manager: Frank He)

Frankhe

Approved By :

(Engineering Manager: Harry Zhao)

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Average Time (Minutes)			
(A) Limits for C	(A) Limits for Occupational/ Control Exposures						
300-1500			F/300	6			
1500-100,000			5	6			
(B) Limits for General Population/ Uncontrolled Exposures							
300-1500			F/1500	6			
1500-100,000			1	30			

F= Frequency in MHz

Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 0.601mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	915MHz LoRa Module	
Test Item	:	RF Exposure Evaluation	
Test Site	:	AC-6	

Antenna Information

Model No.	N/A							
Antenna manufacturer	N/A							
Antenna Delivery] 1*TX+1*RX ☐ 2*TX+2*RX ☐ 3*TX+3*RX				+3*RX		
Antenna technology	\boxtimes	SISO						
		МІМО		Basic				
				CDD				
				Sectorized				
				Beam-forming				
Antenna Type		External		Dipole				
				Sectorized				
		Internal		PIFA				
				PCB				
			\boxtimes	helical antenna				
				Ceramic Chip Antenna				
				Metal plate type F antenna				
	Ant Gain			Directional Gain				
Antenna Technology				(dBi)				
		(dBi)			For Po	ower	For PSD	
⊠ SISO	-1			-1		-1		

• Output Power into Antenna & RF Exposure Evaluation Distance:

Frequency Band (MHz)	Maximum Output Power to Antenna (dBm)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm2)	Limit of Power Density S(mW/cm2)
902~928MHz	15.96	-1	0.006	0.601

Note: The power density is 0.006mW/cm2 for 915MHz	LoRa Module without any other radio
equipment.	
The Foot	
————— The End	