

MEASUREMENT REPORT

FCC PART15 Subpart C (Section 15.209)

FCC ID: 2AMR2PE

APPLICANT: United Automotive Electronic Systems Co., Ltd.

Application Type: Certification

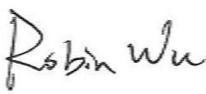
Product: GEM BCM

Model No.: LV2 high

FCC Classification: Part 15 Low Power Transmitter Below 1705 kHz (DCD)

FCC Rule Part(s): FCC PART15 Subpart C (Section 15.209)

Test Procedure(s): ANSI C63.10-2013


Test Date: December 24, 2018 ~ March 26, 2019

Reviewed By

(Kevin Guo)

Approved By

(Robin Wu)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1811WSU0028-U1	Rev. 01	Initial report	04-15-2019	Valid

CONTENTS

Description	Page
1. INTRODUCTION	5
1.1. Scope	5
1.2. MRT Test Location.....	5
2. PRODUCT INFORMATION	6
2.1. Equipment Description.....	6
2.2. Product Specification Subjective to this Report.....	6
2.3. Test Mode	6
2.4. Description of Test Software.....	6
2.5. Test Configuration	7
2.6. EMI Suppression Device(s)/Modifications.....	7
2.7. Labeling Requirements.....	7
3. DESCRIPTION of TEST.....	8
3.1. Evaluation Procedure	8
3.2. AC Line Conducted Emissions	8
3.3. Radiated Emissions.....	9
4. ANTENNA REQUIREMENTS.....	10
5. TEST EQUIPMENT CALIBRATION DATE	11
6. MEASUREMENT UNCERTAINTY.....	13
7. TEST RESULT	14
7.1. Summary.....	14
7.2. Radiated Emissions.....	15
7.2.1. Test Limit	15
7.2.2. Test Procedure.....	15
7.2.3. Test Setting.....	15
7.2.4. Test Setup.....	16
7.2.5. Test Result.....	18
8. CONCLUSION.....	21
Appendix A - Test Setup Photograph	22
Appendix B - EUT Photograph.....	23

§2.1033 General Information

Applicant:	United Automotive Electronic Systems Co., Ltd.
Applicant Address:	No. 555 Rong Qiao Road, Pudong New Area, Shanghai, China
Manufacturer:	United Automotive Electronic Systems Co., Ltd.
Manufacturer Address:	No. 555 Rong Qiao Road, Pudong New Area, Shanghai, China
Test Site:	MRT Technology (Suzhou) Co., Ltd
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China
Test Device Serial No.:	N/A <input type="checkbox"/> Production <input checked="" type="checkbox"/> Pre-Production <input type="checkbox"/> Engineering

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name:	GEM BCM
Model No.:	LV2 high
Transmitting Frequency:	125KHz
Reception Frequency:	433.92MHz
Operation Voltage:	DC 12V (battery power)

2.2. Product Specification Subjective to this Report

Transmitting Frequency:	125KHz
Type of Modulation:	CW
Antenna type:	Coil Antenna

Note: For other features of this EUT, test report will be issued separately.

2.3. Test Mode

Test Mode	Mode 1: Transmit by 125KHz
-----------	----------------------------

2.4. Description of Test Software

The test utility software used during testing was engineering directive ordered by applicant.

2.5. Test Configuration

The **GEM BCM** was tested per the guidance of FCC Part 15.209 and ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.6. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.7. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard ANSI C63.10-2013 for Testing Unlicensed Wireless Devices, and the guidance provided in ANSI C63.10-2013 were used in the measurement of the **GEM BCM**.

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, 50Ω/50uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-25GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

“An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.”

- The antenna of the **GEM BCM** is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The **GEM BCM** unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2019/04/20
Two-Line V-Network	R&S	ENV 216	MRTSUE06002	1 year	2019/06/15
Two-Line V-Network	R&S	ENV 216	MRTSUE06003	1 year	2019/06/15
Thermohygrometer	Testo	608-H1	MRTSUE06404	1 year	2019/08/15
Shielding Anechoic Chamber	Mikebang	Chamber-SR2	MRTSUE06214	N/A	N/A

Radiated Emissions - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2019/08/14
PXA Signal Analyzer	Keysight	9030B	MRTSUE06395	1 year	2019/09/14
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2019/11/20
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2019/04/12
				1 year	2020/03/31
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06023	1 year	2019/10/20
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2019/12/17
Broadband Coaxial Preamplifier	Agilent	83017A	MRTSUE06076	1 year	2019/11/16
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2019/06/12
Digital Thermometer & Hygrometer	Testo	608-H1	MRTSUE06403	1 year	2019/08/15
Anechoic Chamber	TDK	Chamber-AC1	MRTSUE06213	1 year	2019/05/02

Radiated Emissions - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2019/08/14
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2019/11/09
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2019/10/20
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2019/11/09
Broadband Horn Antenna	Schwarzbeck	BBHA9170	MRTSUE06024	1 year	2019/12/17
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2019/11/16
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2019/06/13
Temperature/Humidity Meter	Minggao	ETH529	MRTSUE06170	1 year	2019/12/13
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2019/05/02

Software	Version	Function
e3	V 8.3.5	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

AC Conducted Emission Measurement - SR2
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 150kHz~30MHz: 3.46dB
Radiated Emission Measurement - AC1
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 9kHz ~ 1GHz: 4.18dB 1GHz ~ 25GHz: 4.76dB
Radiated Emission Measurement - AC2
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 9kHz ~ 1GHz: 3.86dB 1GHz ~ 25GHz: 4.33dB

7. TEST RESULT

7.1. Summary

FCC Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.2
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	N/A	Section 7.3

Note:

- 1) The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.
- 2) "N/A" means that this item is not applicable, and the detail information refers to relevant section.

7.2. Radiated Emissions

7.2.1. Test Limit

According to §15.209, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

FCC Part 15.209 Radiated Emission Limit		
Frequency (MHz)	Field strength microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(KHz)	300
0.490-1.705	24000/F(KHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Note:

1. RF Voltage (dB μ V) = 20 log RF Voltage (μ V)
2. Above Table, the tighter limit applies at the band edges.
3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

7.2.2. Test Procedure

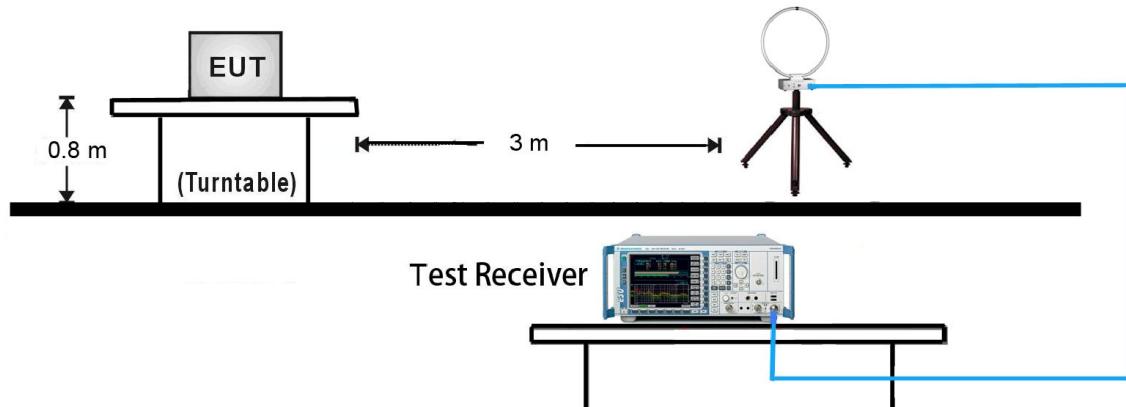
ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.4 (Standard test method below 30MHz)

ANSI C63.10 Section 6.5 (Standard test method above 30MHz to 1GHz)

7.2.3. Test Setting

Table 1 - RBW as a function of frequency


Frequency	RBW
9 ~ 150 kHz	200 ~ 300 Hz
0.15 ~ 30 MHz	9 ~ 10 kHz
30 ~ 1000 MHz	100 ~ 120 kHz
> 1000 MHz	1 MHz


Quasi-Peak Measurements below 1GHz

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Span was set greater than 1MHz
3. RBW = as specified in Table 1
4. Detector = CISPR quasi-peak
5. Sweep time = auto couple
6. Trace was allowed to stabilize

Peak Measurements above 1GHz

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = 1MHz
3. VBW = 3MHz
4. Detector = peak
5. Sweep time = auto couple
6. Trace mode = max hold
7. Trace was allowed to stabilize

7.2.4. Test Setup**9kHz ~ 30MHz Test Setup:**

30MHz ~ 1GHz Test Setup:

7.2.5. Test Result

Product	GEM BCM	Temperature	23°C
Test Engineer	Messiah Li	Relative Humidity	54%
Test Site	AC2	Test Date	2018/12/14 ~2019/03/26

Fundamental Emission

Frequency (MHz)	Reading Level (dB μ V)	Factor (dB)	Measure Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Polarization
0.125	81.4	20.2	101.6	125.7	-24.1	Peak	Face on
0.125	80.6	20.2	100.8	125.7	-24.9	Peak	Face off

Note 1: Limit=25.666dB μ V/m + 40*Log (300(m)/3(m)) = 105.7dB μ V/m (Average detector),

125.67dB μ V/m (Peak detector).

Note 2: Measurement Level = Reading Level + Factor.

Note 3: The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

General Radiated Emission 9kHz ~ 30MHz

Frequency (MHz)	Reading Level (dB μ V)	Factor (dB)	Measure Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Polarization
0.019	41.5	21.3	62.8	120.4	-57.6	PK	Face on
0.029	30.1	21.0	51.1	114.0	-62.9	PK	Face on
0.035	30.3	20.9	51.2	107.4	-56.2	PK	Face on
0.374	40.2	20.3	60.5	99.6	-39.1	PK	Face on
0.613	30.7	20.5	51.2	96.1	-44.9	QP	Face on
1.001	20.6	20.5	41.1	71.8	-30.7	QP	Face on
1.374	14.4	20.5	34.9	68.9	-34.0	QP	Face on
0.019	40.4	21.3	61.7	120.4	-58.7	PK	Face off
0.024	29.4	21.2	50.6	114.2	-63.6	PK	Face off
0.029	21.7	21.0	42.7	107.4	-64.7	PK	Face off
0.24	39.9	20.3	60.2	79.6	-19.4	PK	Face off
0.374	34.7	20.3	55.0	76.1	-21.1	PK	Face off
0.613	25.2	20.5	45.7	69.5	-23.8	QP	Face off
0.747	18.5	20.6	39.1	69.5	-30.4	QP	Face off

Note:

1. Measurement Level = Reading Level + Factor.
2. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
3. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

General Radiated Emission 30MHz ~ 1GHz

Frequency (MHz)	Reading Level (dB μ V)	Factor (dB)	Measure Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Polarization
40.2	0.9	14.7	15.6	40	-24.4	QP	Horizontal
56.7	0.2	13.8	14.0	40	-26.0	QP	Horizontal
91.1	7.5	10.5	18.0	43.5	-25.5	QP	Horizontal
127.0	14.6	13.8	28.4	46	-17.6	QP	Horizontal
204.6	22.2	11.4	33.6	46	-12.4	QP	Horizontal
263.3	6.2	13.5	19.7	46	-26.3	QP	Horizontal
31.0	13.8	13.8	27.6	40	-12.4	QP	Vertical
108.1	7.1	12.0	19.1	40	-20.9	QP	Vertical
127.6	15.6	13.8	29.4	43.5	-14.1	QP	Vertical
203.3	26.9	11.4	38.3	43.5	-5.2	QP	Vertical
303.1	3.4	14.6	18.0	46	-28.0	QP	Vertical
575.6	1.8	20.4	22.2	46	-23.8	QP	Vertical

Note:

1. Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)
2. Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

8. CONCLUSION

The data collected relate only the item(s) tested and show that the **GEM BCM** is in compliance with FCC Part 15.209 of the FCC Rules.

The End

Appendix A - Test Setup Photograph

Refer to "1811WSU028-UT" file.

Appendix B - EUT Photograph

Refer to "1811WSU0028-UE" file.