

SAR Report

Applicant : Toast, Incorporated
Product Type : Handheld Tablet
Trade Name : Toast Go ™
Model Number : TG200
Applicable Standard : ANSI/IEEE C95.1 / IEEE Std. 1528-2013
47 CFR Part §2.1093
KDB 865664 D01 / KDB 865664 D02
KDB 447498 D01 / KDB 248227 D01
KDB 616217 D04
Received Date : Jan. 09, 2020
Test Period : Feb. 12 ~ Feb. 13, 2020
Issued Date : Feb. 26, 2020

Issued by

Approved By :
(Mark Duan)

A Test Lab Techno Corp.
No. 140-1, Changan Street, Bade District,
Taoyuan City 33465, Taiwan (R.O.C.)
Tel : +886-3-2710188 / Fax : +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330
Test Firm MRA designation number: TW0010

Note:

- 1.The test results are valid only for samples provided by customers and under the test conditions described in this report.
- 2.This report shall not be reproduced except in full, without the written approval of A Test Lab Technology Corporation.
- 3.The relevant information is provided by customers in this test report. According to the correctness, appropriateness or completeness of the information provided by the customer, if there is any doubt or error in the information which affects the validity of the test results, the laboratory does not take the responsibility.

Revision History

Rev.	Issued Date	Revisions	Revised By
00	Feb. 20, 2020	Initial Issue	Jennifer Liu
01	Feb. 26, 2020	Page 5 Revised RF Function. Page 20 Revised Standalone SAR Test Exclusion Calculation. Page 21 Revised Simultaneous Transmitting Evaluate. Revised Test Setup Photographs.	Jennifer Liu

Contents

1. General Information	4
1.1 Reference Applicable Standard	4
1.2 Test Site Environment	4
2. Summary of Maximum Reported SAR Value	4
3. Description of Equipment under Test (EUT)	5
4. Introduction	6
4.1 SAR Definition	6
5. SAR Measurement Setup	7
5.1 DASY E-Field Probe System	8
5.1.1 E-Field Probe Specification	8
5.2 Data Acquisition Electronic (DAE) System	9
5.3 Robot	9
5.4 Measurement Server	9
5.5 Device Holder	10
5.6 Oval Flat Phantom - ELI 4.0	10
6. Tissue Simulating Liquids	11
6.1 The composition of the tissue simulating liquid	12
6.2 Liquid Parameters	13
6.3 Liquid Depth	14
7. SAR Testing with RF Transmitters	15
7.1 SAR Testing with 802.11 Transmitters	15
7.2 Conducted Power	16
7.3 Antenna location	19
7.4 Standalone SAR Test Exclusion Calculation	20
7.5 Simultaneous Transmitting Evaluate	21
7.5.1 SAR to peak location separation ratio (SPLSR)	21
7.6 SAR test reduction according to KDB	22
8. System Verification and Validation	23
8.1 Symmetric Dipoles for System Verification	23
8.2 Verification Summary	24
9. Test Equipment List	25
10. Measurement Uncertainty	26
11. Measurement Procedure	28
11.1 Spatial Peak SAR Evaluation	28
11.2 Area & Zoom Scan Procedures	29
11.3 Volume Scan Procedures	29
11.4 SAR Averaged Methods	29
11.5 Power Drift Monitoring	29
12. SAR Test Results Summary	30
12.1 Body SAR Measurement	30
12.2 SAR Variability Measurement	30
12.3 Std. C95.1-1992 RF Exposure Limit	31
13. References	32
Appendix A - System Performance Check	33
Appendix B - SAR Measurement Data	37
Appendix C - Calibration	41

1. General Information

1.1 Reference Applicable Standard

Standard	Description	Version
ANSI/IEEE C95.1	American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 KHz to 100 GHz, New York.	1992
IEEE 1528	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head From Wireless Communications Devices: Measurement Techniques.	2013
47 CFR Part §2.1093	Radiofrequency radiation exposure evaluation: portable devices.	-
KDB 865664 D01	SAR measurement requirement for 100 MHz to 6 GHz.	v01r04
KDB 865664 D02	RF exposure compliance reporting and documentation considerations.	v01r02
KDB 447498 D01	RF exposure procedures and equipment authorization policies for mobile and portable devices	v06
KDB 248227 D01	SAR guidance for IEEE 802.11 (Wi-Fi) transmitters	v02r02
KDB 616217 D04	SAR evaluation considerations for laptop, notebook and tablet computers.	v01r02

1.2 Test Site Environment

Items	Required (IEEE 1528-2013)	Actual
Temperature (°C)	18-25	21-23

2. Summary of Maximum Reported SAR Value

Equipment Class	Mode	Highest Reported
		Body SAR _{1g} (W/kg)
DTS	WLAN2.4GHz Ant Main	0.41
U-NII	WLAN5GHz Ant Main	1.15
Highest Simultaneous Transmission SAR		Highest Simultaneous Transmission 1g SAR (W/kg)
At test position side2		1.23

NOTE: 1. The SAR limit (Head & Body: SAR1g 1.6 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992.

3. **Description of Equipment under Test (EUT)**

Applicant	Toast, Incorporated 401 Park Drive, Suite 801, Boston, MA 02215., Boston, Massachusetts, United States	
Manufacture	InnoComm Mobile Technology Corp., 3F, No. 6, HsinAnn Rd., Hsinchu Science Park, Hsinchu City 30078,Taiwan	
Product Type	Handheld Tablet	
Trade Name	Toast Go ™	
Model Number	TG200	
FCC ID	2AMNG-TG200	
RF Function	Operate Bands	Operate Frequency (MHz)
	IEEE 802.11b / 802.11g / 802.11n 2.4 GHz 20 MHz	2412 - 2462
	IEEE 802.11a	5180 - 5825
	IEEE 802.11ac / 802.11n 5 GHz 20 MHz	5180 - 5825
	IEEE 802.11ac / 802.11n 5 GHz 40 MHz	5190 - 5795
	IEEE 802.11ac 80 MHz	5210 - 5775
	Bluetooth LE	2402 - 2480
Antenna Type	Monopole Antenna	
Battery Option	Standard	
	Trade Name: TOAST,INC. Model: TGB200 Spec: DC 3.8 V / 5450 mAh	
Device Category	Portable Device	
Application Type	Certification	

Note: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

4. *Introduction*

The A Test Lab Techno Corp. has performed measurements of the maximum potential exposure to the user. The test procedures, as described in American National Standards, Institute C95.1-1999 [1] were employed and they specify the maximum exposure limit of 1.6 mW/g as averaged over any 1 gram of tissue for portable devices being used within 20 cm between user and EUT in the uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

4.1 SAR Definition

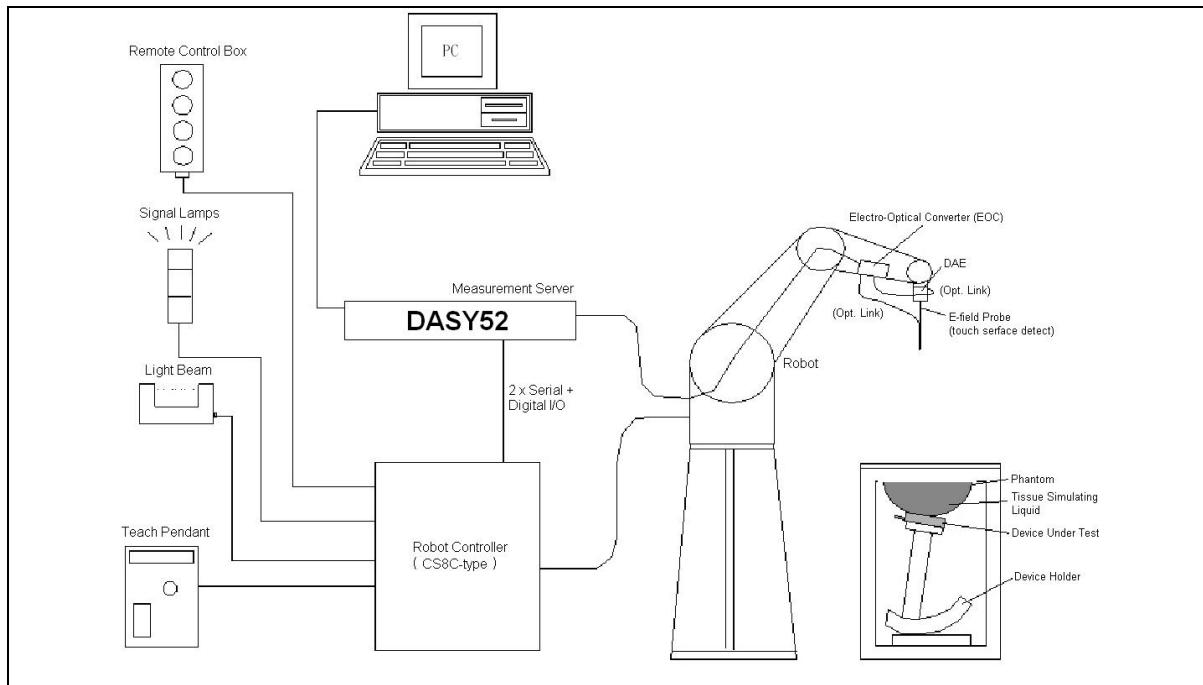
Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below :

$$\text{SAR} = \frac{d}{dt} \left(\frac{dw}{dm} \right) = \frac{d}{dt} \left(\frac{dw}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$\text{SAR} = \frac{\sigma |E|^2}{\rho}$$


Where :

σ = conductivity of the tissue (S/m)

ρ = mass density of the tissue (kg/m³)

E = RMS electric field strength (V/m)

5. SAR Measurement Setup

The DASY52 system for performing compliance tests consists of the following items:

1. A standard high precision 6-axis robot (Stäubli TX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
3. A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
4. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
5. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
6. A computer operating Windows 2000 or Windows XP.
7. DASY52 software.
8. Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
9. The SAM twin phantom enabling testing left-hand and right-hand usage.
10. The device holder for handheld mobile phones.
11. Tissue simulating liquid mixed according to the given recipes.
12. Validation dipole kits allowing validating the proper functioning of the system.

5.1 DASY E-Field Probe System

The SAR measurements were conducted with the dosimetric probe (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

5.1.1 E-Field Probe Specification

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in brain tissue (rotation around probe axis) ± 0.5 dB in brain tissue (rotation normal probe axis)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm

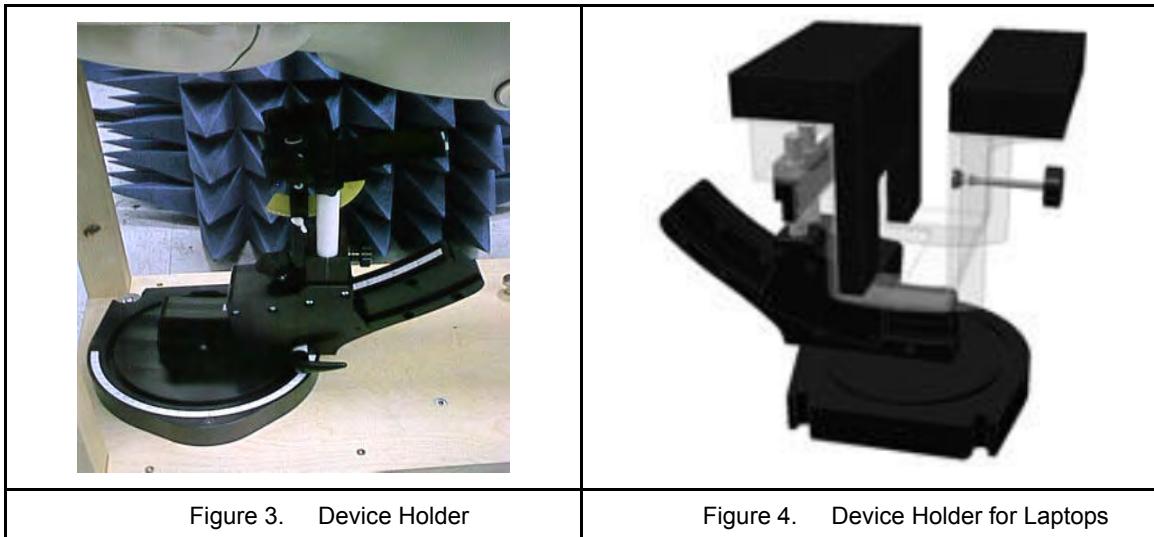
Figure 1. E-field Probe

Figure 2. Probe setup on robot

5.2 Data Acquisition Electronic (DAE) System

Model : DAE3, DAE4
Construction : Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.
Measurement Range : -100 to +300 mV (16 bit resolution and two range settings: 4 mV, 400 mV)
Input Offset Voltage : < 5 μ V (with auto zero)
Input Bias Current : < 50 fA
Dimensions : 60 x 60 x 68 mm

5.3 Robot


Positioner : Stäubli Unimation Corp. Robot Model: TX90XL
Repeatability : ± 0.02 mm
No. of Axis : 6

5.4 Measurement Server

Processor : PC/104 with a 400MHz intel ULV Celeron
I/O-board : Link to DAE4 (or DAE3)
16-bit A/D converter for surface detection system
Digital I/O interface
Serial link to robot
Direct emergency stop output for robot

5.5 Device Holder

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

5.6 Oval Flat Phantom - ELI 4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (Oval Flat) phantom defined in IEEE 1528-2013, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of wireless portable device usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness	2 \pm 0.2 mm
Filling Volume	Approx. 30 liters
Dimensions	190x600x400 mm (HxLxW)
Table 1. Specification of ELI 4.0	

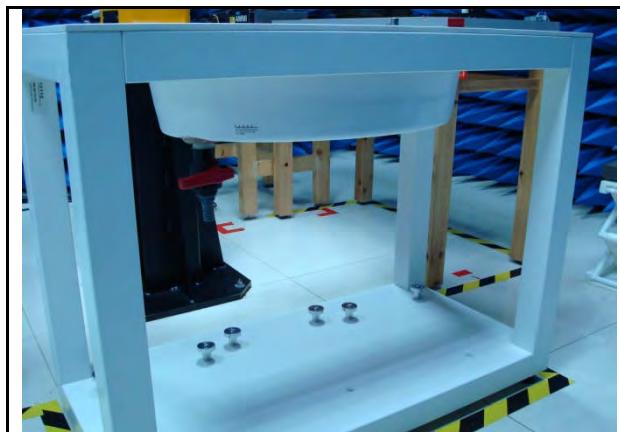


Figure 5. Oval Flat Phantom

6. *Tissue Simulating Liquids*

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00
(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m ³)				

Table 2. Tissue dielectric parameters for head and body phantoms

6.1 The composition of the tissue simulating liquid

Ingredients (% by weight)	Frequency (MHz)												Frequency (GHz)	
	750		835		1750		1900		2450		2600			
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	39.28	51.30	41.45	52.40	54.50	40.20	54.90	40.40	62.70	73.20	60.30	71.40	65.5	78.6
Salt (NaCl)	1.47	1.42	1.45	1.50	0.17	0.49	0.18	0.50	0.50	0.10	0.60	0.20	0.00	0.00
Sugar	58.15	46.18	56.00	45.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bactericide	0.10	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.2	10.7
DGBE	0.00	0.00	0.00	0.00	45.33	59.31	44.92	59.10	36.80	26.70	39.10	28.40	0.00	0.00
Dielectric Constant	41.88	54.60	42.54	56.10	40.10	53.60	39.90	54.00	39.80	52.50	39.80	52.50	35.1~ 36.2	47.9~ 49.3
Conductivity (S/m)	0.90	0.97	0.91	0.95	1.39	1.49	1.42	1.45	1.88	1.78	1.88	1.78	4.45~ 5.48	5.07~ 6.23
Diethylene Glycol Mono-hexlether	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.3	10.7

6.2 Liquid Parameters

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an E5071B Network Analyzer.

Tissue Temp (°C)	Head / Body	Frequency (MHz)	Cond.	Perm.	target Cond.	target Perm.	σ (Delta) (%)	ϵ_r (Delta) (%)	Limit (%)	Date
			σ	ϵ_r	σ	ϵ_r				
22.2	Head	5260 MHz	4.54	35.874	4.72	35.94	-3.89	-0.18	± 5	Feb. 12, 2020
22.2	Head	5270 MHz	4.54	35.844	4.73	35.93	-3.96	-0.24	± 5	Feb. 12, 2020
22.2	Head	5280 MHz	4.55	35.818	4.74	35.92	-3.93	-0.28	± 5	Feb. 12, 2020
22.1	Head	5290 MHz	4.57	35.808	4.75	35.91	-3.84	-0.28	± 5	Feb. 12, 2020
22.1	Head	5300 MHz	4.58	35.780	4.76	35.90	-3.78	-0.33	± 5	Feb. 12, 2020
22.1	Head	5310 MHz	4.60	35.773	4.77	35.89	-3.54	-0.33	± 5	Feb. 12, 2020
22.1	Head	5320 MHz	4.62	35.805	4.78	35.88	-3.41	-0.21	± 5	Feb. 12, 2020
22.1	Head	5500 MHz	4.80	35.586	4.97	35.65	-3.27	-0.18	± 5	Feb. 12, 2020
22.1	Head	5510 MHz	4.81	35.572	4.98	35.64	-3.29	-0.19	± 5	Feb. 12, 2020
22.1	Head	5530 MHz	4.82	35.516	5.00	35.61	-3.45	-0.26	± 5	Feb. 12, 2020
22.1	Head	5550 MHz	4.84	35.468	5.02	35.58	-3.47	-0.32	± 5	Feb. 12, 2020
22.1	Head	5570 MHz	4.86	35.401	5.04	35.55	-3.59	-0.42	± 5	Feb. 12, 2020
22.1	Head	5580 MHz	4.87	35.372	5.05	35.53	-3.62	-0.44	± 5	Feb. 12, 2020
22.1	Head	5610 MHz	4.90	35.255	5.08	35.49	-3.54	-0.66	± 5	Feb. 12, 2020
22.1	Head	5620 MHz	4.92	35.232	5.09	35.48	-3.33	-0.70	± 5	Feb. 12, 2020
22.1	Head	5630 MHz	4.94	35.184	5.10	35.47	-3.18	-0.81	± 5	Feb. 12, 2020
22.1	Head	5660 MHz	5.02	35.063	5.13	35.44	-2.07	-1.06	± 5	Feb. 12, 2020
22.1	Head	5670 MHz	5.05	35.025	5.14	35.43	-1.67	-1.14	± 5	Feb. 12, 2020
22.1	Head	5690 MHz	5.10	34.965	5.16	35.41	-1.09	-1.26	± 5	Feb. 12, 2020
22.1	Head	5700 MHz	5.13	34.938	5.17	35.40	-0.84	-1.30	± 5	Feb. 12, 2020
22.1	Head	5710 MHz	5.14	34.925	5.18	35.39	-0.77	-1.32	± 5	Feb. 12, 2020
22.1	Head	5720 MHz	5.15	34.925	5.19	35.38	-0.78	-1.29	± 5	Feb. 12, 2020
22.1	Head	5745 MHz	5.16	34.956	5.22	35.36	-1.11	-1.14	± 5	Feb. 12, 2020
22.1	Head	5755 MHz	5.15	34.975	5.23	35.35	-1.42	-1.06	± 5	Feb. 12, 2020
22.1	Head	5775 MHz	5.13	34.994	5.25	35.33	-2.23	-0.95	± 5	Feb. 12, 2020
22.1	Head	5785 MHz	5.11	34.981	5.26	35.32	-2.78	-0.96	± 5	Feb. 12, 2020
22.1	Head	5795 MHz	5.10	34.961	5.27	35.31	-3.14	-0.99	± 5	Feb. 12, 2020
22.1	Head	5825 MHz	5.10	34.852	5.30	35.28	-3.79	-1.21	± 5	Feb. 12, 2020
22.2	Head	2412 MHz	1.72	39.489	1.77	39.27	-2.61	0.56	± 5	Feb. 13, 2020
22.2	Head	2422 MHz	1.73	39.452	1.78	39.25	-2.44	0.52	± 5	Feb. 13, 2020
22.2	Head	2437 MHz	1.75	39.416	1.79	39.22	-2.26	0.50	± 5	Feb. 13, 2020
22.2	Head	2452 MHz	1.77	39.379	1.80	39.20	-1.96	0.46	± 5	Feb. 13, 2020
22.2	Head	2462 MHz	1.78	39.350	1.81	39.18	-1.89	0.43	± 5	Feb. 13, 2020

6.3 Liquid Depth

According to KDB865664 ,the depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm with $\leq \pm 0.5$ cm variation for SAR measurements ≤ 3 GHz and ≥ 10.0 cm with $\leq \pm 0.5$ cm variation for measurements > 3 GHz.

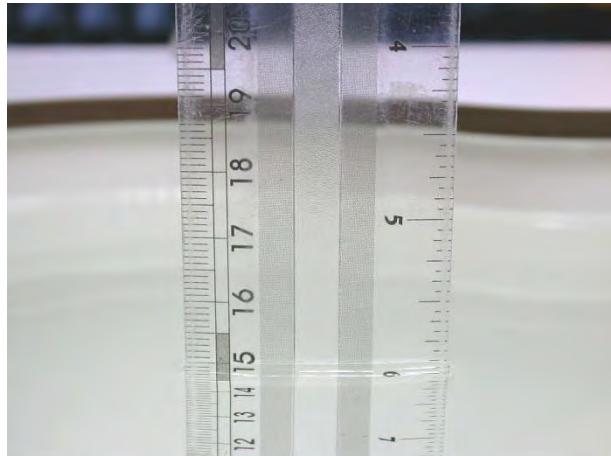


Figure 6. Liquid Height for Head SAR

7. SAR Testing with RF Transmitters

7.1 SAR Testing with 802.11 Transmitters

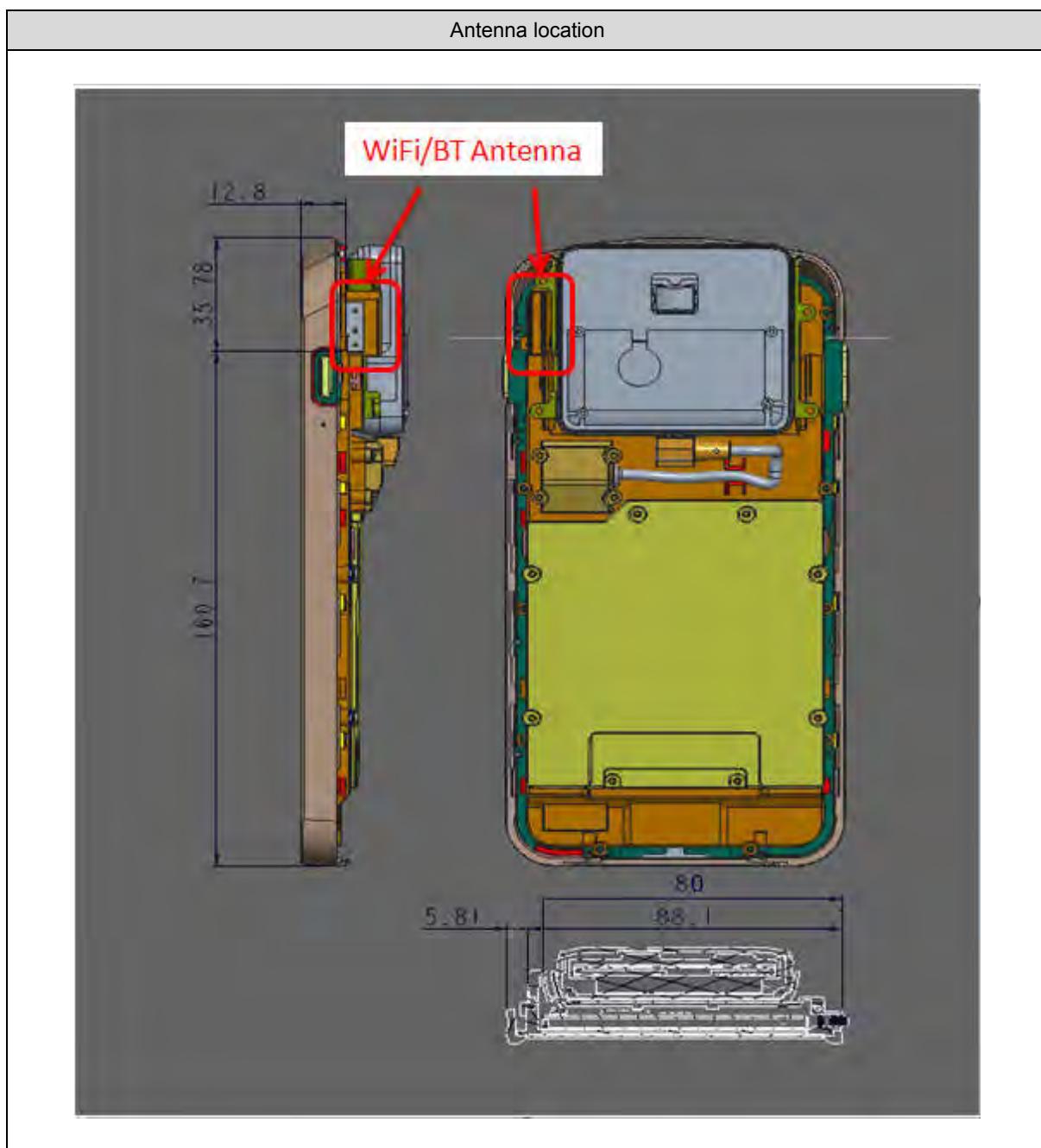
SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

- $\leq 0.4 \text{ W/kg}$, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- $> 0.4 \text{ W/kg}$, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closest/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is $\leq 0.8 \text{ W/kg}$ or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is $> 0.8 \text{ W/kg}$, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is $\leq 1.2 \text{ W/kg}$ or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is $\leq 1.2 \text{ W/kg}$, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is $\leq 1.2 \text{ W/kg}$, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

7.2 Conducted Power


Band	Data Rate	CH	Frequency (MHz)	Average Power (dBm)
IEEE 802.11b	1M	1	2412.0	12.24
		6	2437.0	14.23
		11	2462.0	16.56
IEEE 802.11g	6M	1	2412.0	14.22
		6	2437.0	14.25
		11	2462.0	12.72
IEEE 802.11n 2.4 GHz 20 MHz	6.5M	1	2412.0	14.29
		6	2437.0	14.23
		11	2462.0	12.59

Band	Data Rate	CH	Frequency (MHz)	Average Power (dBm)
IEEE 802.11a	6M	36	5180.0	14.11
		40	5200.0	14.14
		44	5220.0	14.23
		48	5240.0	14.21
		52	5260.0	14.22
		56	5280.0	14.32
		60	5300.0	14.25
		64	5320.0	14.48
		100	5500.0	14.70
		104	5520.0	14.12
		108	5540.0	14.11
		112	5560.0	14.22
		116	5580.0	14.61
		132	5660.0	14.60
		136	5680.0	14.50
		140	5700.0	14.43
		149	5745.0	14.35
		153	5765.0	14.38
		157	5785.0	14.36
		161	5805.0	14.37
		165	5825.0	14.28
IEEE 802.11n 5 GHz 20 MHz	6.5M	36	5180.0	13.62
		40	5200.0	13.44
		44	5220.0	13.48
		48	5240.0	13.43
		52	5260.0	13.57
		56	5280.0	13.48
		60	5300.0	13.44
		64	5320.0	13.43
		100	5500.0	13.76
		104	5520.0	13.73
		108	5540.0	13.82
		112	5560.0	13.80
		116	5580.0	13.83
		132	5660.0	13.82
		136	5680.0	13.79
		140	5700.0	13.72
		149	5745.0	13.46
		153	5765.0	13.51
		157	5785.0	13.41
		161	5805.0	13.45
		165	5825.0	13.41

Band	Data Rate	CH	Frequency (MHz)	Average Power (dBm)
IEEE 802.11n 5 GHz 40 MHz	13.5M	38	5190.0	12.61
		46	5230.0	12.69
		54	5270.0	12.74
		62	5310.0	12.62
		102	5510.0	12.75
		110	5550.0	12.91
		134	5670.0	12.92
		151	5755.0	12.52
		159	5795.0	12.53
IEEE 802.11ac 80 MHz	29.3M	42	5210.0	8.74
		58	5290.0	9.26
		106	5530.0	12.75
		155	5775.0	12.55

7.3 Antenna location

Ant	Antenna to user distance (mm)					
	Front	Back	Side 1	Side 2	Side 3	Side 4
WLAN ANT	5	5	5	5	160.7	80
Bluetooth ANT	5	5	5	5	160.7	80

7.4 Standalone SAR Test Exclusion Calculation

Transmitter and antenna implementation as below:

Condition(s)	Band		
	WLAN 2.4 GHz	WLAN 5 GHz	Bluetooth
1	V	---	V
2	---	V	V

Ant. Used	Band	Frequency	Tune-Power		Distance of Ant. To User (mm)				
		(GHz)	(dBm)	(mW)	Back	Side1	Side2	Side3	Side4
Bluetooth Antenna	BT	2.480	2	2	5	5	5	160.7	80
WLAN Antenna	2.4 GHz WLAN Ant-Main	2.462	17.5	56	5	5	5	160.7	80
	5GHz WLAN Ant-Main	5.825	15	32	5	5	5	160.7	80

Ant. Used	Band	Frequency	Tune-Power		Calculated value and evaluated result					
		(GHz)	(dBm)	(mW)	Back	Side1	Side2	Side3	Side4	
Bluetooth Antenna	BT	2.480	2	2	0.6	0.6	0.6	1202.0	395.0	3
					EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	
WLAN Antenna	2.4 GHz WLAN Ant-Main	2.462	17.5	56	17.6	17.6	17.6	1203.0	396.0	3
					MEASURE	MEASURE	MEASURE	EXEMPT	EXEMPT	
	5 GHz WLAN Ant-Main	5.825	15	32	15.5	15.5	15.5	1169.0	362.0	3
					MEASURE	MEASURE	MEASURE	EXEMPT	EXEMPT	

Note:

1. The test reduction for distance less than 50mm and more than 50mm. Use the max power to make sure minimum distance by evaluated for SAR testing.
2. For 100 MHz to 6 GHz and test separation distances > 50 mm, According to KDB 447498, if the calculated Power threshold is less than the output power then SAR testing is required.
3. For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following: According to KDB 447498, if the calculated threshold value are >3 then Body SAR and >7.5 then Limbs SAR testing are required.
4. When an antenna qualifies for the standalone SAR test exclusion of KDB 447498 section 4.3.1 and also transmits simultaneously with other antennas, the standalone SAR value must be estimated according to KDB 447498 section "4.3.2. Simultaneous transmission SAR test exclusion considerations b)"
5. We used highest frequency and power, that result should be evaluated the worst case.
6. Power and distance are rounded to the nearest mW and mm before calculation.
7. The result is rounded to one decimal place for comparison.

7.5 Simultaneous Transmitting Evaluate

Estimated SAR

Ant. Used	Band	Frequency	Tune-Power		Estimated SAR 1-g (W/kg)				
		(GHz)	(dBm)	(mW)	Back	Side1	Side2	Side3	Side4
Bluetooth Antenna	BT	2.480	2	2	0.08	0.08	0.08	0.4	0.4
WLAN Antenna	2.4 GHz WLAN Ant-Main	2.462	17.5	56	---	---	---	0.4	0.4
	5GHz WLAN Ant-Main	5.825	15	32	---	---	---	0.4	0.4

7.5.1 SAR to peak location separation ratio (SPLSR)

When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The ratio is determined by $(\text{SAR}_1 + \text{SAR}_2)^{1.5}/R_i$, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Sum of 1-g SAR of summary as below:

Phantom Position		Spacing (mm)	ASSY	WLAN 2.4 GHz (1)		Bluetooth (2)		$(1)+(2)\Sigma \text{ SAR}_{1g} (\text{W/Kg})$	Event
				Band	$\text{SAR}_{1g} (\text{W/Kg})$	Band	$\text{SAR}_{1g} (\text{W/Kg})$		
Flat	Back	0	N/A	IEEE 802.11	0.09	Bluetooth	*0.08	0.17	<1.6
	Side 1	0	N/A	IEEE 802.11	0.04	Bluetooth	*0.08	0.12	<1.6
	Side 2	0	N/A	IEEE 802.11	0.41	Bluetooth	*0.08	0.49	<1.6

Phantom Position		Spacing (mm)	ASSY	WLAN 5 GHz (3)		Bluetooth (2)		$(3)+(2)\Sigma \text{ SAR}_{1g} (\text{W/Kg})$	Event
				Band	$\text{SAR}_{1g} (\text{W/Kg})$	Band	$\text{SAR}_{1g} (\text{W/Kg})$		
Flat	Back	0	N/A	IEEE 802.11	0.27	Bluetooth	*0.08	0.35	<1.6
	Side 1	0	N/A	IEEE 802.11	0.07	Bluetooth	*0.08	0.15	<1.6
	Side 2	0	N/A	IEEE 802.11	1.15	Bluetooth	*0.08	1.23	<1.6

Note1 : *=Estimated SAR

Note2 : **The Estimated SAR 0.4W/Kg , test separation distances is > 50 mm .

Note3: When the sum of 1-g SAR of all simultaneously transmitting antennas in and operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration.

7.6 SAR test reduction according to KDB

General:

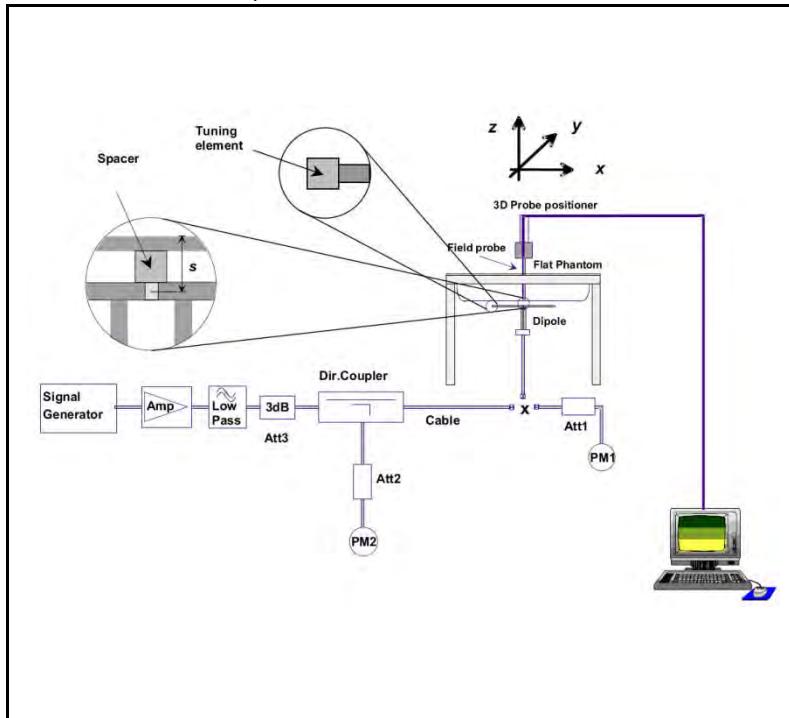
- The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC, Supplement C [June 2001], IEEE1528-2013.
- All modes of operation were investigated, and worst-case results are reported.
- Tissue parameters and temperatures are listed on the SAR plots.
- Batteries are fully charged for all readings.
- When the Channel's SAR 1 g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.

KDB 447498:

- The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to IEEE1528-2013.

KDB 865664:

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg.
- When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg.
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .


KDB 248227:

- Refer 7.1 SAR Testing with 802.11 Transmitters.

8. System Verification and Validation

8.1 Symmetric Dipoles for System Verification

Construction	Symmetrical dipole with $1/4$ balun enables measurement of feed point impedance with NWA matched for use near flat phantoms filled with head simulating solutions. Includes distance holder and tripod adaptor. Calibration Calibrated SAR value for specified position and input power at the flat phantom in head simulating solutions.
Return Loss	> 20 dB at specified verification position
Options	Dipoles for other frequencies or solutions and other calibration conditions are available upon request

Figure 7. System Verification Setup Diagram	Figure 8. Validation Kit

8.2 Verification Summary

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The measured SAR will be normalized to 1 W input power.

Mixture Type	Frequency (MHz)	Power	Probe	Dipole	SAR _{1g} (W/Kg)	Normalize to 1 Watt 1 g (W/Kg)	1 W Target SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	Normalize to 1 Watt 10 g (W/Kg)	1 W Target SAR _{10g} (W/Kg)	Difference percentage 1 g	Difference percentage 10 g	Date
			Model / Serial No.	Model / Serial No.									
Head	2450	250 mW	EX3DV4-SN3847	D2450V2-SN712	13.2	52.8	52.10	6.2	24.8	24.00	1.3%	3.2%	Feb. 13, 2020
Head	5250	100 mW	EX3DV4-SN3847	D5250V2-SN1021	8.01	80.1	76.10	2.24	22.4	21.60	5.0%	3.6%	Feb. 12, 2020
Head	5600	100 mW	EX3DV4-SN3847	D5600V2-SN1021	8.66	86.6	81.00	2.33	23.3	22.70	6.5%	2.6%	Feb. 12, 2020
Head	5750	100 mW	EX3DV4-SN3847	D5750V2-SN1021	8.32	83.2	76.10	2.22	22.2	21.30	8.5%	4.1%	Feb. 12, 2020

9. Test Equipment List

Testing Engineer: Kris Pan , Jason Tsao

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration	
				Cal. Date	Cal. Period
SPEAG	2450MHz System Validation Kit	D2450V2	712	2019/04/15	1 year
SPEAG	5GHz System Validation Kit	D5GHzV2	1021	2019/04/19	1 year
SPEAG	Dosimetric E-Field Probe	EX3DV4	3847	2019/05/16	1 year
SPEAG	Data Acquisition Electronics	DAE4	541	2019/03/19	1 year
SPEAG	Measurement Server	SE UMS 011 AA	1025	NCR	
SPEAG	Device Holder	N/A	N/A	NCR	
SPEAG	Phantom	ELI V4.0	1036	NCR	
SPEAG	Robot	Staubli TX90XL	F16/54FTA1/A/01	NCR	
SPEAG	Software	DASY52 V52.10 (3)	N/A	NCR	
SPEAG	Software	SEMCAD X V14.6.10(7331)	N/A	NCR	
SPEAG	Network Analyzer	DAKS_VNA R140	0010318	2019/05/03	1 year
SPEAG	Dielectric Probe Kit	DAKS-3.5	1101	2019/05/02	1 year
HILA	Digital Thermometer	TM-906A	1500033	2019/10/28	1 year
Agilent	Power Sensor	8481H	3318A20779	2019/06/11	1 year
Agilent	Power Meter	EDM Series E4418B	GB40206143	2019/06/11	1 year
Agilent	Signal Generator	E8257D	MY44320425	2019/03/05	1 year
Agilent	Dual Directional Coupler	778D	50334	NCR	
Woken	Dual Directional Coupler	0100AZ202008 01O	11012409517	NCR	
Mini-Circuits	Power Amplifier	EMC014225P	980292	NCR	
Mini-Circuits	Power Amplifier	EMC2830P	980293	NCR	
Aisi	Attenuator	IEAT 3dB	N/A	NCR	

Table 3. Test Equipment List

10. Measurement Uncertainty

Decision Rule

- Uncertainty is not included.
- Uncertainty is included.

Item	Uncertainty Component	Uncertainty Value	Prob. Dist	Div.	c_i (1 g)	c_i (10 g)	Std. Unc. (1-g)	Std. Unc. (10-g)	v_i or V_{eff}
Measurement System									
u1	Probe Calibration ($k=1$)	±6.0 %	Normal	1	1	1	±6.0 %	±6.0 %	∞
u2	Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	0.7	±1.9 %	±1.9 %	∞
u3	Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	0.7	±3.9 %	±3.9 %	
u4	Boundary Effect	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
u5	Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	∞
u6	System Detection Limit	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
u7	Readout Electronics	±0.3 %	Normal	1	1	1	±0.3 %	±0.3 %	∞
u8	Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	∞
u9	Integration Time	±1.9 %	Rectangular	$\sqrt{3}$	1	1	±1.1 %	±1.1 %	∞
u10	RF Ambient Conditions	±3.0 %	Rectangular	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
u11	RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
u12	Probe Positioner Mechanical Tolerance	±0.4 %	Rectangular	$\sqrt{3}$	1	1	±0.2 %	±0.2 %	∞
u13	Probe Positioning with respect to Phantom Shell	±2.9 %	Rectangular	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
u14	Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Test sample Related									
u15	Test sample Positioning	±2.9 %	Normal	1	1	1	±2.9 %	±2.9 %	89
u16	Device Holder Uncertainty	±3.6 %	Normal	1	1	1	±3.6 %	±3.6 %	5
u17	Output Power Variation - SAR drift measurement	±5.0 %	Rectangular	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
Phantom and Tissue Parameters									
u18	Phantom Uncertainty (shape and thickness tolerances)	±4.0 %	Rectangular	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	∞
u19	Liquid Conductivity - deviation from target values	±5.0 %	Rectangular	$\sqrt{3}$	0.64	0.43	±1.8 %	±1.2 %	∞
u20	Liquid Conductivity - measurement uncertainty	±2.5 %	Normal	1	0.64	0.43	±1.6 %	±1.08 %	69
u21	Liquid Permittivity - deviation from target values	±5.0 %	Rectangular	$\sqrt{3}$	0.6	0.49	±1.7 %	±1.4 %	∞
u22	Liquid Permittivity - measurement uncertainty	±2.5 %	Normal	1	0.6	0.49	±1.5 %	±1.23 %	69
Combined standard uncertainty				RSS			±10.94 %	±10.71 %	380
Expanded uncertainty (95 % CONFIDENCE LEVEL)				$k=2$			±21.88 %	±21.41 %	

Table 4. Uncertainty Budget for frequency range 300 MHz to 3 GHz

Item	Uncertainty Component	Uncertainty Value	Prob. Dist	Div.	c_i (1 g)	c_i (10 g)	Std. Unc. (1-g)	Std. Unc. (10-g)	V_i or V_{eff}
Measurement System									
u1	Probe Calibration ($k=1$)	$\pm 6.5 \%$	Normal	1	1	1	$\pm 6.5 \%$	$\pm 6.5 \%$	∞
u2	Axial Isotropy	$\pm 4.7 \%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 1.9 \%$	$\pm 1.9 \%$	∞
u3	Hemispherical Isotropy	$\pm 9.6 \%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 3.9 \%$	$\pm 3.9 \%$	
u4	Boundary Effect	$\pm 2.0 \%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.2 \%$	$\pm 1.2 \%$	∞
u5	Linearity	$\pm 4.7 \%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.7 \%$	$\pm 2.7 \%$	∞
u6	System Detection Limit	$\pm 1.0 \%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6 \%$	∞
u7	Readout Electronics	$\pm 0.0 \%$	Normal	1	1	1	$\pm 0.0 \%$	$\pm 0.0 \%$	∞
u8	Response Time	$\pm 0.8 \%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.5 \%$	$\pm 0.5 \%$	∞
u9	Integration Time	$\pm 2.8 \%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.8 \%$	$\pm 2.8 \%$	∞
u10	RF Ambient Conditions	$\pm 3.0 \%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞
u11	RF Ambient Reflections	$\pm 3.0 \%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞
u12	Probe Positioner Mechanical Tolerance	$\pm 0.7 \%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.7 \%$	$\pm 0.7 \%$	∞
u13	Probe Positioning with respect to Phantom Shell	$\pm 9.9 \%$	Rectangular	$\sqrt{3}$	1	1	$\pm 5.7 \%$	$\pm 5.7 \%$	∞
u14	Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	$\pm 3.0 \%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞
Test sample Related									
u15	Test sample Positioning	$\pm 2.9 \%$	Normal	1	1	1	$\pm 2.9 \%$	$\pm 2.9 \%$	89
u16	Device Holder Uncertainty	$\pm 3.6 \%$	Normal	1	1	1	$\pm 3.6 \%$	$\pm 3.6 \%$	5
u17	Output Power Variation - SAR drift measurement	$\pm 5.0 \%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.9 \%$	$\pm 2.9 \%$	∞
Phantom and Tissue Parameters									
u18	Phantom Uncertainty (shape and thickness tolerances)	$\pm 4.0 \%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.3 \%$	$\pm 2.3 \%$	∞
u19	Liquid Conductivity - deviation from target values	$\pm 5.0 \%$	Rectangular	$\sqrt{3}$	0.64	0.43	$\pm 1.8 \%$	$\pm 1.2 \%$	∞
u20	Liquid Conductivity - measurement uncertainty	$\pm 2.5 \%$	Normal	1	0.64	0.43	$\pm 1.6 \%$	$\pm 1.08 \%$	69
u21	Liquid Permittivity - deviation from target values	$\pm 5.0 \%$	Rectangular	$\sqrt{3}$	0.6	0.49	$\pm 1.7 \%$	$\pm 1.4 \%$	∞
u22	Liquid Permittivity - measurement uncertainty	$\pm 2.5 \%$	Normal	1	0.6	0.49	$\pm 1.5 \%$	$\pm 1.23 \%$	69
Combined standard uncertainty				RSS			$\pm 12.68 \%$	$\pm 12.48 \%$	700
Expanded uncertainty (95 % CONFIDENCE LEVEL)				$k=2$			$\pm 25.37 \%$	$\pm 24.97 \%$	

Table 5. Uncertainty Budget for frequency range 3 GHz to 6 GHz

11. Measurement Procedure

The measurement procedures are as follows:

1. For WLAN function, engineering testing software installed on DUTs can provide continuous transmitting signal.
2. Measure output power through RF cable and power meter
3. Set scan area, grid size and other setting on the DASY software
4. Find out the largest SAR result on these testing positions of each band
5. Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

1. Power reference measurement
2. Area scan
3. Zoom scan
4. Power drift measurement

11.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1 g and 10 g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1 g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages

1. Extraction of the measured data (grid and values) from the Zoom Scan
2. Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
3. Generation of a high-resolution mesh within the measured volume
4. Interpolation of all measured values from the measurement grid to the high-resolution grid
5. Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
6. Calculation of the averaged SAR within masses of 1 g and 10 g

11.2 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures points and step size follow as below. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

Grid Type	Frequency		Step size (mm)			X*Y*Z (Point)	Cube size			Step size		
			X	Y	Z		X	Y	Z	X	Y	Z
uniform grid	≤ 3 GHz	≤ 2 GHz	≤ 8	≤ 8	≤ 5	5*5*7	32	32	30	8	8	5
		2 G - 3 G	≤ 5	≤ 5	≤ 5	7*7*7	30	30	30	5	5	5
		3 - 4 GHz	≤ 5	≤ 5	≤ 4	7*7*8	30	30	28	5	5	4
	3 - 6 GHz	4 - 5 GHz	≤ 4	≤ 4	≤ 3	8*8*10	28	28	27	4	4	3
		5 - 6 GHz	≤ 4	≤ 4	≤ 2	8*8*12	28	28	22	4	4	2

(Our measure settings are refer KDB Publication 865664 D01v01r04)

11.3 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1 g aggregate SAR, the DUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

11.4 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11.5 Power Drift Monitoring

All SAR testing is under the DUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of DUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5 %, the SAR will be retested.

12. SAR Test Results Summary

12.1 Body SAR Measurement

Index.	Band	Mode	Frequency		Data Rate	Test Position	Spacing (mm)	SAR _{1g} (W/kg)	Burst Avg Power	Max tune-up	Duty Cycle %	Reported SAR _{1g} (W/kg)
			Ch.	MHz								
	WLAN 2.4GHz	802.11b	11	2462.0	1 Mbps	Back	0	0.072	16.56	17.5	99.90	0.09
	WLAN 2.4GHz	802.11b	11	2462.0	1 Mbps	Side 1	0	0.033	16.56	17.5	99.90	0.04
#25	WLAN 2.4GHz	802.11b	11	2462.0	1 Mbps	Side 2	0	0.327	16.56	17.5	99.90	0.41
	WLAN 5GHz	802.11a	64	5320.0	6 Mbps	Back	0	0.136	14.48	15	99.90	0.15
	WLAN 5GHz	802.11a	64	5320.0	6 Mbps	Side 1	0	0.044	14.48	15	99.90	0.05
	WLAN 5GHz	802.11a	64	5320.0	6 Mbps	Side 2	0	0.91	14.48	15	99.90	1.03
#4	WLAN 5GHz	802.11a	52	5260.0	6 Mbps	Side 2	0	0.933	14.22	15	99.90	1.12
	WLAN 5GHz	802.11a	56	5280.0	6 Mbps	Side 2	0	0.911	14.32	15	99.90	1.07
	WLAN 5GHz	802.11a	60	5300.0	6 Mbps	Side 2	0	0.892	14.25	15	99.90	1.06
	WLAN 5GHz	802.11ac 80 MHz	106	5530.0	VHT0	Back	0	0.186	12.75	13	99.90	0.20
	WLAN 5GHz	802.11ac 80 MHz	106	5530.0	VHT0	Side 1	0	0.049	12.75	13	99.90	0.05
#10	WLAN 5GHz	802.11ac 80 MHz	106	5530.0	VHT0	Side 2	0	1.05	12.75	13	99.90	1.11
	WLAN 5GHz	802.11ac 40 MHz	134	5670.0	VHT0	Side 2	0	0.739	12.92	13	99.90	0.75
	WLAN 5GHz	802.11a	157	5785.0	6 Mbps	Back	0	0.235	14.36	15	99.90	0.27
	WLAN 5GHz	802.11a	157	5785.0	6 Mbps	Side 1	0	0.062	14.36	15	99.90	0.07
#19	WLAN 5GHz	802.11a	157	5785.0	6 Mbps	Side 2	0	0.988	14.36	15	99.90	1.15
	WLAN 5GHz	802.11a	149	5745.0	6 Mbps	Side 2	0	0.957	14.35	15	99.90	1.11
	WLAN 5GHz	802.11a	165	5825.0	6 Mbps	Side 2	0	0.923	14.28	15	99.90	1.09

12.2 SAR Variability Measurement

Measurement Results										
Index	Band	Mode	Frequency		Data Rate	Test Position	Spacing (mm)	Note	Original SAR _{1g} (W/Kg)	First SAR _{1g} (W/Kg)
			Ch.	MHz						
#7	WLAN 5 GHz	802.11a	52	5260.0	6 Mbps	Side 2	0	original #4_once	0.933	0.931
#11	WLAN 5 GHz	802.11ac 80 MHz	106	5530.0	VHT0	Side 2	0	original #10_once	1.05	1.01
#22	WLAN 5 GHz	802.11a	157	5785.0	6 Mbps	Side 2	0	original #19_once	0.988	0.958

12.3 Std. C95.1-1992 RF Exposure Limit

Human Exposure	Population Uncontrolled Exposure (W/kg) or (mW/g)	Occupational Controlled Exposure (W/kg) or (mW/g)
Spatial Peak SAR* (head)	1.60	8.00
Spatial Peak SAR** (Whole Body)	0.08	0.40
Spatial Peak SAR*** (Partial-Body)	1.60	8.00
Spatial Peak SAR**** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 6. Safety Limits for Partial Body Exposure

Notes :

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.
(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole – body.
- *** The Spatial Average value of the SAR averaged over the partial – body.
- **** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.
(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / Uncontrolled Environments : are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / Controlled Environments : are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

13. References

- [1] Std. C95.1-1999, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105-113, Jan. 1996.
- [4] K. Poković, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Poković, T. Schmid, and N. Kuster, "E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988 , pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, Aug. 1992.
- [10] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10KHz-300GHz, Jan. 1995.
- [11] IEEE Std 1528™-2013 - IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head From Wireless Communications Devices: Measurement Techniques

Appendix A - System Performance Check

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/13

System Performance Check at 2450MHz_20200213_Head

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.764$ S/m; $\epsilon_r = 39.385$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

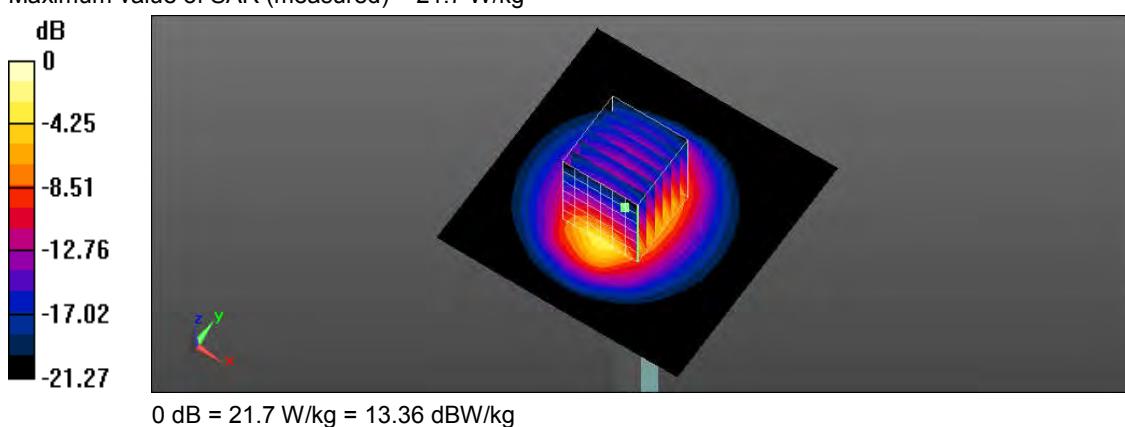
- Area Scan setting - Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3847; ConvF(7.14, 7.14, 7.14) @ 2450 MHz; Calibrated: 2019/5/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2019/3/19
- Phantom: ELI V4.0 (20deg probe tilt); Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.10 (7331)

System Performance Check at 2450MHz/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 22.0 W/kg

System Performance Check at 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 111.8 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 26.5 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.2 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 50.2%

Maximum value of SAR (measured) = 21.7 W/kg

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/12

System Performance Check at 5250MHz_20200212_Head

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1021

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5250$ MHz; $\sigma = 4.529$ S/m; $\epsilon_r = 35.901$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

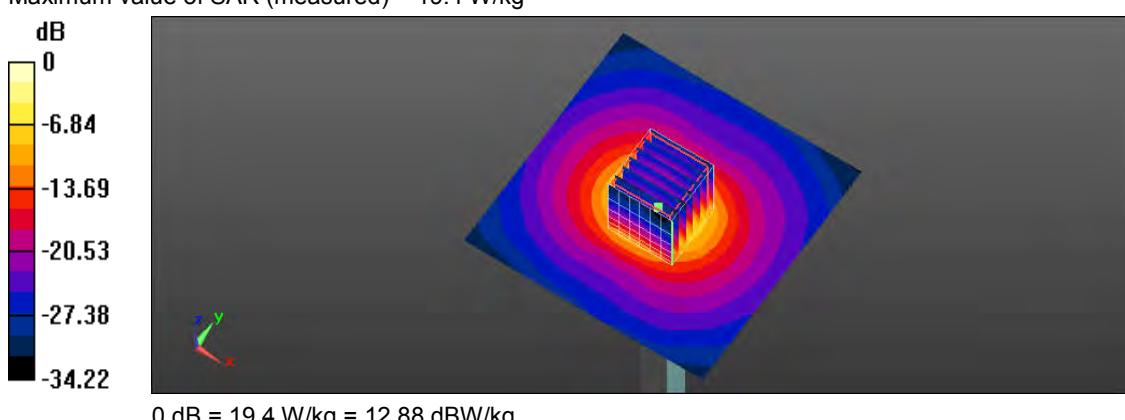
- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3847; ConvF(5.22, 5.22, 5.22) @ 5250 MHz; Calibrated: 2019/5/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2019/3/19
- Phantom: ELI V4.0 (20deg probe tilt); Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.10 (7331)

System Performance Check at 5250MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 18.9 W/kg

System Performance Check at 5250MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.82 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.24 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 65.7%

Maximum value of SAR (measured) = 19.4 W/kg

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/12

System Performance Check at 5600MHz_20200212_Head

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1021

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5600$ MHz; $\sigma = 4.891$ S/m; $\epsilon_r = 35.283$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

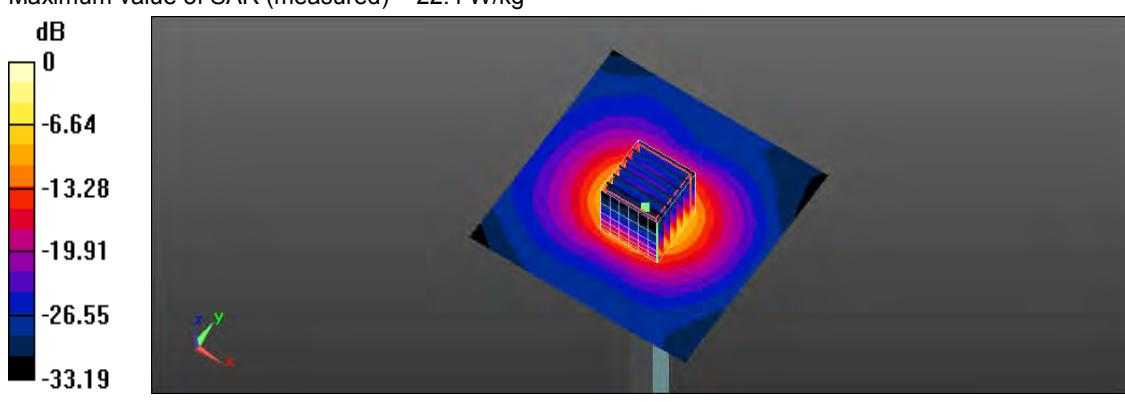
- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3847; ConvF(4.68, 4.68, 4.68) @ 5600 MHz; Calibrated: 2019/5/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2019/3/19
- Phantom: ELI V4.0 (20deg probe tilt); Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.10 (7331)

System Performance Check at 5600MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 21.3 W/kg

System Performance Check at 5600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.80 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 36.1 W/kg

SAR(1 g) = 8.66 W/kg; SAR(10 g) = 2.33 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 63.5%

Maximum value of SAR (measured) = 22.4 W/kg

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/12

System Performance Check at 5750MHz_20200212_Head

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1021

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5750$ MHz; $\sigma = 5.155$ S/m; $\epsilon_r = 34.961$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

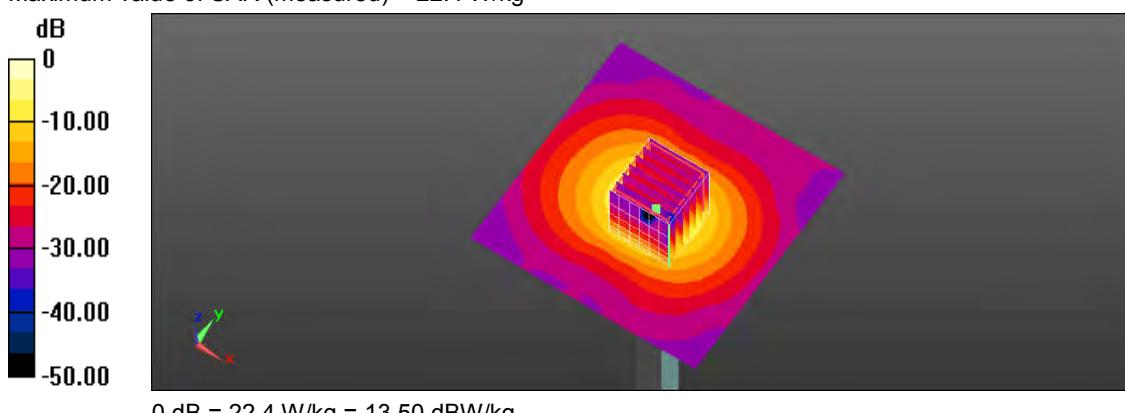
- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3847; ConvF(4.66, 4.66, 4.66) @ 5750 MHz; Calibrated: 2019/5/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2019/3/19
- Phantom: ELI V4.0 (20deg probe tilt); Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.10 (7331)

System Performance Check at 5750MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 20.9 W/kg

System Performance Check at 5750MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.47 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 36.9 W/kg

SAR(1 g) = 8.32 W/kg; SAR(10 g) = 2.22 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 62.2%

Maximum value of SAR (measured) = 22.4 W/kg

Appendix B - SAR Measurement Data

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/13

25_IEEE 802.11b CH11_1M_Side 2_0mm

DUT: TG200; Type: Handheld Tablet

Communication System: UID 0, IEEE 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1.001

Medium parameters used: $f = 2462$ MHz; $\sigma = 1.779$ S/m; $\epsilon_r = 39.35$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3847; ConvF(7.14, 7.14, 7.14) @ 2462 MHz; Calibrated: 2019/5/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2019/3/19
- Phantom: ELI V4.0 (20deg probe tilt); Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.10 (7331)

Area Scan (41x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.591 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.30 V/m; Power Drift = -0.13 dB


Peak SAR (extrapolated) = 0.692 W/kg

SAR(1 g) = 0.327 W/kg; SAR(10 g) = 0.159 W/kg

Smallest distance from peaks to all points 3 dB below = 9.8 mm

Ratio of SAR at M2 to SAR at M1 = 46.9%

Maximum value of SAR (measured) = 0.551 W/kg

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/12

04_IEEE 802.11a CH52_6M_Side 2_0mm

DUT: TG200; Type: Handheld Tablet

Communication System: UID 0, IEEE 802.11a (0); Frequency: 5260 MHz; Duty Cycle: 1:1.001

Medium parameters used: $f = 5260$ MHz; $\sigma = 4.537$ S/m; $\epsilon_r = 35.874$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3847; ConvF(5.22, 5.22, 5.22) @ 5260 MHz; Calibrated: 2019/5/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2019/3/19
- Phantom: ELI V4.0 (20deg probe tilt); Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.10 (7331)

Area Scan (51x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.32 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 19.66 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 0.933 W/kg; SAR(10 g) = 0.266 W/kg

Smallest distance from peaks to all points 3 dB below = 6.9 mm

Ratio of SAR at M2 to SAR at M1 = 65.1%

Maximum value of SAR (measured) = 2.31 W/kg

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/12

10_IEEE 802.11ac80 CH138_VHT0_Side 2_0mm

DUT: TG200; Type: Handheld Tablet

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT80 (0); Frequency: 5530 MHz; Duty Cycle: 1:1.001
 Medium parameters used: $f = 5530$ MHz; $\sigma = 4.824$ S/m; $\epsilon_r = 35.516$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

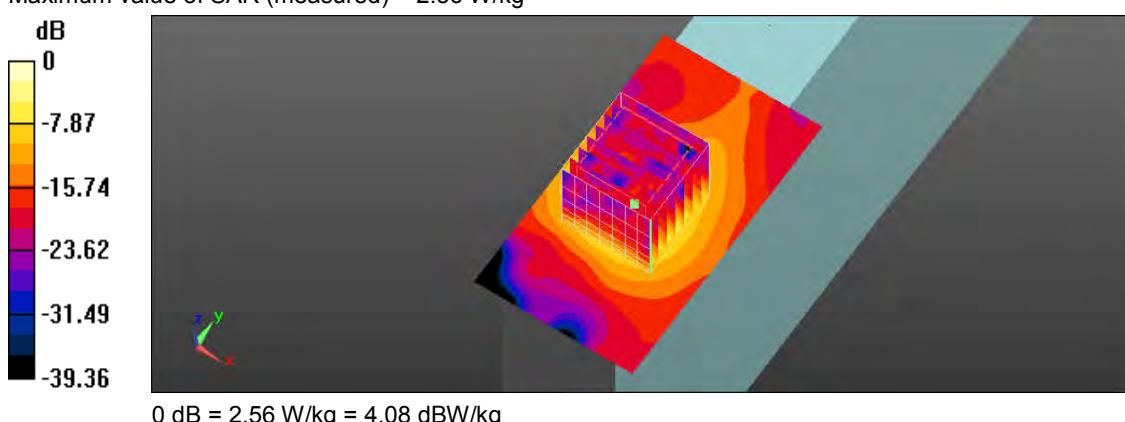
- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3847; ConvF(4.68, 4.68, 4.68) @ 5530 MHz; Calibrated: 2019/5/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2019/3/19
- Phantom: ELI V4.0 (20deg probe tilt); Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.10 (7331)

Area Scan (51x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.61 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 19.96 V/m; Power Drift = -0.15 dB


Peak SAR (extrapolated) = 4.15 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.330 W/kg

Smallest distance from peaks to all points 3 dB below = 7.9 mm

Ratio of SAR at M2 to SAR at M1 = 64.3%

Maximum value of SAR (measured) = 2.56 W/kg

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/12

19_IEEE 802.11a CH157_6M_Side 2_0mm

DUT: TG200; Type: Handheld Tablet

Communication System: UID 0, IEEE 802.11a (0); Frequency: 5785 MHz; Duty Cycle: 1:1.001

Medium parameters used: $f = 5785$ MHz; $\sigma = 5.109$ S/m; $\epsilon_r = 34.981$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

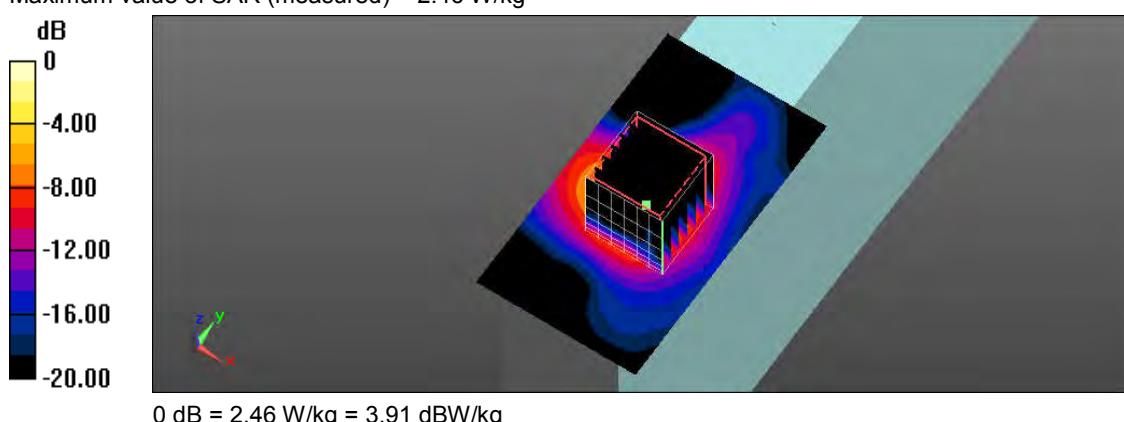
- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3847; ConvF(4.66, 4.66, 4.66) @ 5785 MHz; Calibrated: 2019/5/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2019/3/19
- Phantom: ELI V4.0 (20deg probe tilt); Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.10 (7331)

Area Scan (51x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.51 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 18.76 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 4.04 W/kg

SAR(1 g) = 0.988 W/kg; SAR(10 g) = 0.286 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 62.9%

Maximum value of SAR (measured) = 2.46 W/kg

Appendix C - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ D2450V2 SN:712
- Dipole _ D5GHzV2 SN:1021
- Probe _ EX3DV4 SN:3847
- DAE _ DAE4 SN:541

 In Collaboration with
s p e a g
 CALIBRATION LABORATORY

ST-002-19-082

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: ctli@chinatl.com http://www.chinatl.cn

 中国认可
 国际互认
CNAS
 校准
 CALIBRATION
 CNAS L0570

Client

ATL

Certificate No: Z19-60129

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 712

 Calibration Procedure(s) FF-Z11-003-01
 Calibration Procedures for dipole validation kits

Calibration date: April 15, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards		ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter	NRP2	106277	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Power sensor	NRP8S	104291	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Reference Probe	EX3DV4	SN 3617	31-Jan-19(SPEAG, No.EX3-3617_Jan19)	Jan-20
DAE4		SN 1331	06-Feb-19(SPEAG, No.DAE4-1331_Feb19)	Feb-20
Secondary Standards		ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator	E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer	E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20

Calibrated by:	Name Zhao Jing	Function SAR Test Engineer	Signature
Reviewed by:	Name Lin Hao	Function SAR Test Engineer	Signature
Approved by:	Name Qi Dianyuan	Function SAR Project Leader	Signature

Issued: April 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	40.4 \pm 6 %	1.85 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg \pm 18.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg \pm 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	54.3 \pm 6 %	2.01 mho/m \pm 6 %
Body TSL temperature change during test	<1.0 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.5 W/kg \pm 18.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.88 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.5 W/kg \pm 18.7 % (k=2)

In Collaboration with
S p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.4\Omega + 3.38 j\Omega$
Return Loss	- 27.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.9\Omega + 5.55 j\Omega$
Return Loss	- 24.4dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.022 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 04.15.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 712

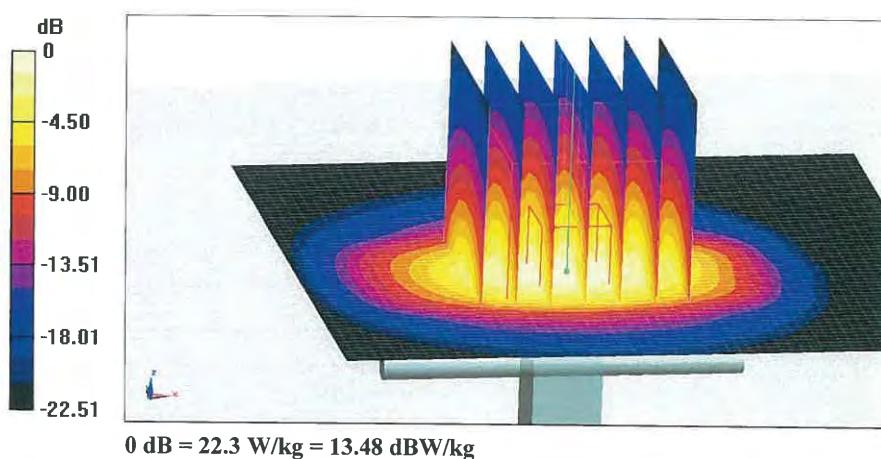
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 40.35$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

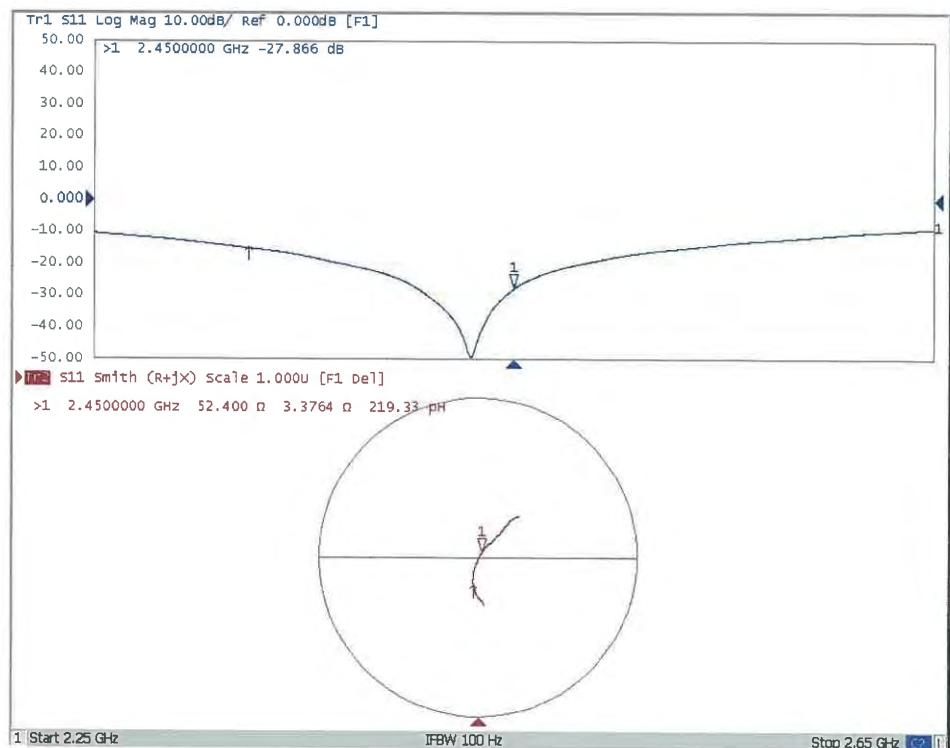
- Probe: EX3DV4 - SN3617; ConvF(7.62, 7.62, 7.62) @ 2450 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.05 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.02 W/kg


Maximum value of SAR (measured) = 22.3 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinatl.com <http://www.chinatl.com>

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctll@chinattl.com <http://www.chinattl.cn>

DASY5 Validation Report for Body TSL

Date: 04.15.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 712

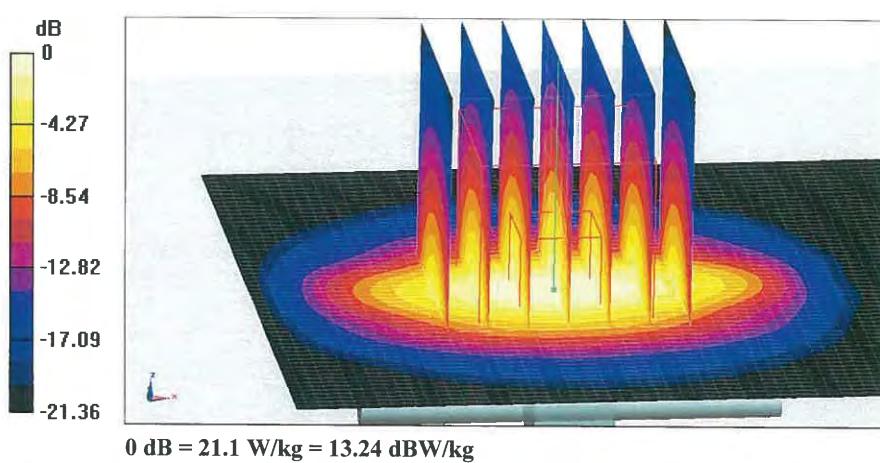
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.005$ S/m; $\epsilon_r = 54.25$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

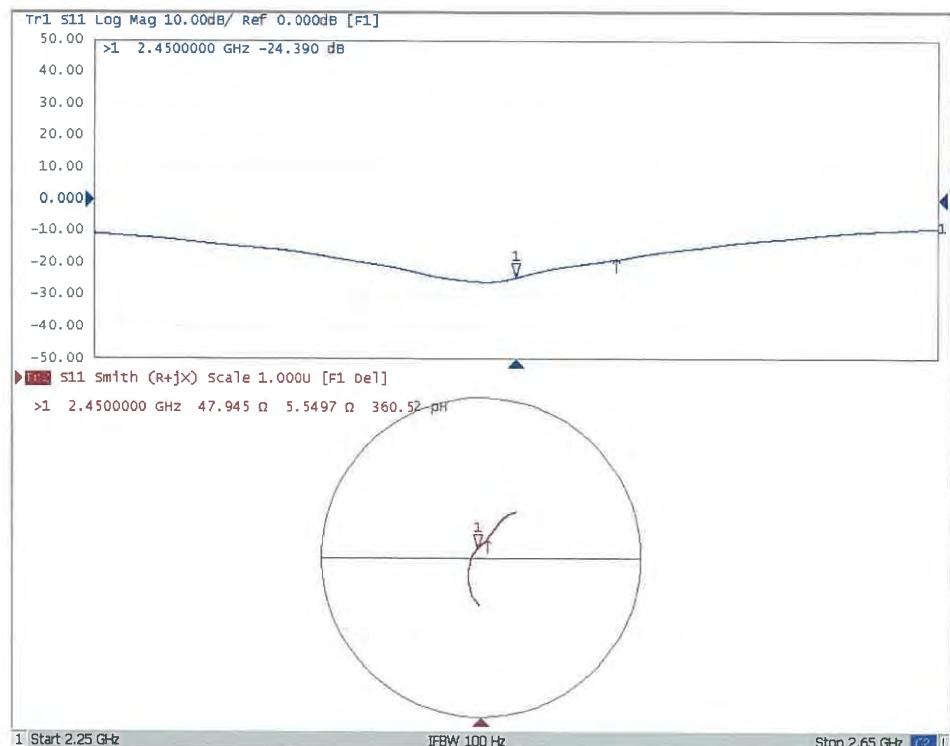
- Probe: EX3DV4 - SN3617; ConvF(7.79, 7.79, 7.79) @ 2450 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

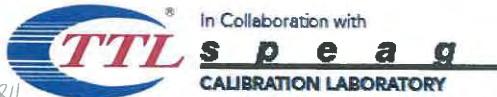

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.06 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 26.5 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.88 W/kg


Maximum value of SAR (measured) = 21.1 W/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctll@chinatl.com <http://www.chinatl.cn>

Impedance Measurement Plot for Body TSL

ST-007-19-084

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctll@chinattl.com http://www.chinattl.cn

中国认可
国际互认
校准
CALIBRATION
CNAS L0570

Client

ATL

Certificate No: Z19-60131

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1021

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

April 19, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Power sensor NRP8S	104291	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
ReferenceProbe EX3DV4	SN 7514	27-Aug-18(SPEAG, No.EX3-7514_Aug18/2)	Aug-19
DAE4	SN 1331	06-Feb-19(SPEAG, No.DAE4-1331_Feb19)	Feb-20
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzerE5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20

Calibrated by:

Name: Zhao Jing Function: SAR Test Engineer

Reviewed by:

Name: Lin Hao Function: SAR Test Engineer

Approved by:

Name: Qi Dianyuan Function: SAR Project Leader

Issued: April 25, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinatl.com <http://www.chinatl.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinattl.com <http://www.chinattl.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.1 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.6 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.92 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.0 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	5.07 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.1 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: cttl@chinatl.com <http://www.chinatl.cn>

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.3 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	----	----

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.9 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	----	----

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.0 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinatl.com <http://www.chinatl.cn>

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.7 ± 6 %	6.11 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	----	----

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com <http://www.chinattl.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	$51.9\Omega - 4.22j\Omega$
Return Loss	- 26.9dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$58.4\Omega - 0.27j\Omega$
Return Loss	- 22.2dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$56.7\Omega + 1.19j\Omega$
Return Loss	- 23.9dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	$52.3\Omega - 2.82j\Omega$
Return Loss	- 28.9dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$58.7\Omega + 1.14j\Omega$
Return Loss	- 21.8dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	$57.5\Omega + 1.49j\Omega$
Return Loss	- 23.0dB

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com <http://www.chinattl.cn>

General Antenna Parameters and Design

Electrical Delay (one direction)	1.064 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctcl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 04.17.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1021

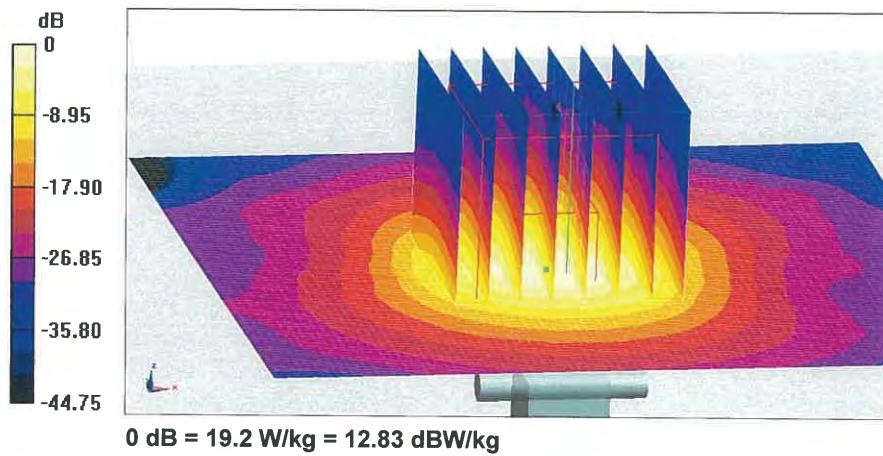
Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: $f = 5250$ MHz; $\sigma = 4.576$ S/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³, Medium parameters used: $f = 5600$ MHz; $\sigma = 4.923$ S/m; $\epsilon_r = 34.46$; $\rho = 1000$ kg/m³, Medium parameters used: $f = 5750$ MHz; $\sigma = 5.066$ S/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³,

Phantom section: Center Section

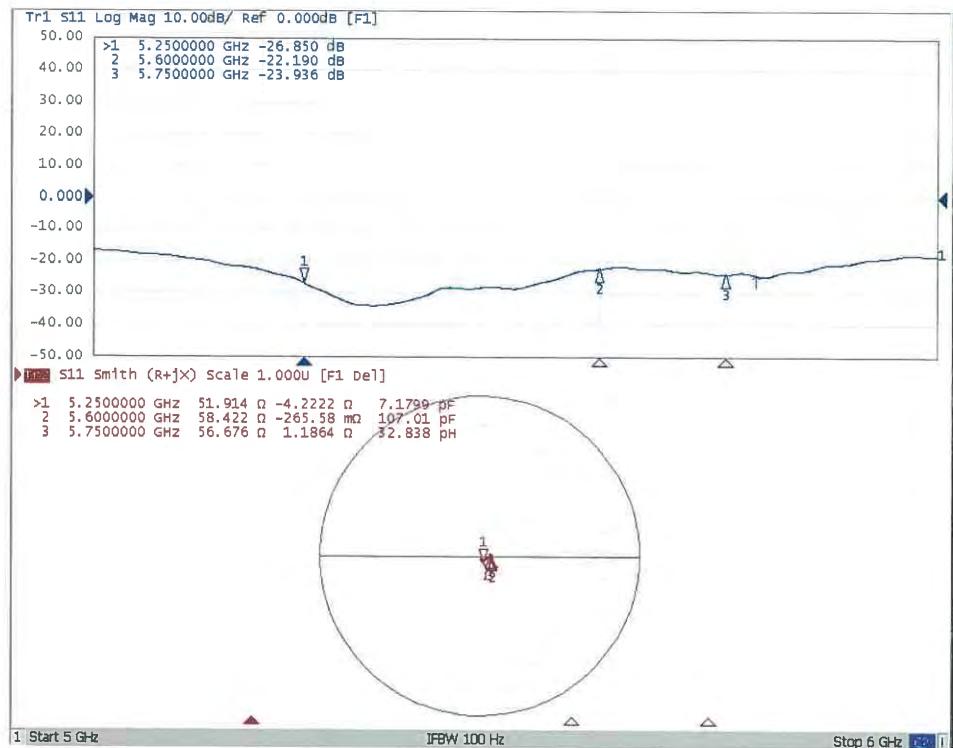
DASY5 Configuration:

- Probe: EX3DV4 - SN7514; ConvF(5.02, 5.02, 5.02) @ 5250 MHz; Calibrated: 8/27/2018, ConvF(4.41, 4.41, 4.41) @ 5600 MHz; Calibrated: 8/27/2018, ConvF(4.47, 4.47, 4.47) @ 5750 MHz; Calibrated: 8/27/2018,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 70.41 V/m; Power Drift = -0.01 dB
Peak SAR (extrapolated) = 33.3 W/kg
SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.18 W/kg
Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 61.17 V/m; Power Drift = 0.00 dB
Peak SAR (extrapolated) = 38.8 W/kg
SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.29 W/kg
Maximum value of SAR (measured) = 21.0 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 63.86 V/m; Power Drift = 0.03 dB
Peak SAR (extrapolated) = 38.0 W/kg
SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.15 W/kg
Maximum value of SAR (measured) = 19.2 W/kg


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com <http://www.chinattl.cn>

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: cttl@chinatl.com <http://www.chinatl.com>

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctll@chinatl.com http://www.chinatl.cn

DASY5 Validation Report for Body TSL

Date: 04.19.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1021

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: $f = 5250$ MHz; $\sigma = 5.492$ S/m; $\epsilon_r = 50.32$; $\rho = 1000$ kg/m³, Medium parameters used: $f = 5600$ MHz; $\sigma = 5.937$ S/m; $\epsilon_r = 49.85$; $\rho = 1000$ kg/m³, Medium parameters used: $f = 5750$ MHz; $\sigma = 6.109$ S/m; $\epsilon_r = 49.74$; $\rho = 1000$ kg/m³,

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7514; ConvF(4.54, 4.54, 4.54) @ 5250 MHz; Calibrated: 8/27/2018, ConvF(4, 4, 4) @ 5600 MHz; Calibrated: 8/27/2018, ConvF(3.98, 3.98, 3.98) @ 5750 MHz; Calibrated: 8/27/2018,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 58.99 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 29.9 W/kg

SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

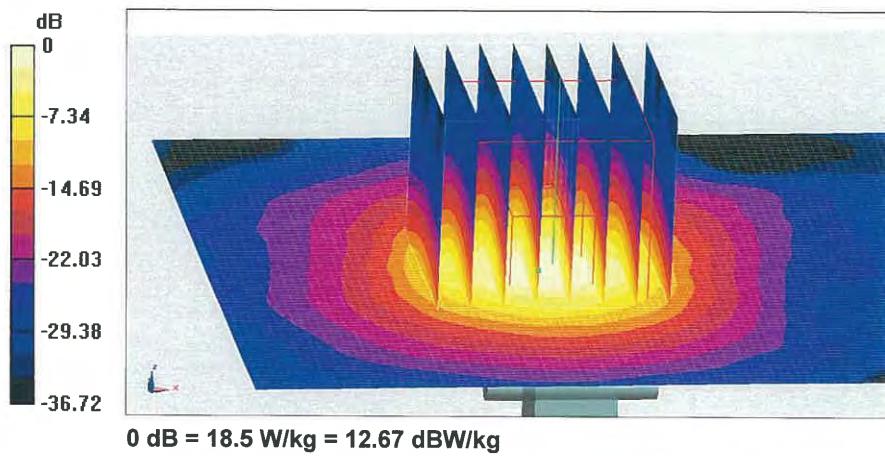
Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 54.86 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 35.6 W/kg

SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.16 W/kg

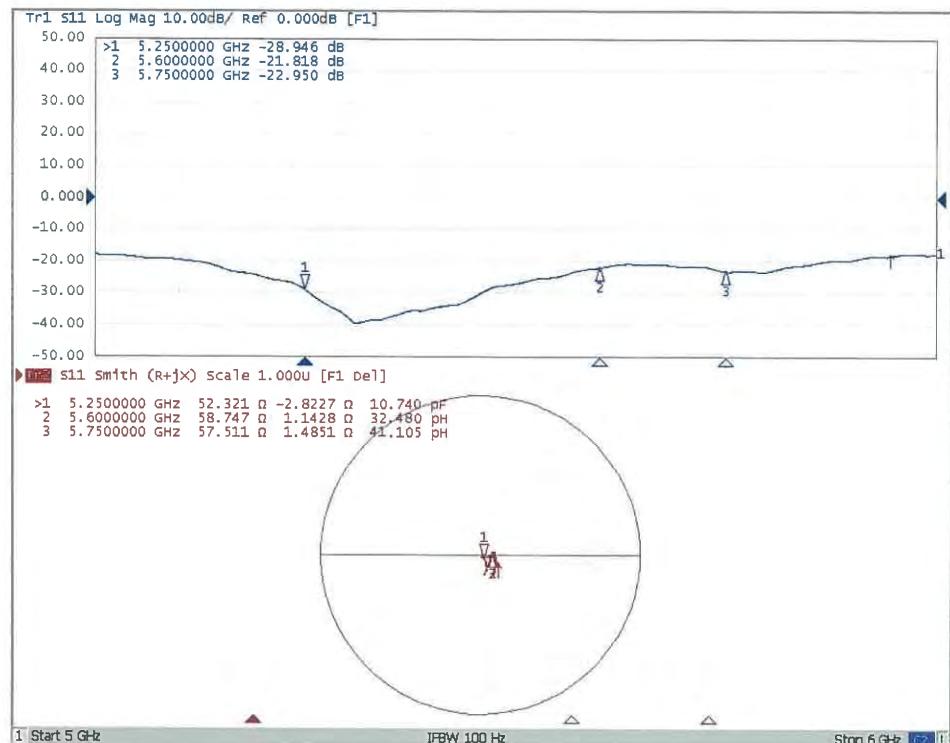
Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 55.96 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 35.0 W/kg

SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 18.5 W/kg


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com <http://www.chinattl.cn>

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctll@chinatl.com http://www.chinatl.cn

Impedance Measurement Plot for Body TSL

In Collaboration with

 speag
 CALIBRATION LABORATORY

 中国认可
 国际互认
 校准
 CALIBRATION
 CNAS L0570

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: cttl@chinatl.com [Http://www.chinatl.cn](http://www.chinatl.cn)

Client

ATL

Certificate No: Z19-60136

CALIBRATION CERTIFICATE

Object EX-042_19-119

EX3DV4 - SN:3847

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

May 16, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101547	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101548	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Reference10dBAttenuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dBAttenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe EX3DV4	SN 7514	27-Aug-18(SPEAG, No.EX3-7514_Aug18/2)	Aug-19
DAE4	SN 1555	20-Aug-18(SPEAG, No.DAE4-1555_Aug18)	Aug -19
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	21-Jun-18 (CTTL, No.J18X05033)	Jun-19
Network Analyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan -20

	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: May 18, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinatl.com [Http://www.chinatl.cn](http://www.chinatl.cn)

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), $\theta=0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\theta=0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- $Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z; A,B,C$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters:* Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy):* in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset:* The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle:* The angle is assessed using the information gained by determining the $NORM_x$ (no uncertainty required).

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinatl.com [Http://www.chinatl.cn](http://www.chinatl.cn)

Probe EX3DV4

SN: 3847

Calibrated: May 16, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinatl.com [Http://www.chinatl.cn](http://www.chinatl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3847

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μ V/(V/m) ²) ^A	0.55	0.50	0.44	±10.0%
DCP(mV) ^B	98.3	99.1	102.0	

Modulation Calibration Parameters

UID	Communication System Name	A dB	B dB· μ V	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X 0.0	0.0	1.0	0.00	176.8	±2.2%
		Y 0.0	0.0	1.0		168.2	
		Z 0.0	0.0	1.0		156.2	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinatl.com <http://www.chinatl.cn>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3847

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.67	9.67	9.67	0.17	1.19	±12.1%
835	41.5	0.90	9.35	9.35	9.35	0.16	1.18	±12.1%
900	41.5	0.97	9.29	9.29	9.29	0.17	1.17	±12.1%
1750	40.1	1.37	8.15	8.15	8.15	0.26	1.02	±12.1%
1900	40.0	1.40	7.72	7.72	7.72	0.29	0.93	±12.1%
2000	40.0	1.40	7.93	7.93	7.93	0.24	1.18	±12.1%
2300	39.5	1.67	7.52	7.52	7.52	0.59	0.72	±12.1%
2450	39.2	1.80	7.14	7.14	7.14	0.61	0.72	±12.1%
2600	39.0	1.96	7.11	7.11	7.11	0.69	0.69	±12.1%
3500	37.9	2.91	6.61	6.61	6.61	0.60	1.05	±13.3%
3700	37.7	3.12	6.51	6.51	6.51	0.60	0.90	±13.3%
5250	35.9	4.71	5.22	5.22	5.22	0.50	1.30	±13.3%
5600	35.5	5.07	4.68	4.68	4.68	0.55	1.22	±13.3%
5750	35.4	5.22	4.66	4.66	4.66	0.55	1.25	±13.3%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

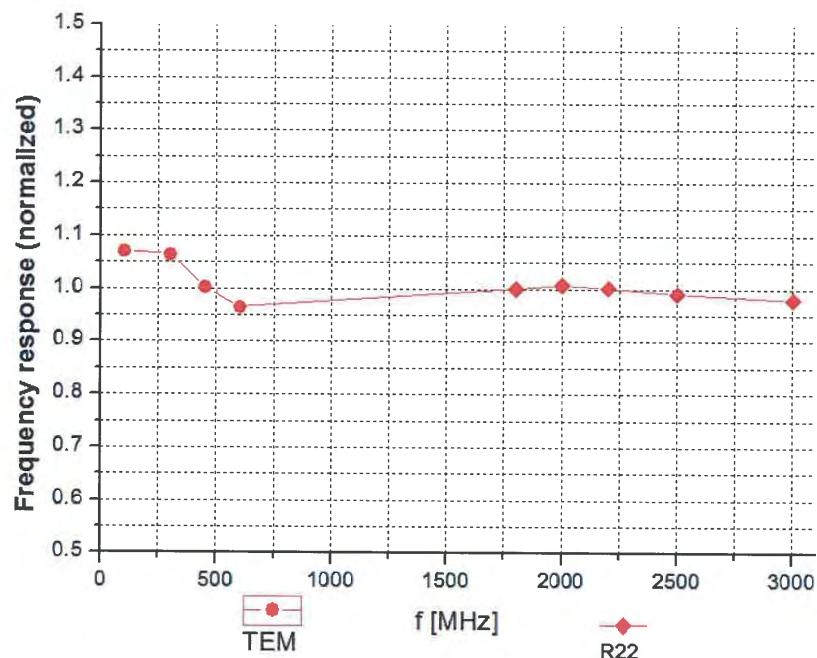
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinatl.com [Http://www.chinatl.cn](http://www.chinatl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3847

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.58	9.58	9.58	0.40	0.80	±12.1%
835	55.2	0.97	9.33	9.33	9.33	0.17	1.42	±12.1%
900	55.0	1.05	9.30	9.30	9.30	0.26	1.16	±12.1%
1750	53.4	1.49	7.84	7.84	7.84	0.23	1.13	±12.1%
1900	53.3	1.52	7.61	7.61	7.61	0.23	1.12	±12.1%
2000	53.3	1.52	7.56	7.56	7.56	0.24	1.17	±12.1%
2300	52.9	1.81	7.41	7.41	7.41	0.58	0.80	±12.1%
2450	52.7	1.95	7.37	7.37	7.37	0.68	0.72	±12.1%
2600	52.5	2.16	7.20	7.20	7.20	0.68	0.70	±12.1%
3500	51.3	3.31	6.47	6.47	6.47	0.55	1.03	±13.3%
3700	51.0	3.55	6.35	6.35	6.35	0.55	0.98	±13.3%
5250	48.9	5.36	4.80	4.80	4.80	0.50	1.46	±13.3%
5600	48.5	5.77	4.11	4.11	4.11	0.55	1.60	±13.3%
5750	48.3	5.94	4.15	4.15	4.15	0.55	1.45	±13.3%

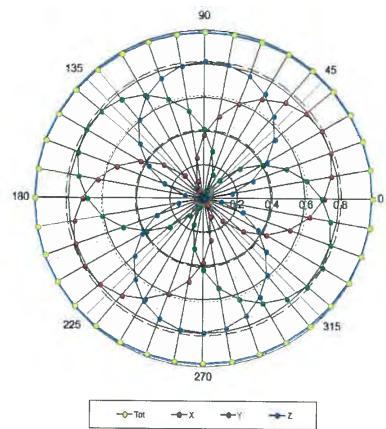
^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

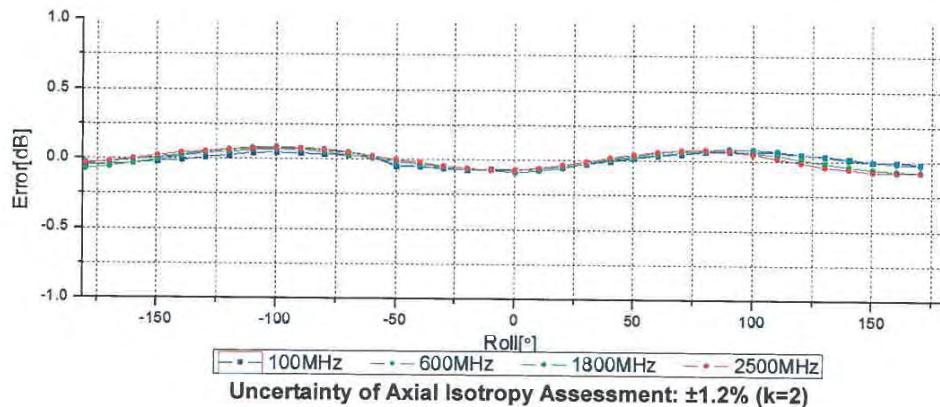
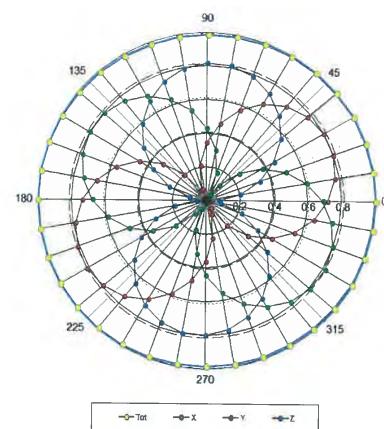

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinatl.com [Http://www.chinatl.com](http://www.chinatl.com)

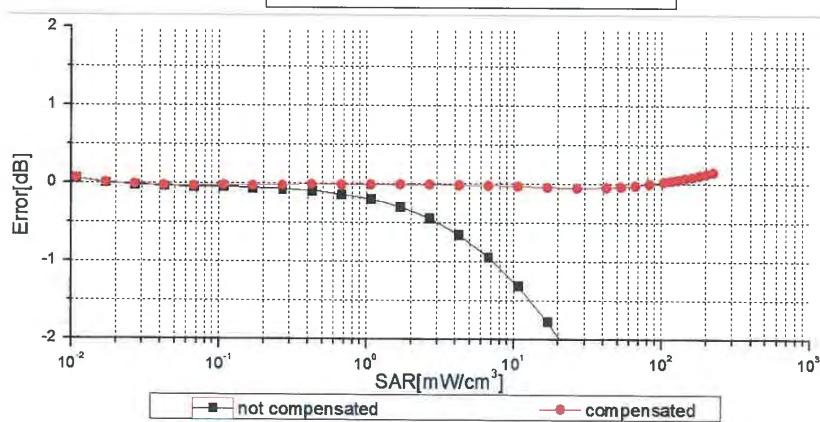
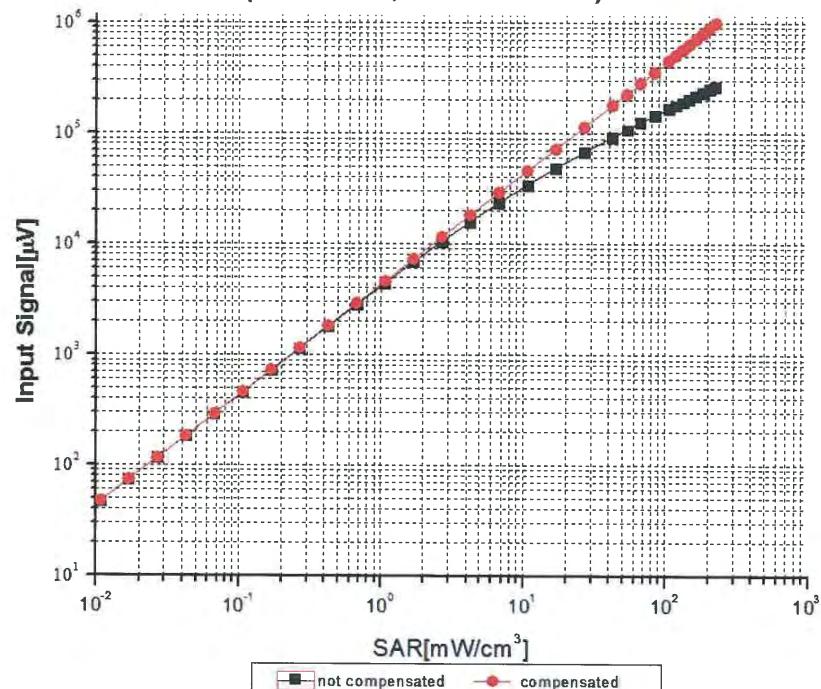
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 7.4\%$ ($k=2$)



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinatl.com [Http://www.chinatl.cn](http://www.chinatl.cn)

Receiving Pattern (Φ), $\theta=0^\circ$

f=600 MHz, TEM

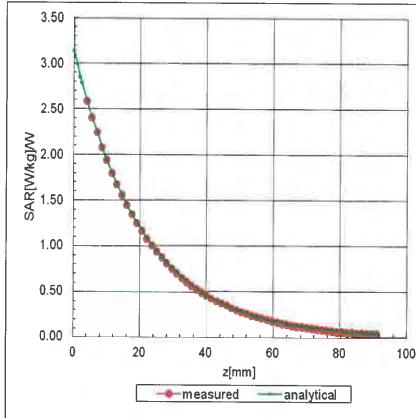


f=1800 MHz, R22

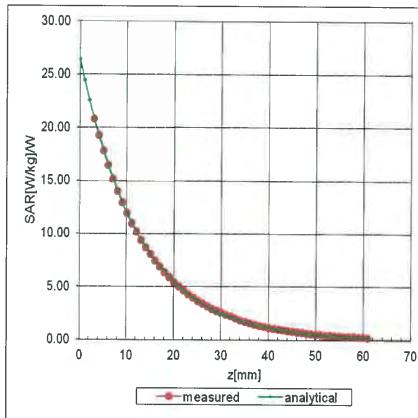
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinatl.com [Http://www.chinatl.cn](http://www.chinatl.cn)

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

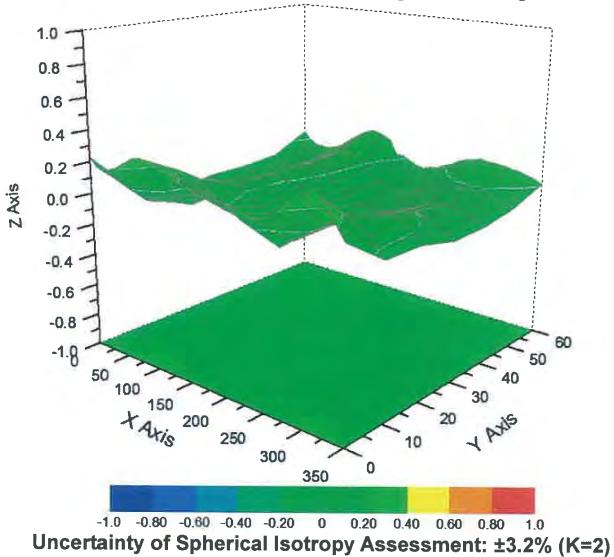
Uncertainty of Linearity Assessment: $\pm 0.9\%$ (k=2)

Certificate No: Z19-60136


Page 9 of 11


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: cttl@chinatl.com [Http://www.chinatl.cn](http://www.chinatl.cn)

Conversion Factor Assessment


f=750 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinatl.com [Http://www.chinatl.com](http://www.chinatl.com)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3847

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	101.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

MR-008_19-056

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctll@chinatl.com [Http://www.chinatl.cn](http://www.chinatl.cn)

Client : ATL

Certificate No: Z19-60080

CALIBRATION CERTIFICATE

Object DAE4 - SN: 541

Calibration Procedure(s) FF-Z11-002-01
Calibration Procedure for the Data Acquisition Electronics
(DAEx)


Calibration date: March 19, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	20-Jun-18 (CTTL, No.J18X05034)	June-19

Calibrated by:	Name Yu Zongying	Function SAR Test Engineer	Signature
Reviewed by:	Name Lin Hao	Function SAR Test Engineer	Signature
Approved by:	Name Qi Dianyuan	Function SAR Project Leader	Signature

Issued: March 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Glossary:

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1 μ V, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.544 \pm 0.15\% \text{ (k=2)}$	$404.406 \pm 0.15\% \text{ (k=2)}$	$404.170 \pm 0.15\% \text{ (k=2)}$
Low Range	$3.96863 \pm 0.7\% \text{ (k=2)}$	$3.93444 \pm 0.7\% \text{ (k=2)}$	$3.97515 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$288.5^\circ \pm 1^\circ$
---	---------------------------