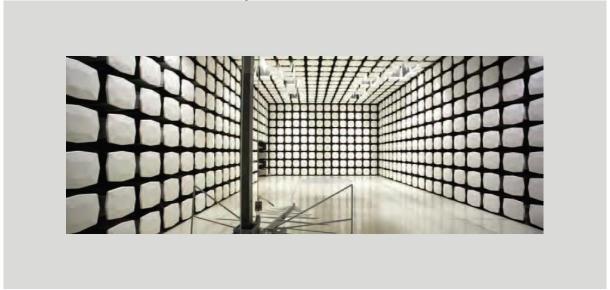


Cardiovascular Systems, Inc.


Exchangeable OAD

FCC 15.207:2018

FCC 15.225:2018

13.56 MHz Radio

Report # CSYS0026.2

NVLAP LAB CODE: 200881-0

CERTIFICATE OF TEST

Last Date of Test: March 29, 2018 Cardiovascular Systems, Inc. Model: Exchangeable OAD

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2018	ANSI C63.10:2013
FCC 15.225:2018	ANSI C03.10.2013

Results

Method Clause	Test Description	Applied	Results	Comments		
6.2	Powerline Conducted Emissions	Yes	Pass			
6.4	Field Strength of Fundamental	Yes	Pass			
6.4	Field Strength of Spurious Emissions Less Than 30 MHz	Yes	Pass			
6.5	Field Strength of Spurious Emissions Greater Than 30 MHz	Yes	Pass			
6.8	Frequency Stability	Yes	Pass			

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

MEASUREMENT UNCERTAINTY

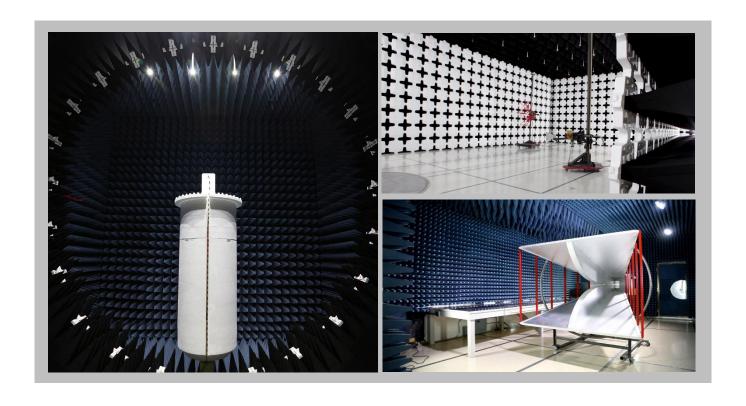
Measurement Uncertainty

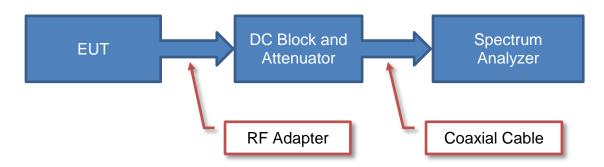
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

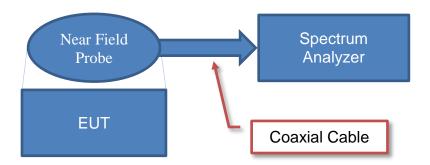
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

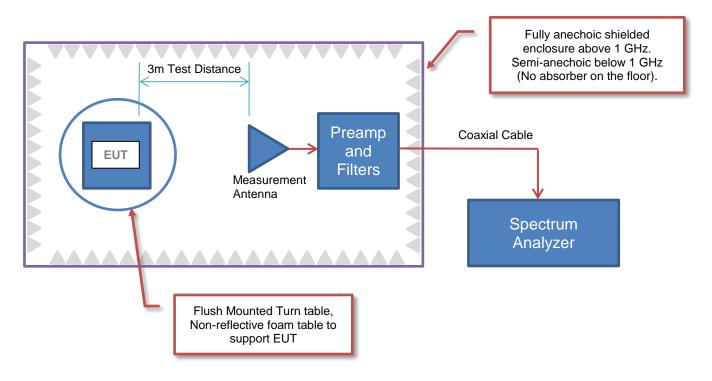
The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB


FACILITIES


California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120th Ave NE Bothell, WA 98011 (425)984-6600		
		NV	LAP				
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1		
		BS	МІ				
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
	VCCI						
A-0029	A-0109	N/A	A-0108	A-0201	A-0110		
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA							
US0158	US0175	N/A	US0017	US0191	US0157		


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Cardiovascular Systems, Inc.
Address:	1225 Old Highway 8 NW
City, State, Zip:	St. Paul, MN 55112 No
Test Requested By:	Michael Welsch
Model:	Exchangeable OAD
First Date of Test:	March 26, 2018
Last Date of Test:	March 29, 2018
Receipt Date of Samples:	March 26, 2018
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:	
Medical device with 13.56 MHz RFID radio	

Testing Objective:

To demonstrate compliance to FCC Part 15.225 specifications.

CONFIGURATIONS

Configuration CSYS0026-1

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
OAS Pump	Cardiovascular Systems, Inc.	7-10037	184804			
Handle/Cartridge Assembly, 2.00 Solid, 145cm	Cardiovascular Systems, Inc.	7-10030-04	220692			

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
Weight Sensor	Cardiovascular Systems, Inc.	60255-02	184804			
Guide Wire	Cardiovascular Systems, Inc.	7-10026-01	166551			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Weight Sensor Cable	No	0.5m	No	OAS Pump	Weight Sensor
Power Cable	No	6.1m	No	OAS Pump	AC Mains
Handle Assembly Cable	No	3.3m	No	OAS Pump	Handle/Cartridge Assembly

Configuration CSYS0026- 2

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
OAS Pump	Cardiovascular Systems, Inc.	7-10037	184804			
Handle/Cartridge Assembly, 2.00 Solid, 145cm	Cardiovascular Systems, Inc.	7-10030-04	220693			

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
Weight Sensor	Cardiovascular Systems, Inc.	60255-02	184804			
Guide Wire	Cardiovascular Systems, Inc.	7-10026-01	166551			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Weight Sensor Cable	No	0.5m	No	OAS Pump	Weight Sensor
Power Cable	No	6.1m	No	OAS Pump	AC Mains
Handle Assembly Cable	No	3.3m	No	OAS Pump	Handle/Cartridge Assembly

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	3/26/2018	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	3/26/2018	Field Strength of Spurious Emissions less than 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	3/27/2018	Field Strength of Spurious Emissions greater than 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	3/28/2018	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	3/29/2018	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Report No. CSYS0026.2 10/30

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESR7	ARI	6/4/2017	6/4/2018
Cable - Conducted Cable Assembly	Northwest EMC	MNC, HGN, TYK	MNCA	3/14/2018	3/14/2019
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	3/15/2018	3/15/2019

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

CSYS0026-2

MODES INVESTIGATED

Transmitting RFID, 13.56 MHz modulated

EUT:	Exchangeable OAD	Work Order:	CSYS0026
Serial Number:	220693	Date:	03/28/2018
Customer:	Cardiovascular Systems, Inc.	Temperature:	22.3°C
Attendees:	Michael Welsch	Relative Humidity:	25.6%
Customer Project:	None	Bar. Pressure:	1013 mb
Tested By:	Dustin Sparks	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	CSYS0026-2

TEST SPECIFICATIONS

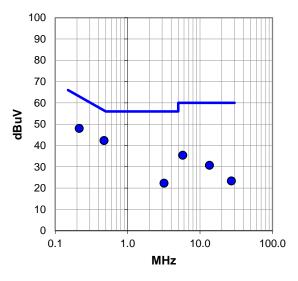
Specification:	Method:
FCC 15.207:2018	ANSI C63.10:2013

TEST PARAMETERS

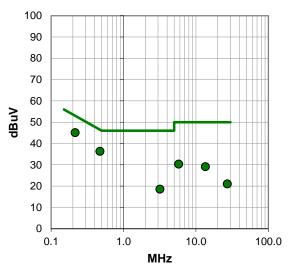
Run #:	12	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

Using dummy load on antenna per FCC guidelines


EUT OPERATING MODES

Transmitting RFID, 13.56 MHz modulated


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #12

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.473	21.9	20.4	42.3	56.5	-14.2
0.215	27.4	20.6	48.0	63.0	-15.0
5.785	14.6	20.8	35.4	60.0	-24.6
13.559	9.1	21.6	30.7	60.0	-29.3
3.188	1.7	20.6	22.3	56.0	-33.7
27.120	-0.3	23.6	23.3	60.0	-36.7

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.215	24.5	20.6	45.1	53.0	-7.9
0.473	15.9	20.4	36.3	46.5	-10.2
5.785	9.5	20.8	30.3	50.0	-19.7
13.559	7.5	21.6	29.1	50.0	-20.9
3.188	-2.1	20.6	18.5	46.0	-27.5
27.120	-2.6	23.6	21.0	50.0	-29.0

CONCLUSION

Pass

Tested By

EUT:	Exchangeable OAD	Work Order:	CSYS0026
Serial Number:	220693	Date:	03/28/2018
Customer:	Cardiovascular Systems, Inc.	Temperature:	22.3°C
Attendees:	Michael Welsch	Relative Humidity:	25.6%
Customer Project:	None	Bar. Pressure:	1013 mb
Tested By:	Dustin Sparks	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	CSYS0026-2

TEST SPECIFICATIONS

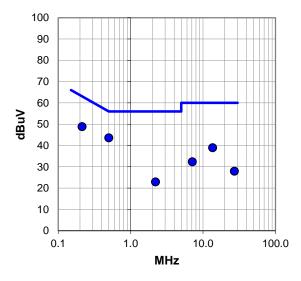
Specification:	Method:
FCC 15.207:2018	ANSI C63.10:2013

TEST PARAMETERS

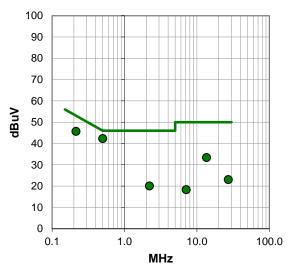
Run #:	13	Line:	High Line	Add. Ext. Attenuation (d	dB):	0

COMMENTS

Using dummy load on antenna per FCC guidelines


EUT OPERATING MODES

Transmitting RFID, 13.56 MHz modulated


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Report No. CSYS0026.2 14/30

RESULTS - Run #13

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.499	23.2	20.4	43.6	56.0	-12.4
0.214	28.2	20.6	48.8	63.0	-14.2
13.570	17.3	21.6	38.9	60.0	-21.1
7.142	11.4	20.9	32.3	60.0	-27.7
27.128	4.3	23.6	27.9	60.0	-32.1
2.214	2.4	20.5	22.9	56.0	-33.1

Average Data - vs - Average Limit											
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)						
0.499	21.9	20.4	42.3	46.0	-3.7						
0.214	25.1	20.6	45.7	53.0	-7.3						
13.570	11.8	21.6	33.4	50.0	-16.6						
2.214	-0.5	20.5	20.0	46.0	-26.0						
27.128	-0.6	23.6	23.0	50.0	-27.0						
7.142	-2.6	20.9	18.3	50.0	-31.7						

CONCLUSION

Pass

Tested By

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2017.12.19

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

CSYS0026 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 490 kHz Stop Frequency 30 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	ESM Cable Corp.	Antenna Loop Cable	MNE	16-Feb-2018	12 mo
Antenna - Loop	ETS Lindgren	6502	AOB	16-May-2017	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAS	27-Feb-2018	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.4, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF FUNDAMENTAL

																			EmiR5	2018.02.0	6		Р	SA-ESCI 2017.12.1	9
W	Vork Orde	er:	CS	YSC	026					Date:			ar-201	8		1	2	. /							Ī
	Projec			Non			-			ture:			7°C			~	m	oth	n	X	N	ar	2	S	
0	Job Sit			MNC			D			idity:			% RH				T	1 1	D	·- O	(×200	_
Seri	al Numbe		Exchanc	206		۱D	Baro	me	tric F	Pres.:	10	023	mba	<u> </u>			Test	ed by:	Dust	ın Sp	arks				_
Con	nfiguratio			Jean	ile Or	ער																			_
	Custome			ascu	ılar S	vster	ns, Inc.																		_
	Attendee							ltz																	_
E	EUT Powe																								-
Opera	ating Mod	le:	Transmi	tting	RFI	D, 13	3.56 MH	z mo	odula	ted															
ı	Deviation	15.	None																						
C	Commen		None																						
Test Spec	cification	s											Test	Met	ho	d	I								
FCC 15.2		13														0:2013									=
																									_
Run #	# 0		Test I	Dist	ance	(m)	10		An	tenna	Height	t(s)				1(m)			Re	sults	3		Pa	SS	_
				T				Т	_		<u>_</u>						Т								
80 -				-							-													\vdash	
70																									
70 -																									
60 -																									
⊆ ⁵⁰ -								т																	
≶																									
w//ngp		_						╜_						Ц			-			4					
₩																									
30 -		_																		Н					
20 -				_																					
											2														
10 -											-														
0 -				-				-		_										\vdash					
13	3.0		1	3.2			1	3.4			13	3.6				13.8			1	4.0				14.2	
											M	Hz								PK	•	A۱	v	• QP	
													DI	arity/								-			
Freq (MHz)	Amplitude (dBuV)		Factor (dB)	А	ntenna l (mete		Azimutl (degree:			istance eters)	Externa Attenuat (dB)	ion	Tran:	sducer ype		Detector		istance justment (dB)		usted uV/m)		pec. Li dBuV/r		Compared to Spec. (dB)	Comments
14.142	11.5		10.8		1.0		245.0			0.0	0.0		Perp t			QP		-19.1		3.2		29.5		-26.3	EUT vertical
13.023	9.7		10.8		1.0		187.0	1		0.0	0.0		Perp t			QP		-19.1		.4		29.5		-28.1	EUT vertical
13.205 13.710	10.9 19.8		10.8 10.8		1.0		85.0 320.0	,		0.0 0.0	0.0		Perp t			QP QP		-19.1 -19.1		2.6 1.5		40.5 50.5		-37.9 -39.0	EUT vertical EUT vertical
13.501	10.9		10.8		1.0)	279.0	1	10	0.0	0.0		Perp	to GN	D	QP		-19.1	2	2.6		50.5	5	-47.9	EUT vertical
13.561	25.5		10.8		1.0		280.0			0.0	0.0		Perp t			QP		-19.1		7.2		84.0		-66.8	EUT vertical
13.560 13.560	23.7 23.0		10.8 10.8		1.0		233.0 105.0			0.0 0.0	0.0		Perp t			QP QP		-19.1 -19.1		5.4 4.7		84.0 84.0		-68.6 -69.3	EUT on side EUT horizontal
13.560	19.5		10.8		1.0		215.0			0.0	0.0		Part			QP QP		-19.1 -19.1		4.7 1.2		84.0		-69.3 -72.8	EUT vertical
13.560	18.5		10.8		1.0)	110.0		10	0.0	0.0		Par t	o EU	Т	QP		-19.1	1	0.2		84.0)	-73.8	EUT vertical
13.560	17.6		10.8		1.0		31.0			0.0	0.0			o EU		QP		-19.1		9.3		84.0		-74.7	EUT horizontal
13.560 13.560	17.4 17.3		10.8 10.8		1.0		66.0 77.0			0.0 0.0	0.0			o GNI o EU		QP QP		-19.1 -19.1).1).0		84.0 84.0		-74.9 -75.0	EUT horizontal EUT on side
13.560	16.7		10.8		1.0		211.0	1		0.0	0.0			o GNI		QP QP		-19.1		3.4		84.0		-75.6	EUT on side
13.567	13.6		10.8		1.0		219.0			0.0	0.0		Perp t			QP		-19.1		5.3		84.0		-78.7	EUT vertical

Report No. CSYS0026.2 17/30

FIELD STRENGTH OF SPURIOUS EMISSIONS LESS THAN 30 MHZ

PSA-ESCI 2017.12.19

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID, 13.56 MHz modulated

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

CSYS0026 - 1

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	19-Jun-2017	12 mo
Cable	ESM Cable Corp.	Antenna Loop Cable	MNE	16-Feb-2018	12 mo
Antenna - Loop	ETS Lindgren	6502	AOB	16-May-2017	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Report No. CSYS0026.2 18/30

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.4, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF SPURIOUS **EMISSIONS LESS THAN 30 MHZ**

										EmiR5 2018.02.06		PSA-ESCI 2017.12.1	9
Wo	ork Order:		S0026		Date:	26-Ma	ar-2018	_/	7 01			2	
	Project:		one		Temperature:		1 °C		tusti	mx	David		
	Job Site:		N04		Humidity:		% RH			-(
Serial	l Number:		0692	Baro	metric Pres.:	1019	mbar		Tested by:	Dustin Spa	arks		_
0		Exchange	able OAD										_
Conf	iguration:	Condinues	cular Syster										_
	ttendees:			ms, inc.									_
	JT Power:												_
				56 ML	z modulated								_
Operati	ing Mode:	Transmitti	ing ixi ib, ic).JU IVII I	z modulated								
_		None											_
D	eviations:												
		None											_
C	omments:												
													_
Test Speci	ifications						Test Meth	od					=
FCC 15.22							ANSI C63.						_
1 00 10.22	0.2010						7 11 101 000.	10.2010					
Run #	23	Test Di	istance (m)	10	Antenna	Height(s)	1	1(m)		Results	P	ass	_
50 [_
00													
40													
40													
30													
					\sim 1 $^{\circ}$								
					7								
ב 20					1							+++	
W/N NB													
ĺ,													
뜅 10													
0													
0										•			
10													
-10													
-20 [[]	4				1.0			10.0				100.0	
0.	I				1.0			10.0				100.0	
						MHz				■ PK	AV	QP	
							Polority/						
						External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Antenna Height	Azimut		Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degree	s) (meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
27.136	20.2	9.3	1.0	283.0	10.0	0.0	Par to GND	QP	-19.1	10.4	29.5	-19.1	EUT vertical
27.140	17.9	9.3	1.0	0.0	10.0	0.0	Par to EUT	QP	-19.1	8.1	29.5	-21.4	EUT vertical
27.135	14.9	9.3	1.0	319.0		0.0	Par to GND	QP	-19.1	5.1	29.5	-24.4	EUT horizontal
27.121	12.8	9.3	1.0	341.0		0.0	Par to GND	QP OB	-19.1 10.1	3.0	29.5	-26.5	EUT on side
27.141 27.132	11.6 11.2	9.3 9.3	1.0 1.0	265.0 360.0		0.0 0.0	Perp to GND Par to EUT	QP QP	-19.1 -19.1	1.8 1.4	29.5 29.5	-27.7 -28.1	EUT vertical EUT horizontal
27.132	11.2	9.3	1.0	37.0		0.0	Par to EUT	QP QP	-19.1	1.4	29.5	-28.3	EUT on side
27.126	8.8	9.3	1.0	348.0	10.0	0.0	Perp to GND	QP	-19.1	-1.0	29.5	-30.5	EUT on side
27.135	8.7	9.3	1.0	353.0	10.0	0.0	Perp to GND	QP	-19.1	-1.1	29.5	-30.6	EUT horizontal

Report No. CSYS0026.2 20/30

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHZ

PSA-ESCI 2017.12.19

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID, 13.56 MHz modulated

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

CSYS0026 - 1

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	9-Nov-2017	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	9-Nov-2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-2018	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-2017	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Report No. CSYS0026.2 21/30

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

FIELD STRENGTH OF SPURIOUS **EMISSIONS GREATER THAN 30 MHZ**

										EmiR5 2018.02.06		PSA-ESCI 2017.12.1	9
W	ork Order:				Date:		Mar-2018	1	7 01			2	
	Project:	No		Tei	mperature:		2.5 °C	~	usta	mx	Dave		
	Job Site:	MN			Humidity:		.3% RH		_ 1	-(_
Seria	l Number:	220		Barome	etric Pres.:	10:	21 mbar		Tested by:	Dustin Spa	arks		_
	EUT:	Exchangea	able OAD										_
	iguration:												_
		Cardiovaso		ns, Inc.									_
		Michael We											_
El	JT Power:	110VAC/60											_
Onerat	ing Mode:	Transmittin	ng RFID, 13	.56 MHz n	nodulated								
Орога	gcuc.												_
п	eviations:	None											
	eviations.												_
		None											
С	omments:												
													_
Test Spec	ifications						Test Meth	od					_
FCC 15.22		l					ANSI C63						_
1 00 10.22	.0.2010						711101 000	.10.2010					
Run #	2	Test Dis	stance (m)	3	Antenn	a Height(s)	1 to 4(m)		Results	Pa	ass	_
													_
80 +													
												1	
70 +													
60 +													
												⊢ Π	
- ⁵⁰ +													
5													
3 40													
w//n gp													
١													
20													
30 +				•									
				_									
20													
20													
10													
o +													
10)					100)					1000	
						МН	lz						
							-			■ PK	◆ AV	QP	
							Polarity/						
						External	Transducer		Distance			Compared to	
Freq	Amplitude		Antenna Height	Azimuth	Test Distance	Attenuatio		Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comment
42.157	36.4	-0.3	1.0	37.1	3.0	0.0	Vert	QP	0.0	36.1	40.0	-3.9	Comments EUT vertica
42.157 67.998	36.4 38.5	-0.3 -9.3	4.0	200.0	3.0	0.0	Vert Horz	QP QP	0.0	29.2	40.0	-3.9 -10.8	EUT vertica
67.748	37.9	-9.3 -9.3	1.9	65.1	3.0	0.0	Vert	QP QP	0.0	28.6	40.0	-10.6	EUT vertica
42.188	26.9	-0.3	1.0	25.0	3.0	0.0	Horz	QP	0.0	26.6	40.0	-13.4	EUT vertica
54.253	30.8	-5.5	1.0	129.0	3.0	0.0	Vert	QP	0.0	25.3	40.0	-14.7	EUT vertica
54.248	25.8	-5.5	3.5	32.0	3.0	0.0	Horz	QP	0.0	20.3	40.0	-19.7	EUT vertica
34.240													

Report No. CSYS0026.2 23/30

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	117	MLS	23-Jan-17	23-Jan-20
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-32-3.5-SCT/AC	TBF	NCR	NCR
Thermometer	Omega Engineering, Inc.	HH311	DUB	10-Nov-17	10-Nov-20
Probe - Near Field Set	ETS Lindgren	7405	IPO	NCR	NCR
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2-Aug-17	2-Aug-18

TEST DESCRIPTION

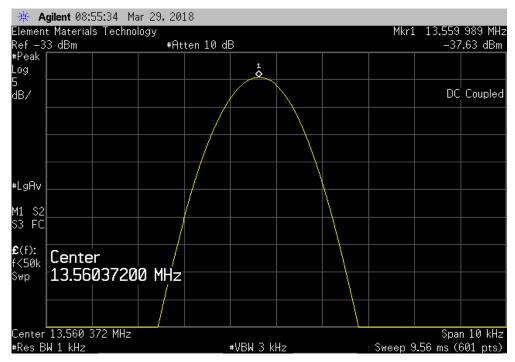
A near-field probe was placed near the transmitter. A low-loss coaxial cable was used to connect the near-field probe to the spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

Measurements were made on the single transmit frequency as called out on the data sheets. Testing was done while the EUT was continuously polling.

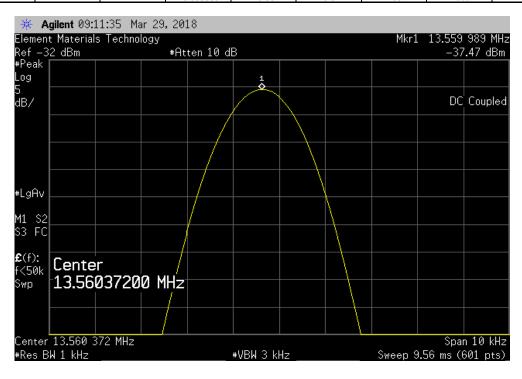
The primary supply voltage was varied from 85 % to 115% of the nominal voltage while at ambient temperature. Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range of -20 ° to +50° C and at 10°C intervals.

The requirement of a frequency tolerance of $\pm 0.01\%$ is equivalent to 100 ppm The formula to check for compliance is:

ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000


									TbtTx 2017.12.14	XMit 2017.12
	: Exchangeable OAD							Work Order:		
Serial Number									29-Mar-18	
	: Cardiovascular Systems,	Inc.						Temperature:		
	: Michael Welsch								21.3% RH	
	: None							Barometric Pres.:		
	: Dustin Sparks				IOVAC/60Hz			Job Site:	MN08	
TEST SPECIFICAT	TIONS				est Method					
FCC 15.225:2018				A	NSI C63.10:2013					
COMMENTS										
None										
DEVIATIONS FRO	M TEST STANDARD									
None										
				0 . 0	9					
Configuration #	1		~	Tusting	Dards					
		Signature								
						Measured	Assigned	Error	Limit	
						Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
13.56 MHz RFID										
	Temperature: +50°					13.559989	13.56	0.8	100	Pass
	Temperature: +40°					13.559989	13.56	0.8	100	Pass
	Temperature: +30°					13.560005	13.56	0.4	100	Pass
	Temperature: +20°					13.560037	13.56	2.7	100	Pass
	Temperature: +20°, Voltage	e: 85%				13.560039	13.56	2.9	100	Pass
	Temperature: +20°, Voltage					13.560056	13.56	4.1	100	Pass
	Temperature: +10°					13.560072	13.56	5.3	100	Pass
	Temperature: 0°					13.560122	13.56	9	100	Pass
	Temperature: -10°					13.560153	13.56	11.3	100	Pass
	Temperature: -20°					13.560139	13.56	10.3	100	Pass

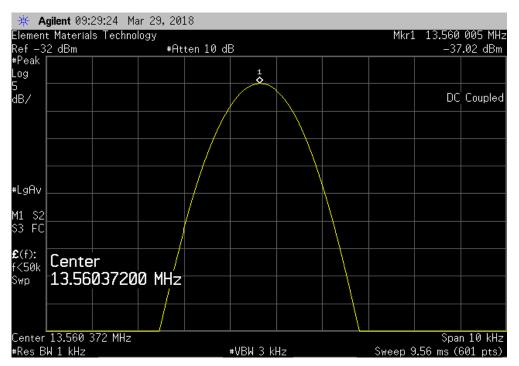
Report No. CSYS0026.2 25/30

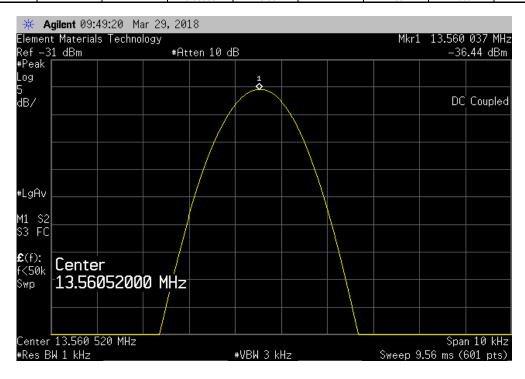


TbtTx 2017.12.14 XMit 2017.12.13

	13.56 MH	z RFID, Tempera	ture: +50°			
	Measured	Assigned	Error	Limit		
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
	13.559989	13.56	8.0	100	Pass	

		13.56 MH	z RFID, Tempera	iture: +40°		
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
1		13.559989	13.56	0.8	100	Pass

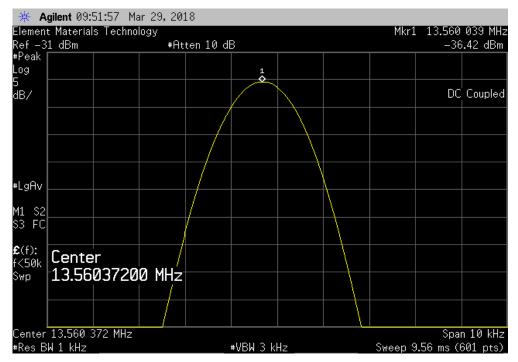



Th/th-2017.12.14 XM8.2017.12.13

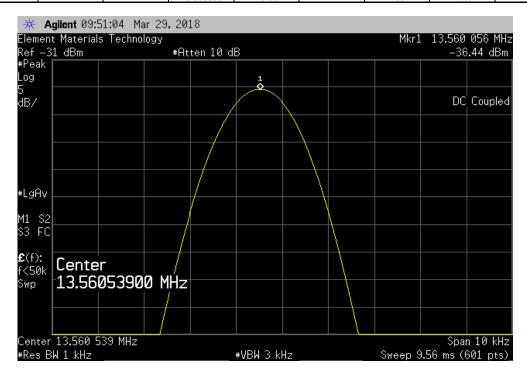
13.56 MHz RFID Temperature: ±30°

	13.56 MH	z RFID, Tempera	iture: +30°			
	Measured	Assigned	Error	Limit		
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
	13.560005	13.56	0.4	100	Pass	

	13.56 MH	z RFID, Tempera	ture: +20°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560037	13.56	2.7	100	Pass



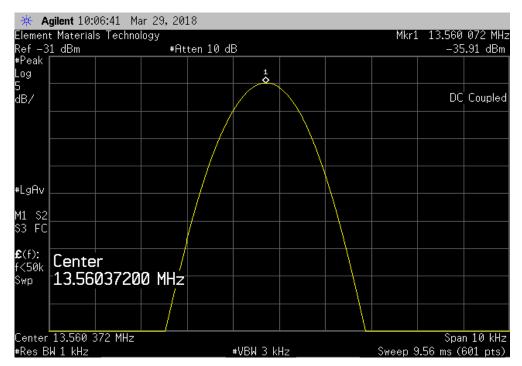
Report No. CSYS0026.2 27/30

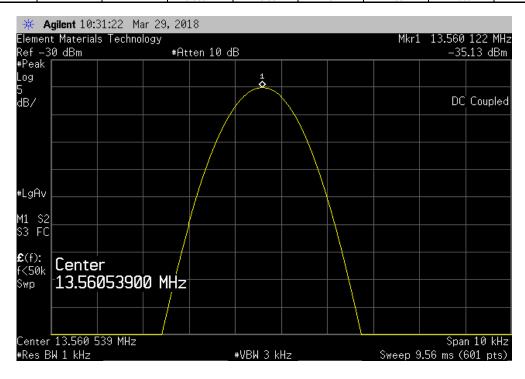


TbtTx 2017.12.14 XMit 2017.12.13

	•	13.56 MHz RFID,	Temperature: +2	20°, Voltage: 85%)	
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
I		13.560039	13.56	2.9	100	Pass

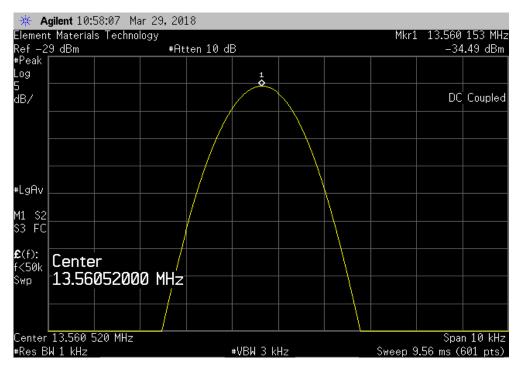
	1	3.56 MHz RFID,	Temperature: +2	0°, Voltage: 115%	6	
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
ı İ		13.560056	13.56	4.1	100	Pass

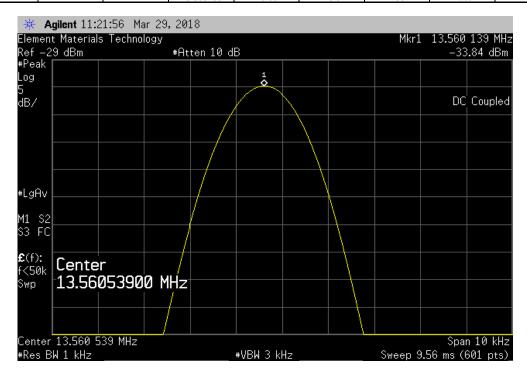



TbtTx:2017.12.14 XMa: 2017.12.13

13.56 MHz RFID, Temperature: +10°

		13.56 MH	z RFID, Tempera	ture: +10°			
		Measured	Assigned	Error	Limit		
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
1		13.560072	13.56	5.3	100	Pass	


	13.56 MI	Hz RFID, Tempei	ature: 0°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560122	13.56	9	100	Pass



Tb(Tx 2017.12.14 XMit 2017.12.13

13.56 MHz RFID, Temperature: -10°									
			Measured	Assigned	Error	Limit			
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
1			13.560153	13.56	11.3	100	Pass		

13.56 MHz RFID, Temperature: -20°								
			Measured	Assigned	Error	Limit		
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
			13.560139	13.56	10.3	100	Pass	

