

# Approval Sheet

## (產品承認書)

產品名稱 (Product): BT 4.0 Module (Nordic nRF51822)

產品型號 (Model No.): nRF51822 (GWBT40-P001-SIP)

客戶 (Customer):

  
GrassWonder

### Advantages of GWBT40-P Series

#### 1. Long Working Distance

GWBT40-P Series: Up to 10 meters in open space

# Index

|                                                             |           |
|-------------------------------------------------------------|-----------|
| List of GrassWonder's Model No.                             | 3         |
| <b>1. Overall Introduction</b>                              | <b>4</b>  |
| 1.1 Applications                                            | 4         |
| 1.2 Features                                                | 5         |
| <b>2. Product Dimension</b>                                 | <b>6</b>  |
| 2.1 GWBT40-P Series                                         | 6         |
| 2.2 Pin Assignment                                          | 8         |
| <b>3. Main Chip Solution</b>                                | <b>9</b>  |
| <b>4. Shipment Packaging Information</b>                    | <b>10</b> |
| <b>5. Specification</b>                                     | <b>11</b> |
| 5.1 Absolute Maximum Ratings                                | 12        |
| 5.2 Operation Conditions                                    | 12        |
| 5.3 Electrical Specifications                               | 13        |
| <b>6. Block Diagram</b>                                     | <b>19</b> |
| <b>7. Antenna</b>                                           | <b>20</b> |
| <b>8. Reference Circuit</b>                                 | <b>21</b> |
| <b>9. Carrier Keep-Out Area</b>                             | <b>22</b> |
| <b>10. nRF51 IC Compatibility with SDK &amp; SoftDevice</b> | <b>23</b> |



GrassWonder

# List of GrassWonder's Model No.

| Series | Nordic Solution | GrassWonder No. | IC Version | Antenna         | RAM   | Flash Memory |
|--------|-----------------|-----------------|------------|-----------------|-------|--------------|
| GWBT40 | nRF51822        | GWBT40 - P001   | 1          | Chip<br>Antenna | 32 kb | 256 K        |

# 1. Overall Introduction

GrassWonder's GWBT40 is BT 4.0 stack (Bluetooth low energy or BLE) module designed based on **Nordic nRF51822 SoC solution**, which incorporates: **GPIO, UART, I2C** and **ADC interfaces** for connecting peripherals and sensors.

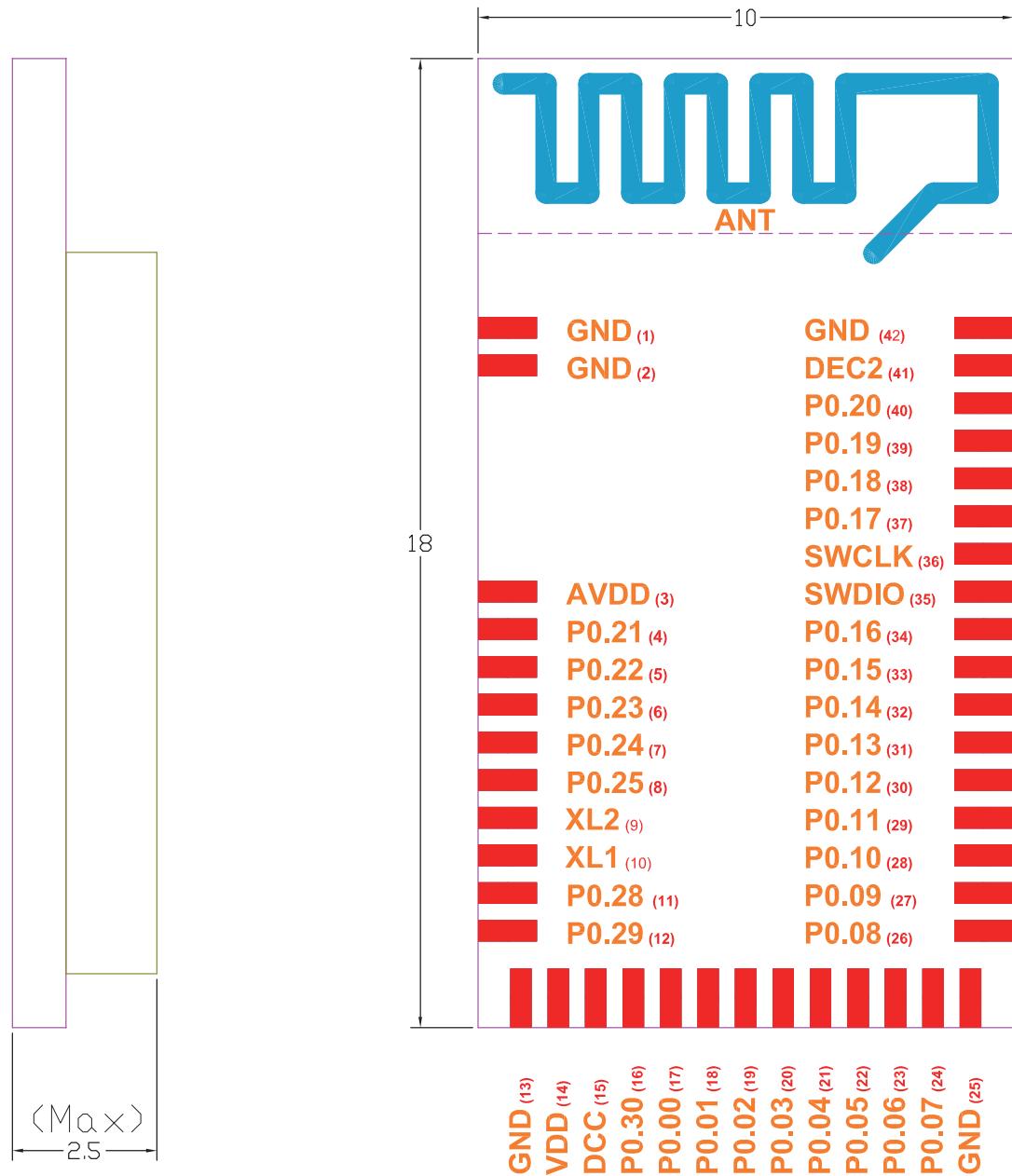
The feature of the module:

1. Transmission Mode of BLE 2.4G upon customer preference.
2. Compact size with **(L) 18 x (W) 10 x (H) 2.5 mm**
3. Low power requirements, ultra-low peak, average and idle mode power consumption.
4. Compatible with a large installed base of mobile phones, tablets and computers.

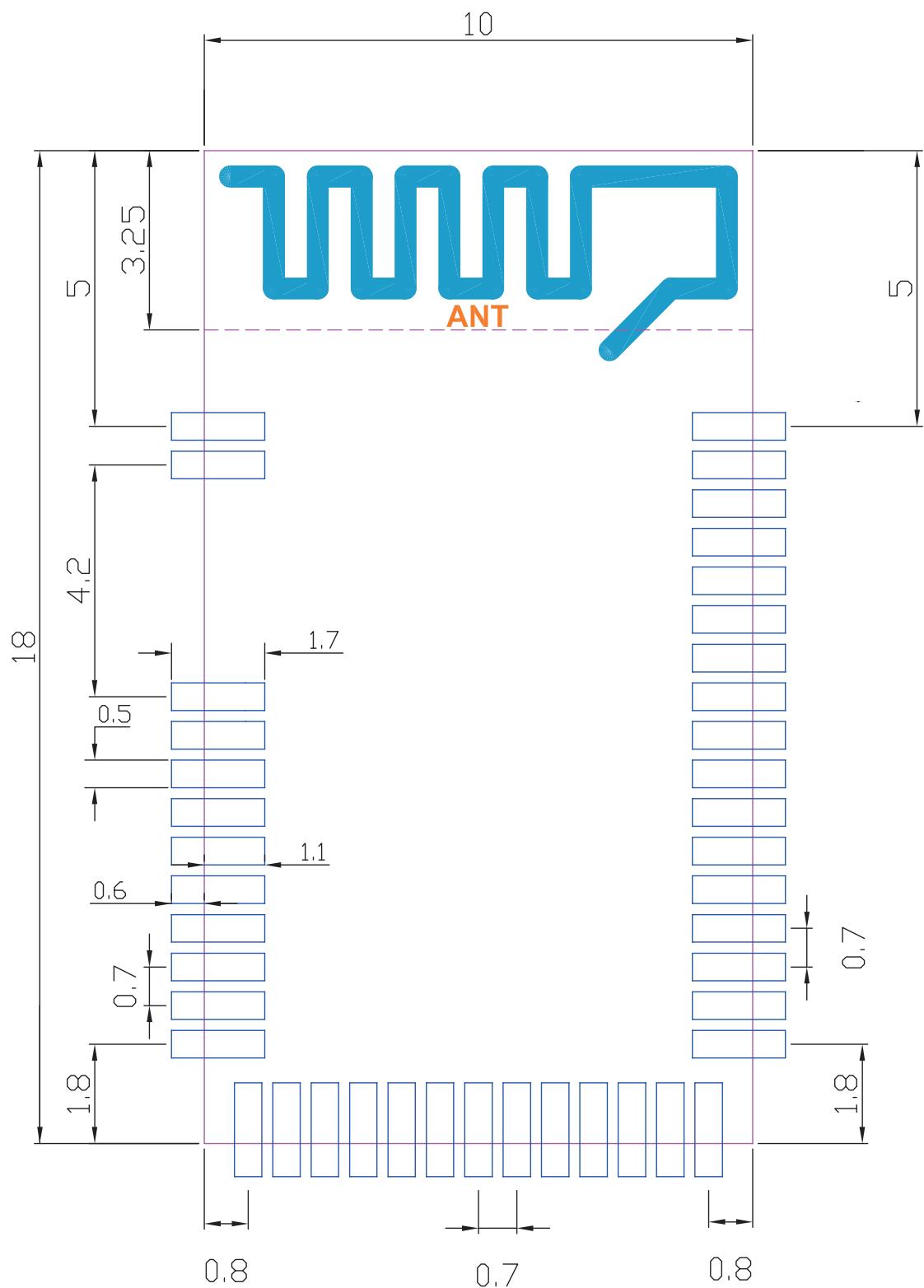
## 1.1 Applications

- . Support for Bluetooth peripherals
- . Remote control
- . Audio-visual entertainment products

## 1.2 Features


- . 2.4GHZ transceiver
  - . -93dbm sensitivity in Bluetooth low energy mode
  - . TX Power -20 to +4dbm
  - . RSSI (1db resolution)
- . ARM Cortex -M0 32 bit processor
  - . Serial Wire Debug (SWD)
- . S100 series SoftDevice ready
- . Memory
  - . 256 kb embedded flash programmed memory
  - . 32kb RAM
- . Support for non-concurrent multiprotocol operation
  - . On-air compatibility with nRF24L series
- . Flexible Power Management
  - . Supply voltage range 1.8V to 3.6V
  - . 2.5us wake-up using 16MHz RCOSC
  - . 0.6uA @ 3V mode
  - . 1.2uA @ 3V in OFF mode + 1 region RAM retention
  - . 2.6uA @ 3V ON mode, all blocks IDLE
- . 8/9/10 bit ADC- 8 configurable channels
- . 31 General Purpose I/O Pins
- . One 32 bit and two 16 bit timers with counter mode
- . SPI Master
- . Two-wire Master (I2C compatible)
- . UART (CTS/RTS)
- . CPU independent Programmable Peripheral Interconnect (PPI)
- . Quadrature Decoder (QDEC)
- . AES HW encryption
- . Real Timer Counter (RTC)

## 2. Product Dimension


### 2.1 GWBT40-P Series

#### PCB Dimensions, & Pin Indication & Layout Guide

PCB SIZE : (L) 18 x (W) 10 mm



T □ P



Top View

recommended solder pad layout

## 2.2 Pin Assignment

| Pin No. | Name         | Pin function  | Description                                                           |
|---------|--------------|---------------|-----------------------------------------------------------------------|
| (1)(2)  | <b>GND</b>   | Ground        | The pad must be connected to a solid ground plane                     |
| (3)     | <b>AVDD</b>  | Power         | Analog power supply                                                   |
| (4)     | <b>P0.21</b> | Digital I/O   | General-purpose digital I/O                                           |
| (5)     | <b>P0.22</b> | Digital I/O   | General-purpose digital I/O                                           |
| (6)     | <b>P0.23</b> | Digital I/O   | General-purpose digital I/O                                           |
| (7)     | <b>P0.24</b> | Digital I/O   | General-purpose digital I/O                                           |
| (8)     | <b>P0.25</b> | Digital I/O   | General-purpose digital I/O                                           |
| (9)     | <b>P0.26</b> | Digital I/O   | General-purpose digital I/O                                           |
|         | <b>AIN0</b>  | Analog input  | ADC input 0                                                           |
|         | <b>XL2</b>   | Analog output | Connector for 32.768KHz crystal                                       |
| (10)    | <b>P0.27</b> | Digital I/O   | General-purpose digital I/O                                           |
|         | <b>AIN1</b>  | Analog input  | ADC input 1                                                           |
|         | <b>XL1</b>   | Analog input  | Connector for 32.768KHz crystal or external 32.768KHz clock reference |
| (11)    | <b>P0.28</b> | Digital I/O   | General-purpose digital I/O                                           |
| (12)    | <b>P0.29</b> | Digital I/O   | General-purpose digital I/O                                           |
| (13)    | <b>GND</b>   | Ground        | The pad must be connected to a solid ground plane                     |
| (14)    | <b>VDD</b>   | Power         | Power supply                                                          |
| (15)    | <b>DCC</b>   | Power         | DC/DC output voltage to external LC filter                            |
| (16)    | <b>P0.30</b> | Digital I/O   | General-purpose digital I/O                                           |
| (17)    | <b>P0.00</b> | Digital I/O   | General-purpose digital I/O                                           |
|         | <b>AREF0</b> | Analog input  | ADC Reference voltage                                                 |
| (18)    | <b>P0.01</b> | Digital I/O   | General-purpose digital I/O                                           |
|         | <b>AIN2</b>  | Analog input  | ADC input 2                                                           |
| (19)    | <b>P0.02</b> | Digital I/O   | General-purpose digital I/O                                           |
|         | <b>AIN3</b>  | Analog input  | ADC input 3                                                           |
| (20)    | <b>P0.03</b> | Digital I/O   | General-purpose digital I/O                                           |
|         | <b>AIN4</b>  | Analog input  | ADC input 4                                                           |
| (21)    | <b>P0.04</b> | Digital Input | General-purpose digital I/O                                           |
|         | <b>AIN5</b>  | Analog input  | ADC input 5                                                           |
| (22)    | <b>P0.05</b> | Digital I/O   | General-purpose digital I/O                                           |
|         | <b>AIN6</b>  | Analog input  | ADC input 6                                                           |

| Pin No. | Name               | Pin function  | Description                                                  |
|---------|--------------------|---------------|--------------------------------------------------------------|
| (23)    | <b>P0.06</b>       | Digital I/O   | General-purpose digital I/O                                  |
|         | <b>AIN7</b>        | Analog input  | ADC input 7                                                  |
|         | <b>AREF1</b>       | Analog input  | ADC Reference voltage                                        |
| (24)    | <b>P0.07</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (25)    | <b>GND</b>         | Ground        | The pad must be connected to a solid ground plane            |
| (26)    | <b>P0.08</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (27)    | <b>P0.09</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (28)    | <b>P0.10</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (29)    | <b>P0.11</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (30)    | <b>P0.12</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (31)    | <b>P0.13</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (32)    | <b>P0.14</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (33)    | <b>P0.15</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (34)    | <b>P0.16</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (35)    | <b>SWDIO/RESET</b> | Digital I/O   | System reset(active low).Also HW debug and flash Programming |
| (36)    | <b>SWDCLK</b>      | Digital input | HW debug and flash programming.                              |
| (37)    | <b>P0.17</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (38)    | <b>P0.18</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (39)    | <b>P0.19</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (40)    | <b>P0.20</b>       | Digital I/O   | General-purpose digital I/O                                  |
| (41)    | <b>DEC2</b>        | Power         | Power supply decoupling. Low voltage mode VCC                |
| (42)    | <b>GND</b>         | Ground        | The pad must be connected to a solid ground plane            |

<sup>1</sup> Digital I/O pad with 5mA source/sink capability.

### 3. Main Chip Solution

| RF IC                        | Crystal Frequency |
|------------------------------|-------------------|
| <b>Nordic NRF51822/QFN48</b> | <b>16MHZ</b>      |

## 4. Shipment Packaging Information

| Model       | Cus. No. | FW Version  | Marking | Photo |
|-------------|----------|-------------|---------|-------|
| GWBT40-P001 |          | GWBT40-P001 | Black   |       |

# 5. Specification

## nRF51822

Multiprotocol *Bluetooth*<sup>®</sup> low energy/2.4 GHz RF System on Chip

### Product Specification v3.1

| Key Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"><li>2.4 GHz transceiver<ul style="list-style-type: none"><li>-93 dBm sensitivity in <i>Bluetooth</i><sup>®</sup> low energy mode</li><li>250 kbps, 1 Mbps, 2 Mbps supported data rates</li><li>TX Power -20 to +4 dBm in 4 dB steps</li><li>TX Power -30 dBm Whisper mode</li><li>13 mA peak RX, 10.5 mA peak TX (0 dBm)</li><li>9.7 mA peak RX, 8 mA peak TX (0 dBm) with DC/DC</li><li>RSSI (1 dB resolution)</li></ul></li><li>ARM<sup>®</sup> Cortex<sup>™</sup>-M0 32 bit processor<ul style="list-style-type: none"><li>275 <math>\mu</math>A/MHz running from flash memory</li><li>150 <math>\mu</math>A/MHz running from RAM</li><li>Serial Wire Debug (SWD)</li></ul></li><li>S100 series SoftDevice ready</li><li>Memory<ul style="list-style-type: none"><li>256 kB or 128 kB embedded flash program memory</li><li>16 kB or 32 kB RAM</li></ul></li><li>On-air compatibility with nRF24L series</li><li>Flexible Power Management<ul style="list-style-type: none"><li>Supply voltage range 1.8 V to 3.6 V</li><li>4.2 <math>\mu</math>s wake-up using 16 MHz RCOSC</li><li>0.6 <math>\mu</math>A at 3 V OFF mode</li><li>1.2 <math>\mu</math>A at 3 V in OFF mode + 1 region RAM retention</li><li>2.6 <math>\mu</math>A at 3 V ON mode, all blocks IDLE</li></ul></li><li>8/9/10 bit ADC - 8 configurable channels</li><li>31 General Purpose I/O Pins</li><li>One 32 bit and two 16 bit timers with counter mode</li><li>SPI Master/Slave</li><li>Low power comparator</li><li>Temperature sensor</li><li>Two-wire Master (I<sup>2</sup>C compatible)</li><li>UART (CTS/RTS)</li><li>CPU independent Programmable Peripheral Interconnect (PPI)</li><li>Quadrature Decoder (QDEC)</li><li>AES HW encryption</li><li>Real Timer Counter (RTC)</li><li>Package variants<ul style="list-style-type: none"><li>QFN48 package, 6 x 6 mm</li><li>WLCSP package, 3.50 x 3.83 mm</li><li>WLCSP package, 3.83 x 3.83 mm</li><li>WLCSP package, 3.50 x 3.33 mm</li></ul></li></ul> | <ul style="list-style-type: none"><li>Computer peripherals and I/O devices<ul style="list-style-type: none"><li>Mouse</li><li>Keyboard</li><li>Multi-touch trackpad</li></ul></li><li>Interactive entertainment devices<ul style="list-style-type: none"><li>Remote control</li><li>Gaming controller</li></ul></li><li>Beacons</li><li>Personal Area Networks<ul style="list-style-type: none"><li>Health/fitness sensor and monitor devices</li><li>Medical devices</li><li>Key-fobs + wrist watches</li></ul></li><li>Remote control toys</li></ul> |

## 5.1 Absolute Maximum Ratings

| Symbol                                                               | Parameter                  | Min.                | Max.      | Unit               |
|----------------------------------------------------------------------|----------------------------|---------------------|-----------|--------------------|
| <b>Supply voltages</b>                                               |                            |                     |           |                    |
| VDD                                                                  |                            | -0.3                | +3.9      | V                  |
| DEC2                                                                 |                            | 2                   |           | V                  |
| VSS                                                                  |                            | 0                   |           | V                  |
| <b>I/O pin voltage</b>                                               |                            |                     |           |                    |
| VIO                                                                  |                            | -0.3                | VDD + 0.3 | V                  |
| <b>Environmental QFN48 package</b>                                   |                            |                     |           |                    |
| Storage temperature                                                  |                            | -40                 | +125      | °C                 |
| MSL                                                                  | Moisture Sensitivity Level |                     | 2         |                    |
| ESD HBM                                                              | Human Body Model           |                     | 4         | kV                 |
| ESD CDM                                                              | Charged Device Model       |                     | 750       | V                  |
| <b>Environmental WLCSP package</b>                                   |                            |                     |           |                    |
| Storage temperature                                                  |                            | -40                 | +125      | °C                 |
| MSL                                                                  | Moisture Sensitivity Level |                     | 1         |                    |
| ESD HBM                                                              | Human Body Model           |                     | 4         | kV                 |
| ESD CDM                                                              | Charged Device Model       |                     | 500       | V                  |
| <b>Flash memory</b>                                                  |                            |                     |           |                    |
| Endurance                                                            |                            | 20 000 <sup>1</sup> |           | write/erase cycles |
| Retention                                                            |                            | 10 years at 40 °C   |           |                    |
| Number of times an address<br>can be written between<br>erase cycles |                            |                     | 2         | times              |

## 5.2 Operation Conditions

| Symbol       | Parameter                                                            | Notes | Min. | Typ. | Max. | Units |
|--------------|----------------------------------------------------------------------|-------|------|------|------|-------|
| VDD          | Supply voltage, normal mode                                          |       | 1.8  | 3.0  | 3.6  | V     |
| VDD          | Supply voltage, normal mode, DC/DC<br>converter output voltage 1.9 V |       | 2.1  | 3.0  | 3.6  | V     |
| VDD          | Supply voltage, low voltage mode                                     | 1     | 1.75 | 1.8  | 1.95 | V     |
| $t_{R\_VDD}$ | Supply rise time (0 V to 1.8 V)                                      | 2     |      |      | 60   | ms    |
| $T_A$        | Operating temperature                                                |       | -40  | 25   | 85   | °C    |

## 5.3 Electrical Specifications

### 5.3.1 Radio Transceiver

#### General Radio Characteristics

| Symbol           | Description                      | Note                   | Min. | Typ. | Max. | Units | Test level |
|------------------|----------------------------------|------------------------|------|------|------|-------|------------|
| $f_{OP}$         | Operating frequencies.           | 1 MHz channel spacing. | 2400 | 2483 | MHz  | N/A   |            |
| $PLL_{res}$      | PLL programming resolution.      |                        | 1    |      | MHz  | N/A   |            |
| $\Delta f_{250}$ | Frequency deviation at 250 kbps. |                        | ±170 |      | kHz  | 2     |            |
| $\Delta f_{1M}$  | Frequency deviation at 1 Mbps.   |                        | ±170 |      | kHz  | 2     |            |
| $\Delta f_{2M}$  | Frequency deviation at 2 Mbps.   |                        | ±320 |      | kHz  | 2     |            |
| $\Delta f_{BLE}$ | Frequency deviation at BLE.      |                        | ±225 | ±250 | ±275 | kHz   | 4          |
| $bps_{FSK}$      | On-air data rate.                |                        | 250  | 2000 | kbps | N/A   |            |

#### Radio Current Consumption

| Symbol          | Description                                 | Note | Min. | Typ. | Max. | Units | Test level |
|-----------------|---------------------------------------------|------|------|------|------|-------|------------|
| $I_{TX,+4dBm}$  | TX only run current at $P_{OUT} = +4$ dBm.  | 1    | 16   |      |      | mA    | 4          |
| $I_{TX,0dBm}$   | TX only run current at $P_{OUT} = 0$ dBm.   | 1    | 10.5 |      |      | mA    | 4          |
| $I_{TX,-4dBm}$  | TX only run current at $P_{OUT} = -4$ dBm.  | 1    | 8    |      |      | mA    | 2          |
| $I_{TX,-8dBm}$  | TX only run current at $P_{OUT} = -8$ dBm.  | 1    | 7    |      |      | mA    | 2          |
| $I_{TX,-12dBm}$ | TX only run current at $P_{OUT} = -12$ dBm. | 1    | 6.5  |      |      | mA    | 2          |
| $I_{TX,-16dBm}$ | TX only run current at $P_{OUT} = -16$ dBm. | 1    | 6    |      |      | mA    | 2          |
| $I_{TX,-20dBm}$ | TX only run current at $P_{OUT} = -20$ dBm. | 1    | 5.5  |      |      | mA    | 2          |
| $I_{TX,-30dBm}$ | TX only run current at $P_{OUT} = -30$ dBm. | 1    | 5.5  |      |      | mA    | 2          |
| $I_{START,TX}$  | TX startup current.                         | 2    | 7    |      |      | mA    | 1          |
| $I_{RX,250}$    | RX only run current at 250 kbps.            |      | 12.6 |      |      | mA    | 1          |
| $I_{RX,1M}$     | RX only run current at 1 Mbps.              |      | 13   |      |      | mA    | 4          |
| $I_{RX,2M}$     | RX only run current at 2 Mbps.              |      | 13.4 |      |      | mA    | 1          |
| $I_{START,RX}$  | RX startup current.                         | 3    | 8.7  |      |      | mA    | 1          |

1. Valid for data rates 250 kbps, 1 Mbps, and 2 Mbps.
2. Average current consumption (at 0 dBm TX output power) for TX startup (130  $\mu$ s), and when changing mode from RX to TX (130  $\mu$ s).
3. Average current consumption for RX startup (130  $\mu$ s), and when changing mode from TX to RX (130  $\mu$ s).

### 5.3.2. Transmitter Specifications

| Symbol        | Description                                                                 | Min. | Typ. | Max.    | Units | Test level |
|---------------|-----------------------------------------------------------------------------|------|------|---------|-------|------------|
| $P_{RF}$      | Maximum output power.                                                       |      | 4    |         | dBm   | 4          |
| $P_{RFC}$     | RF power control range.                                                     | 20   | 24   |         | dB    | 2          |
| $P_{RFCR}$    | RF power accuracy.                                                          |      |      | $\pm 4$ | dB    | 1          |
| $P_{WHISP}$   | RF power whisper mode.                                                      |      | -30  |         | dBm   | 2          |
| $P_{BW2}$     | 20 dB bandwidth for modulated carrier (2 Mbps).                             | 1800 | 2000 |         | kHz   | 2          |
| $P_{BW1}$     | 20 dB bandwidth for modulated carrier (1 Mbps).                             | 950  | 1100 |         | kHz   | 2          |
| $P_{BW250}$   | 20 dB bandwidth for modulated carrier (250 kbps).                           | 700  | 800  |         | kHz   | 2          |
| $P_{RF1.2}$   | 1 <sup>st</sup> Adjacent Channel Transmit Power.<br>$\pm 2$ MHz (2 Mbps).   |      |      | -20     | dBc   | 2          |
| $P_{RF2.2}$   | 2 <sup>nd</sup> Adjacent Channel Transmit Power.<br>$\pm 4$ MHz (2 Mbps).   |      |      | -45     | dBc   | 2          |
| $P_{RF1.1}$   | 1 <sup>st</sup> Adjacent Channel Transmit Power.<br>$\pm 1$ MHz (1 Mbps).   |      |      | -20     | dBc   | 2          |
| $P_{RF2.1}$   | 2 <sup>nd</sup> Adjacent Channel Transmit Power.<br>$\pm 2$ MHz (1 Mbps).   |      |      | -40     | dBc   | 2          |
| $P_{RF1.250}$ | 1 <sup>st</sup> Adjacent Channel Transmit Power.<br>$\pm 1$ MHz (250 kbps). |      |      | -25     | dBc   | 2          |
| $P_{RF2.250}$ | 2 <sup>nd</sup> Adjacent Channel Transmit Power.<br>$\pm 2$ MHz (250 kbps). |      |      | -40     | dBc   | 2          |
| $t_{TX,30}$   | Maximum consecutive transmission time,<br>$f_{TOL} < \pm 30$ ppm.           |      | 16   |         | ms    | 1          |
| $t_{TX,60}$   | Maximum consecutive transmission time,<br>$f_{TOL} < \pm 60$ ppm.           |      | 4    |         | ms    | 1          |

### 5.3.3 Receiver Specifications

| Symbol                             | Description                                           | Min. | Typ. | Max. | Units | Test level |
|------------------------------------|-------------------------------------------------------|------|------|------|-------|------------|
| <b>Receiver operation</b>          |                                                       |      |      |      |       |            |
| PRX <sub>MAX</sub>                 | Maximum received signal strength at < 0.1% PER.       | 0    |      |      | dBm   | 1          |
| PRX <sub>SENS,2M</sub>             | Sensitivity (0.1% BER) at 2 Mbps.                     | -85  |      |      | dBm   | 2          |
| PRX <sub>SENS,1M</sub>             | Sensitivity (0.1% BER) at 1 Mbps.                     | -90  |      |      | dBm   | 2          |
| PRX <sub>SENS,250k</sub>           | Sensitivity (0.1% BER) at 250 kbps.                   | -96  |      |      | dBm   | 2          |
| P <sub>SENS IT</sub><br>1 Mbps BLE | Receiver sensitivity: Ideal transmitter.              | -93  |      |      | dBm   | 2          |
| P <sub>SENS DT</sub><br>1 Mbps BLE | Receiver sensitivity: Dirty transmitter. <sup>1</sup> | -91  |      |      | dBm   | 2          |

#### RX selectivity - modulated interfering signal<sup>2</sup>

| <b>2 Mbps</b>       |                                                   |     |  |  |    |
|---------------------|---------------------------------------------------|-----|--|--|----|
| C/I <sub>CO</sub>   | C/I co-channel.                                   | 12  |  |  | dB |
| C/I <sub>1ST</sub>  | 1 <sup>st</sup> ACS, C/I 2 MHz.                   | -4  |  |  | dB |
| C/I <sub>2ND</sub>  | 2 <sup>nd</sup> ACS, C/I 4 MHz.                   | -24 |  |  | dB |
| C/I <sub>3RD</sub>  | 3 <sup>rd</sup> ACS, C/I 6 MHz.                   | -28 |  |  | dB |
| C/I <sub>6th</sub>  | 6 <sup>th</sup> ACS, C/I 12 MHz.                  | -44 |  |  | dB |
| C/I <sub>Nth</sub>  | N <sup>th</sup> ACS, C/I f <sub>i</sub> > 25 MHz. | -50 |  |  | dB |
| <b>1 Mbps</b>       |                                                   |     |  |  |    |
| C/I <sub>CO</sub>   | C/I co-channel (1 Mbps).                          | 12  |  |  | dB |
| C/I <sub>1ST</sub>  | 1 <sup>st</sup> ACS, C/I 1 MHz.                   | 4   |  |  | dB |
| C/I <sub>2ND</sub>  | 2 <sup>nd</sup> ACS, C/I 2 MHz.                   | -24 |  |  | dB |
| C/I <sub>3RD</sub>  | 3 <sup>rd</sup> ACS, C/I 3 MHz.                   | -30 |  |  | dB |
| C/I <sub>6th</sub>  | 6 <sup>th</sup> ACS, C/I 6 MHz.                   | -40 |  |  | dB |
| C/I <sub>12th</sub> | 12 <sup>th</sup> ACS, C/I 12 MHz.                 | -50 |  |  | dB |

| Symbol                                     | Description                                                    | Min. | Typ. | Max. | Units | Test level |
|--------------------------------------------|----------------------------------------------------------------|------|------|------|-------|------------|
| <b>250 kbps</b>                            |                                                                |      |      |      |       |            |
| $C/I_{CO}$                                 | $C/I$ co-channel.                                              | 4    |      |      | dB    | 2          |
| $C/I_{1ST}$                                | 1 <sup>st</sup> ACS, $C/I$ 1 MHz.                              | -10  |      |      | dB    | 2          |
| $C/I_{2ND}$                                | 2 <sup>nd</sup> ACS, $C/I$ 2 MHz.                              | -34  |      |      | dB    | 2          |
| $C/I_{3RD}$                                | 3 <sup>rd</sup> ACS, $C/I$ 3 MHz.                              | -39  |      |      | dB    | 2          |
| $C/I_{6th}$                                | 6 <sup>th</sup> ACS, $C/I f_i > 6$ MHz.                        | -50  |      |      | dB    | 2          |
| $C/I_{12th}$                               | 12 <sup>th</sup> ACS, $C/I$ 12 MHz.                            | -55  |      |      | dB    | 2          |
| $C/I_{Nth}$                                | $N^{th}$ ACS, $C/I f_i > 25$ MHz.                              | -60  |      |      | dB    | 2          |
| <b>Bluetooth Low Energy RX selectivity</b> |                                                                |      |      |      |       |            |
| $C/I_{CO}$                                 | $C/I$ co-channel.                                              | 10   |      |      | dB    | 2          |
| $C/I_{1ST}$                                | 1 <sup>st</sup> ACS, $C/I$ 1 MHz.                              | 1    |      |      | dB    | 2          |
| $C/I_{2ND}$                                | 2 <sup>nd</sup> ACS, $C/I$ 2 MHz.                              | -25  |      |      | dB    | 2          |
| $C/I_{3+N}$                                | ACS, $C/I$ (3+n) MHz offset [n = 0, 1, 2, ...].                | -51  |      |      | dB    | 2          |
| $C/I_{Image}$                              | Image blocking level.                                          | -30  |      |      | dB    | 2          |
| $C/I_{Image\pm1MHz}$                       | Adjacent channel to image blocking level ( $\pm 1$ MHz).       | -31  |      |      | dB    | 2          |
| <b>RX intermodulation<sup>3</sup></b>      |                                                                |      |      |      |       |            |
| $P_{IMD_{2Mbps}}$                          | IMD performance, 2 Mbps, 3rd, 4th, and 5th offset channel.     | -41  |      |      | dBm   | 2          |
| $P_{IMD_{1Mbps}}$                          | IMD performance, 1 Mbps, 3rd, 4th, and 5th offset channel.     | -40  |      |      | dBm   | 2          |
| $P_{IMD_{250kbps}}$                        | IMD performance, 250 kbps, 3rd, 4th, and 5th offset channel.   | -36  |      |      | dBm   | 2          |
| $P_{IMD_{BLE}}$                            | IMD performance, 1 Mbps BLE, 3rd, 4th, and 5th offset channel. | -39  |      |      | dBm   | 2          |

1. As defined in the *Bluetooth Core Specification v4.0 Volume 6: Core System Package (Low Energy Controller Volume)*.
2. Wanted signal level at  $P_{IN} = -67$  dBm. One interferer is used, having equal modulation as the wanted signal. The input power of the interferer where the sensitivity equals  $BER = 0.1\%$  is presented.
3. Wanted signal level at  $P_{IN} = -64$  dBm. Two interferers with equal input power are used. The interferer closest in frequency is not modulated, the other interferer is modulated equal with the wanted signal. The input power of interferers where the sensitivity equals  $BER = 0.1\%$  is presented.

### 5.3.4 Radio Timing Parameters

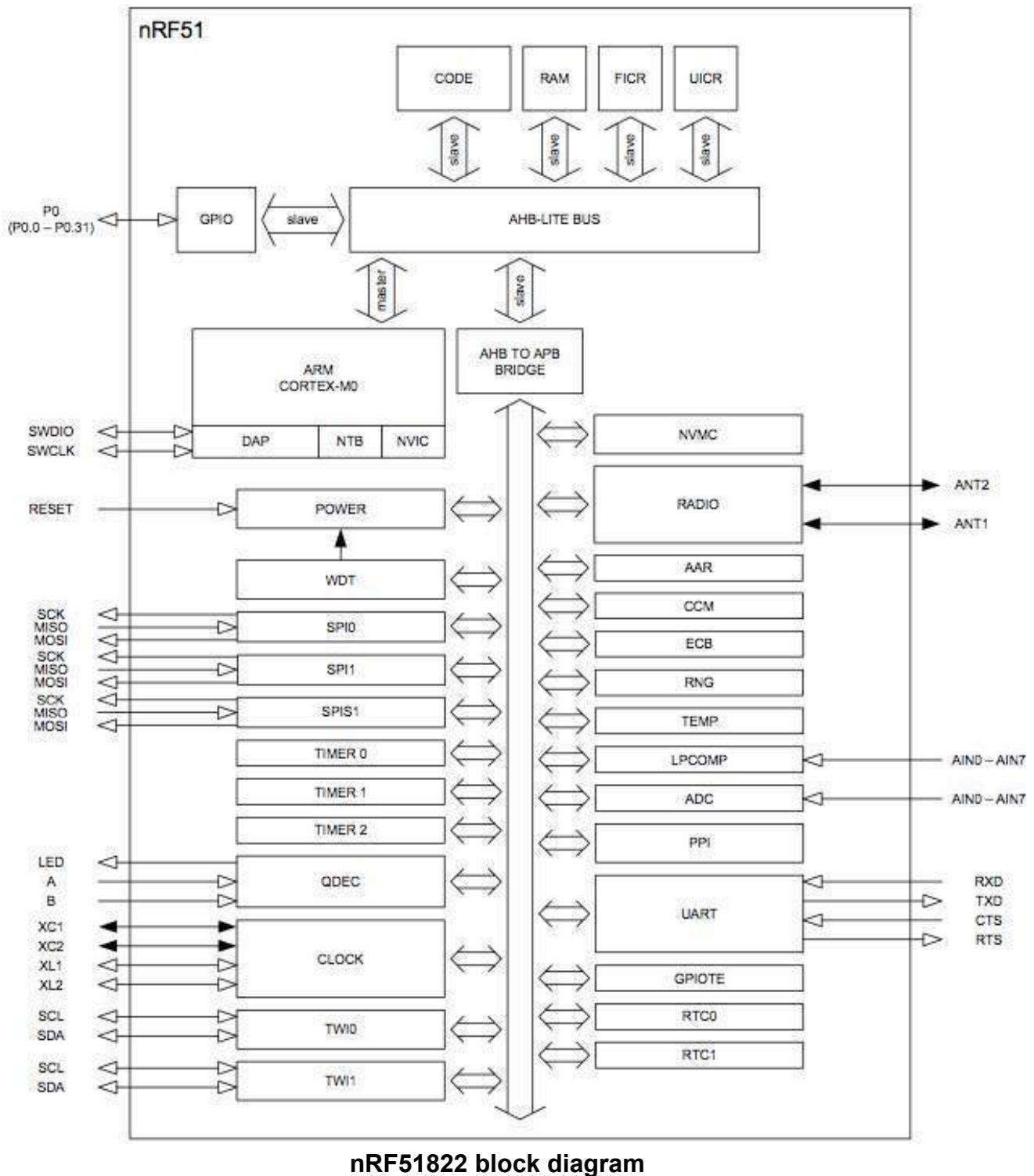
| Symbol          | Description                                                            | 250 k | 1 M | 2 M | BLE | Jitter | Units |
|-----------------|------------------------------------------------------------------------|-------|-----|-----|-----|--------|-------|
| $t_{TXEN}$      | Time between TXEN task and READY event.                                | 132   | 132 | 132 | 140 | 0      | μs    |
| $t_{TXDISABLE}$ | Time between DISABLE task and DISABLED event when the radio was in TX. | 10    | 4   | 3   | 4   | 1      | μs    |
| $t_{RXEN}$      | Time between the RXEN task and READY event.                            | 130   | 130 | 130 | 138 | 0      | μs    |
| $t_{RXDISABLE}$ | Time between DISABLE task and DISABLED event when the radio was in RX. | 0     | 0   | 0   | 0   | 1      | μs    |
| $t_{TXCHAIN}$   | TX chain delay.                                                        | 5     | 1   | 0.5 | 1   | 0      | μs    |
| $t_{RXCHAIN}$   | RX chain delay.                                                        | 12    | 2   | 2.5 | 3   | 0      | μs    |

### 5.3.5 RSSI Specifications

| Symbol              | Description                                   | Note                               | Min. | Typ. | Max. | Units | Test level |
|---------------------|-----------------------------------------------|------------------------------------|------|------|------|-------|------------|
| $RSSI_{ACC}$        | RSSI accuracy.                                | Valid range<br>-50 dBm to -80 dBm. |      | ±6   |      | dB    | 2          |
| $RSSI_{RESOLUTION}$ | RSSI resolution.                              |                                    | 1    |      |      | dB    | 1          |
| $RSSI_{PERIOD}$     | Sample period.                                |                                    | 8.8  |      |      | μs    | 1          |
| $RSSI_{CURRENT}$    | Current consumption in addition to $I_{RX}$ . |                                    |      | 250  |      | μA    | 1          |

### 5.3.6 CPU

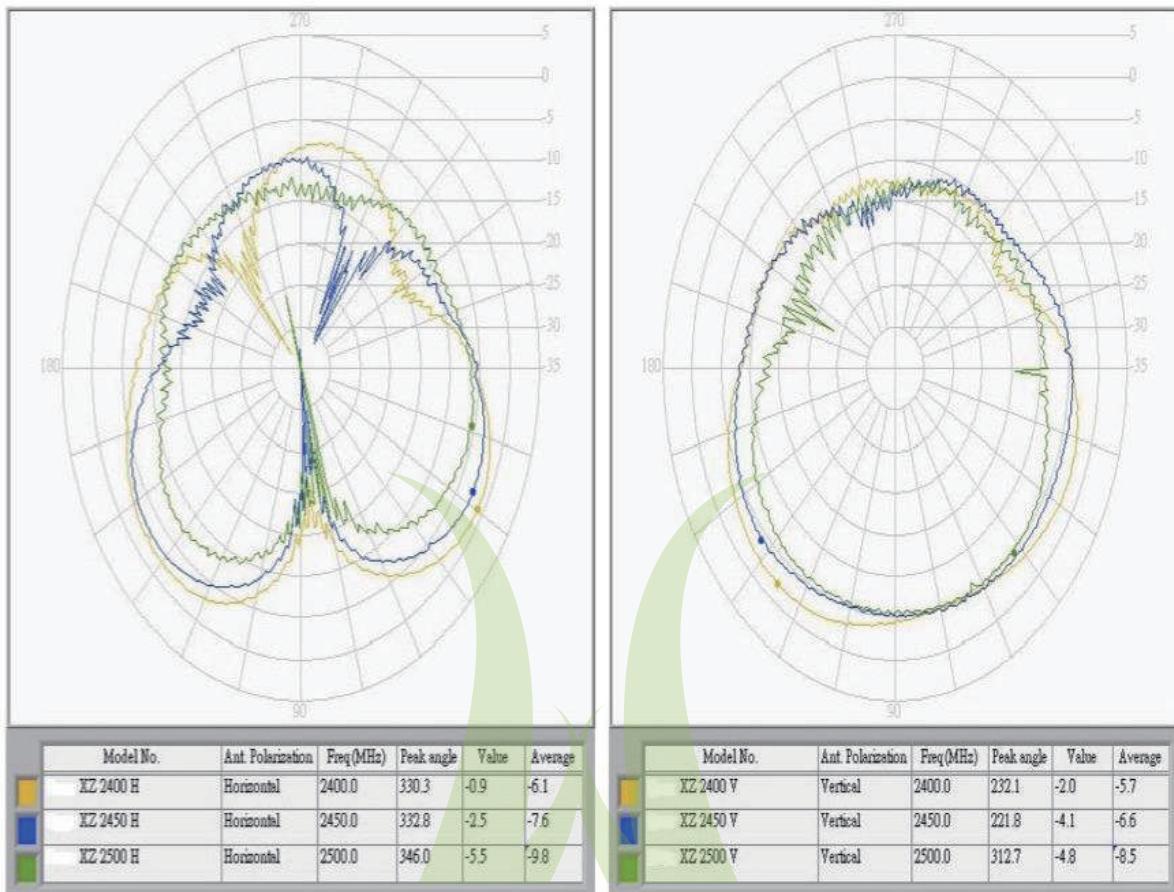
| Symbol           | Description                                                 | Min.           | Typ.             | Max. | Units | Test level |
|------------------|-------------------------------------------------------------|----------------|------------------|------|-------|------------|
| $I_{CPU, Flash}$ | Run current at 16 MHz.<br>Executing code from flash memory. |                | 4.4 <sup>1</sup> |      | mA    | 2          |
| $I_{CPU, RAM}$   | Run current at 16 MHz.<br>Executing code from RAM.          |                | 2.4 <sup>2</sup> |      | mA    | 1          |
| $I_{START, CPU}$ | CPU startup current.                                        |                | 600              |      | μA    | 1          |
| $t_{START, CPU}$ | IDLE to CPU execute.                                        | 0 <sup>3</sup> |                  |      | μs    | 1          |


1. Includes CPU, flash, 1V2, 1V7, RC16M.
2. Includes CPU, RAM, 1V2, RC16M.
3.  $t_{1V2}$  if 1V2 regulator is not running already.

### 5.3.7 Power Management

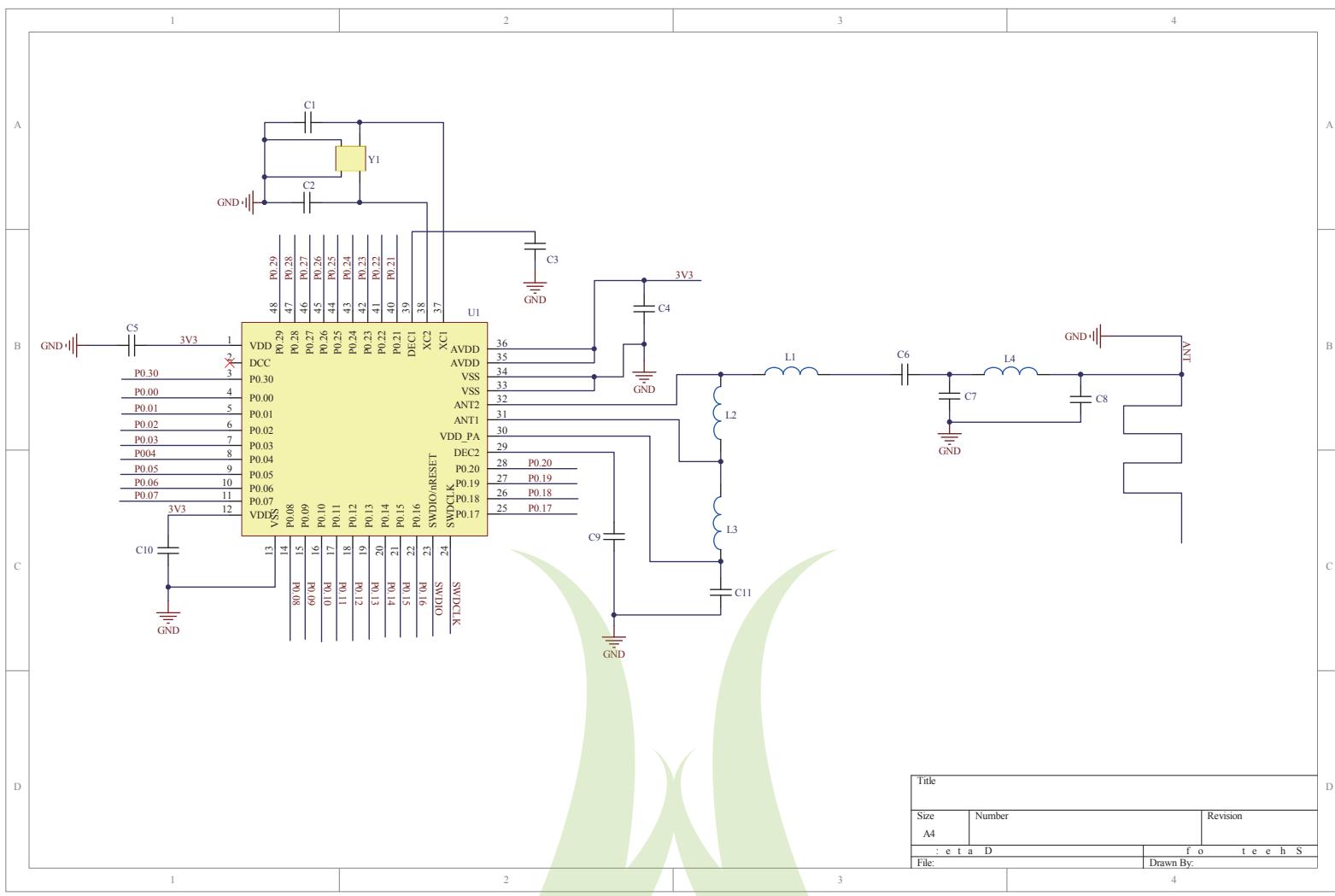
| Symbol            | Description                                                                        | Note                           | Min.             | Typ.             | Max. | Units   | Test level |
|-------------------|------------------------------------------------------------------------------------|--------------------------------|------------------|------------------|------|---------|------------|
| $t_{POR, 1\mu s}$ | Time Reset is active from VDD reaches 1.7 V with 1 $\mu s$ rise time.              |                                | 0.2              | 2.7              |      | ms      | 1          |
| $t_{POR, 50 ms}$  | Time Reset is active from VDD reaches 1.7 V with 50 ms rise time.                  |                                | 6.5              | 29               |      | ms      | 1          |
| $I_{OFF}$         | Current in SYSTEM OFF, no RAM retention.                                           |                                |                  | 0.6 <sup>1</sup> |      | $\mu A$ | 2          |
| $I_{OFF, 8 k}$    | Current in SYSTEM OFF mode 8 kB SRAM retention.                                    |                                |                  | 1.2 <sup>1</sup> |      | $\mu A$ | 2          |
| $I_{OFF, 16 k}$   | Current in SYSTEM OFF mode 16 kB SRAM retention.                                   |                                |                  | 1.8 <sup>1</sup> |      | $\mu A$ | 2          |
| $I_{OFF2ON}$      | OFF to CPU execute transition current.                                             |                                | 400              |                  |      | $\mu A$ | 1          |
| $t_{OFF2ON}$      | OFF to CPU execute.                                                                |                                | 9.6              | 10.6             |      | $\mu s$ | 1          |
| $I_{ON}$          | SYSTEM-ON base current with 16 kB RAM enabled.                                     |                                | 2.6 <sup>1</sup> |                  |      | $\mu A$ | 2          |
| $t_{1V2}$         | Startup time for 1V2 regulator.                                                    |                                | 2.3              |                  |      | $\mu s$ | 1          |
| $I_{1V2RC16}$     | Current drawn by 1V2 regulator and 16 MHz RCOSC when both are on at the same time. | See <b>Table 28</b> on page 39 | 880 <sup>2</sup> |                  |      | $\mu A$ | 1          |
| $I_{1V2XO16}$     | Current drawn by 1V2 regulator and 16 MHz XOSC when both are on at the same time.  | See <b>Table 28</b> on page 39 | 810 <sup>2</sup> |                  |      | $\mu A$ | 1          |

|                  |                                                                                   |                                |                  |                  |  |         |   |
|------------------|-----------------------------------------------------------------------------------|--------------------------------|------------------|------------------|--|---------|---|
| $I_{1V2XO32}$    | Current drawn by 1V2 regulator and 32 MHz XOSC when both are on at the same time. | See <b>Table 28</b> on page 39 | 840 <sup>2</sup> |                  |  | $\mu A$ | 1 |
| $t_{1V7}$        | Startup time for 1V7 regulator.                                                   |                                | 2                | 3.6              |  | $\mu s$ | 1 |
| $I_{1V7}$        | Current drawn by 1V7 regulator                                                    |                                | 105              |                  |  | $\mu A$ | 2 |
| $I_{DCDC}$       | Current drawn by DC/DC converter.                                                 |                                | 300              |                  |  | $\mu A$ | 1 |
| $F_{DCDC}$       | DC/DC converter current conversion factor.                                        | 0.65 <sup>3</sup>              |                  | 1.2 <sup>3</sup> |  |         | 1 |
| $t_{START,DCDC}$ | DC/DC converter startup time.                                                     | 10 <sup>3</sup>                |                  | 425 <sup>3</sup> |  | $\mu s$ | 1 |


# 6. Block Diagram



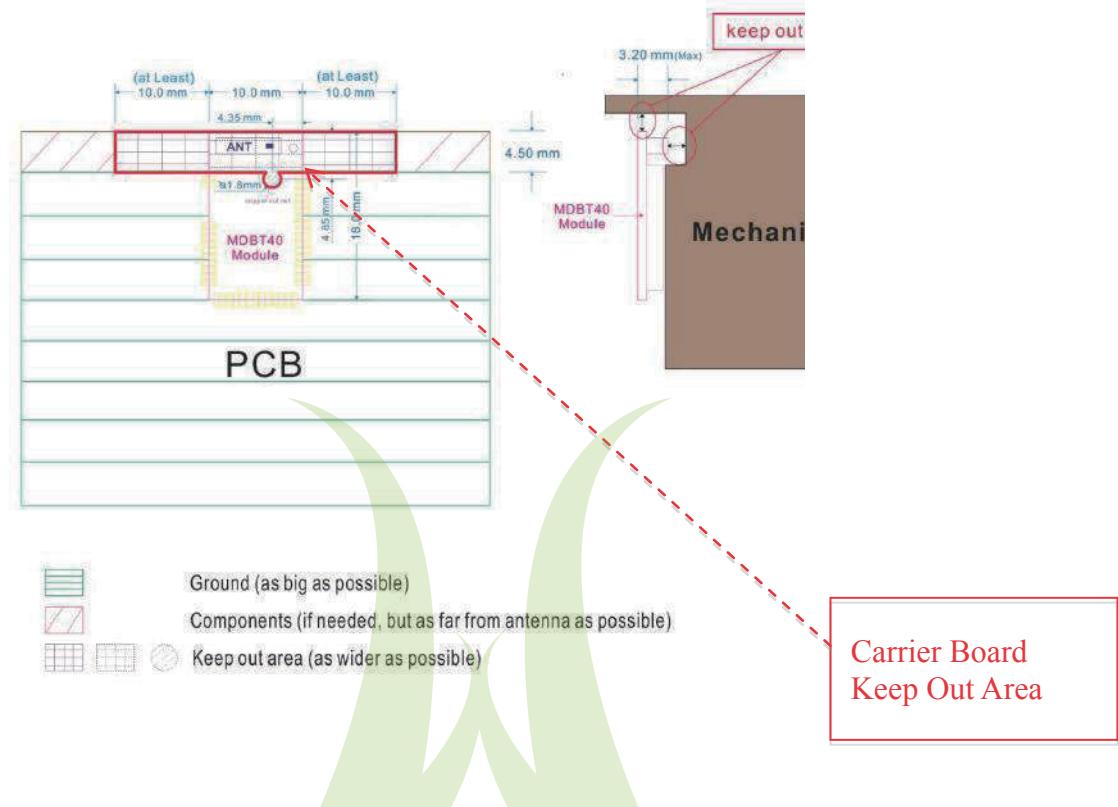
## 7. Antenna


**Antenna Manufacturer : Raytac Corporation.**  
**MODEL:Printed Trace Antenna**

C. X-Z polarization scan



GrassWonder


## 8. Reference Circuit



# GrassWonder

## 9. Carrier Keep-Out Area

Reference Item: GWBT40-P



### 1. Carrier Board under the BLUE PART

(antenna and test pin pad)

Carrier Board is not allowed to have ground or circuit or components in any layer.

### 2. Carrier Board under the GREEN PART

- Suggest to equip ground full green area in first layer
- If first layer equipped ground, 2<sup>nd</sup> and 3<sup>rd</sup> layer can have circuit in this area.
- If first layer equipped ground, 4<sup>th</sup> layer can have components in this area.

## 10. nRF51 IC Compatibility with SDK & SoftDevice

| nRF51<br>IC rev. | nRF51<br>SDK | SoftDevices        |     |       |     |                  |     |                    |     |       |     |
|------------------|--------------|--------------------|-----|-------|-----|------------------|-----|--------------------|-----|-------|-----|
|                  |              | nRF51422/nRF51822  |     |       |     |                  |     | nRF51422           |     |       |     |
|                  |              | S110               |     | S120  |     | S130             |     | S210               |     | S310  |     |
|                  |              | SD                 | SDS | SD    | SDS | SD               | SDS | SD                 | SDS | SD    | SDS |
| 1                | 4.4.2        | 5.2.1 <sup>a</sup> | 1.1 | -     | -   | -                | -   | 2.0.0 <sup>b</sup> | 1.0 | -     | -   |
| 2                | 4.4.2        | 5.2.1              | 1.1 | -     | -   | -                | -   | 3.0.0              | 1.2 | -     | -   |
|                  | 5.2.0        | 6.0.0<br>6.2.1     | 1.2 |       |     |                  |     | 3.0.0              | 1.2 | 1.0.0 | 1.0 |
|                  | 6.1.0        | 7.0.0<br>7.1.0     | 1.3 | 1.0.1 | 1.1 |                  |     | 3.0.0              | 1.2 | 1.0.0 | 1.0 |
|                  | -            | 8.0.0              | 2.0 | 2.0.0 | 2.1 |                  |     | 4.0.1              | 2.0 | 2.0.1 | 2.0 |
| 3                | 6.1.0        | 7.1.0              | 1.3 | 1.0.1 | 1.1 | 0.5.0-1<br>alpha | 0.5 | 3.0.0              | 1.2 | 1.0.0 | 1.0 |
|                  | 7.0.1        |                    |     |       |     |                  |     | 4.0.1              | 2.0 | -     | -   |
|                  | 7.1.0        |                    |     |       |     |                  |     | 4.0.1              | 2.0 | 2.0.1 | 2.0 |
|                  | 7.2.0        | 8.0.0              | 2.0 | 2.0.0 | 2.1 | 0.9.0-1<br>alpha | 0.5 | 4.0.1              | 2.0 | -     | -   |
|                  | 8.0.0        |                    |     |       |     |                  |     | -                  | -   | -     | -   |
|                  | -            |                    |     |       |     |                  |     | 1.0.0-3<br>alpha   | 0.5 | -     | -   |

a. Valid for nRF51822 only.  
 b. Preprogrammed in factory.

The SDK version must match with its corresponding softdevice version to make BLE work.

## Warning

This device complies with part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- n Reorient or relocate the receiving antenna.
- n Increase the separation between the equipment and receiver.
- n Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- n Consult the dealer or an experienced radio/TV technician for help.

To maintain compliance with FCC's RF Exposure guidelines, This equipment should be installed and operated with minimum distance between 20cm the radiator your body: Use only the supplied antenna.

FCC ID: 2AMHK-NRF51822

**This device is intended only for OEM integrators under the following conditions:**

- 1) The antenna must be installed such that 20 cm is maintained between the antenna and users, and
- 2) This device and its antenna(s) must not be co-located with any other transmitters except in accordance with FCC multi-transmitter product procedures. Referring to the multi-transmitter policy, multiple-transmitter(s) and module(s) can be operated simultaneously without C2P.
- 3) For all products market in US, OEM has to limit the operation channels in CH1 to CH11 for 2.4G band by supplied firmware programming tool. OEM shall not supply any tool or info to the end-user regarding to Regulatory Domain change.

**USERS MANUAL OF THE END PRODUCT:**

In the users manual of the end product, the end user has to be informed to keep at least 20cm separation with the antenna while this end product is installed and operated. The end user has to be informed that the FCC radio-frequency exposure guidelines for an uncontrolled environment can be satisfied. The end user has to also be informed that any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment. If the size of the end product is smaller than 8x10cm, then additional FCC part 15.19 statement is required to be available in the users manual: This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

**LABEL OF THE END PRODUCT:**

The final end product must be labeled in a visible area with the following " Contains FCC ID:2AMHK-NRF51822 ". If the size of the end product is larger than 8x10cm, then the following FCC part 15.19 statement has to also be available on the label: This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.