

DGD International Limited

TEST REPORT

SCOPE OF WORK

EMC TESTING-2046010

REPORT NUMBER

190905013GZU-001

ISSUE DATE

[REVISED DATE]

30-December-2019

[-----]

PAGES

21

DOCUMENT CONTROL NUMBER

FCC Part 18:2018-d

© 2017 INTERTEK

TEST REPORT

Telephone: 86-20-8213 9688
Facsimile: 86-20-3205 7538
www.intertek.com

Applicant Name & : DGD International Limited
Address : Unit B-D, 5/F, Kimley Commercial Building, 142-146 Queen's Road, Central, HONG KONG, CHINA
Manufacturing Site : Same as applicant
Intertek Report No: 190905013GZU-001
FCC ID: 2AMHH-2046010

Test standards

47 CFR Part 18 [2018 Edition]

Sample Description

Product : HY-VS-VSOP-XO KIT DE CHARGE PAD LUMINOUS
Model No. : 2046010
Electrical Rating : For single charge pad input: 4.96Vdc, 0.3A (Powered by adaptor)
For six charge pads input: 8.94W
Wireless output: 3.7Vdc, 0.14A, 0.52W max.
Adaptor: Model: AK 18WG-0500200DP
Input: 100-240V, 50/60Hz 0.5A
Power cord: 1.8m x 2 wires unscreened DC cable
Serial No. : Not Labeled
Date Received : 05 September 2019
Date Test : 05 September 2019-05 December 2019
Conducted

Prepared and Checked By

Approved By:

Daniel He

Project Engineer

Intertek Guangzhou

Helen Ma

Team Leader

Intertek Guangzhou

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TEST REPORT**CONTENT**

TEST REPORT	1
CONTENT	3
1. TEST RESULTS SUMMARY	4
2. EMC RESULTS CONCLUSION	5
3. LABORATORY MEASUREMENTS	6
4. EQUIPMENT USED DURING TEST	8
5. EMI TEST	10
5.1 FCC PART 18 CONTINUOUS CONDUCTED DISTURBANCE VOLTAGE TEST	10
5.1.1 <i>Block Diagram of Test Setup</i>	10
5.1.2 <i>Test Setup and Procedure</i>	10
5.1.3 <i>Limit</i>	11
5.1.4 <i>Test Data and curve</i>	12
5.2 FCC PART 18 RADIATED EMISSION 9 kHz TO 30 MHz	14
5.2.1 <i>Block Diagram of Test Setup</i>	14
5.2.2 <i>Test Setup and Procedure</i>	14
5.2.3 <i>Limit</i>	15
5.2.4 <i>Test Data and Curve</i>	16
5.3 FCC PART 18 RADIATED EMISSION 30 MHz -1000 MHz	18
5.3.1 <i>Block Diagram of Test Setup</i>	18
5.3.2 <i>Test Setup and Procedure</i>	18
5.3.3 <i>Limit</i>	19
5.3.4 <i>Test Data and Curve</i>	20

TEST REPORT**1. TEST RESULTS SUMMARY**

Test Item	Standard	Result
Conducted disturbance voltage at mains ports	FCC Part 18	Pass
Radiated Emission (9 kHz to 30 MHz)	FCC Part 18	Pass
Radiated Emission (30 MHz to 1 GHz)	FCC Part 18	Pass
Remark:	Reference publication is used for methods of measurement: FCC OST/ MP-5:1986	

Remark:

1. The symbol "N/A" in above table means Not Applicable.
2. When determining the test results, measurement uncertainty of tests has been considered.

TEST REPORT

2. EMC RESULTS CONCLUSION

RE: EMC Testing Pursuant to FCC part 18 authorized under the Certification was performed on the HY-VS-VSOP-XO KIT DE CHARGE PAD LUMINOUS, Models: 2046010.

We tested the HY-VS-VSOP-XO KIT DE CHARGE PAD LUMINOUS, Model: 2046010, to determine if it was in compliance with the relevant standard as marked on the Test Results Summary. We found that the unit met the requirement of FCC part 18 standard when tested as received. The worst case's test data was presented in this test report.

The base can be charged individually or linked with other induction bases through specific connecting wire, up to 6 bases can be charged in the same time.

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above evaluated respectively.

Pre-test mode	Description
Charging Mode	Lighting pads is charging at 1% battery power, 50% and 99% battery power respectively, keep transmitting continuously.

All tests were carried out by 6 pic charged bases connected together.

For AC port Conducted Emission:

Pre-test all modes listed above, find the worst case as: wireless charging for Lighting pads at 1% battery power.

For Radiated Emission:

Pre-test all modes listed above, find the worst case as: wireless charging for Lighting pads at 1% battery power.

Remark: The induction base only charges the lighted pads, it cannot charge a mobile phone or other type of items

The production units are required to conform to the initial sample as received when the units are placed on the market.

TEST REPORT**3. LABORATORY MEASUREMENTS****Configuration Information**

Support Equipment:

Description	Manufacturer	Model No.	Quantity	Supplied by
DC cable	--	0.5m	5	Client
Lighting pads	--	2045957	2	Client
	--	2045958	2	Client
	--	2045959	2	Client

Rated Voltage and frequency under test: 120Vac, 60Hz

Condition of Environment:

Temperature: 22~28°C

Relative Humidity:35~60%

Atmosphere Pressure:86~106kPa

Notes:

1. The EMI measurements had been made in the operating mode produced the largest emission in the frequency band being investigated consistent with normal applications. An attempt had been made to maximize the emission by varying the configuration of the EUT.

2. Test Facility accreditation:

A2LA Certificate Number 0078.10

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch is accredited by A2LA and Listed in FCC website. FCC accredited test labs may perform both Certification testing under Parts 15 and 18 and Declaration of Conformity testing.

3. Test Location:

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

All tests were performed at:

Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China

Except Radiated Emissions was performed at:

Room102/104, No 203, KeZhu Road, Science City, GETDD Guangzhou, China

TEST REPORT**4. Measurement Uncertainty**

No.	Item	Measurement Uncertainty
1	Conducted Emission (9 kHz-150 kHz)	2.66 dB
2	Conducted Emission (150 kHz-30 MHz)	2.44 dB
3	Disturbance Power (30 MHz-300 MHz)	3.02 dB
4	Radiated Emission (30 MHz-1 GHz)	4.72 dB
5	Radiated Emission (1 GHz-6 GHz)	4.96 dB
6	Radiated Emission (6 GHz-18 GHz)	4.93 dB

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

Measurement uncertainty is calculated in accordance with CISPR16-4-2:2011

The measurement uncertainty is given with a confidence of 95%, k=2.

Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

TEST REPORT
4. EQUIPMENT USED DURING TEST
Conducted Disturbance-Mains Terminal (1)

Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM080-05	EMI receiver	ESCI	R&S	1Y
EM006-05	LISN	ENV216	R&S	1Y
SA047-112	Digital Temperature-Humidity Recorder	RS210	YIJIE	1Y
EM004-04	EMC shield Room	8m×3m×3m	Zhongyu	1Y

Radiated Disturbance (9 kHz-30 MHz)

Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM030-04	3m Semi-Anechoic Chamber	9×6×6 m3	ETS-LINDGREN	1Y
EM031-02	EMI Test Receiver (9 kHz~7 GHz)	R&S ESR7	R&S	1Y
EM011-04	Loop antenna (9 kHz-30 MHz)	HFH2-ZZ	R&S	1Y
EM031-02-01	Coaxial cable	/	R&S	1Y
SA047-118	Digital Temperature-Humidity Recorder	RS210	YIJIE	1Y
EM045-01-01	EMC32 software (RE/RS)	V10.01.00	R&S	N/A

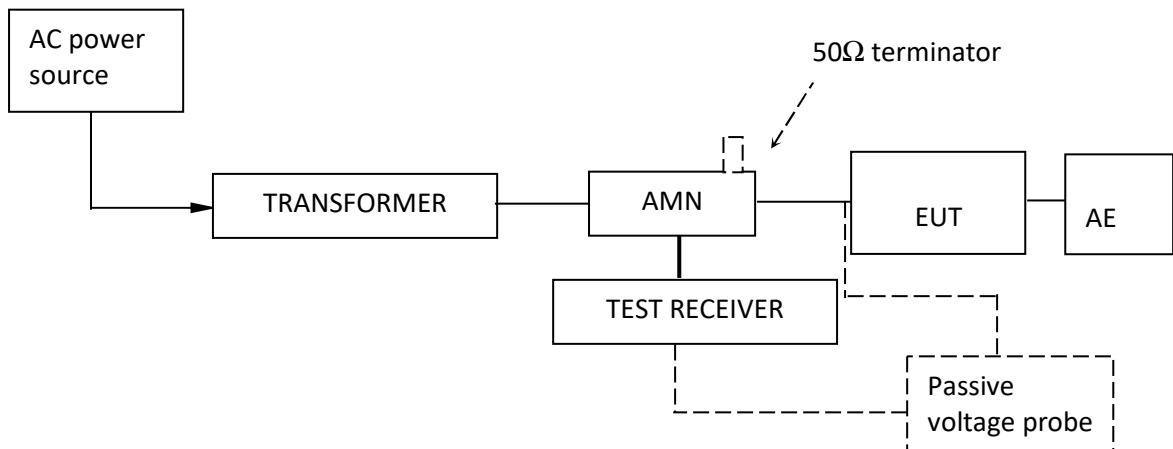
Radiated Disturbance (30 MHz-1 GHz)

Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM030-04	3m Semi-Anechoic Chamber	9×6×6 m3	ETS-LINDGREN	1Y
EM031-02	EMI Test Receiver (9 kHz~7 GHz)	R&S ESR7	R&S	1Y
EM033-01	TRILOG Super Broadband test Antenna (30 MHz-3 GHz)	VULB 9163	SCHWARZBECK	1Y
EM031-02-01	Coaxial cable	/	R&S	1Y
EM036-01	Common-mode absorbing clamp	CMAD 20B	TESEQ	1Y
SA047-118	Digital Temperature-Humidity Recorder	RS210	YIJIE	1Y
EM045-01-01	EMC32 software (RE/RS)	V10.01.00	R&S	N/A

TEST REPORT

Detail of the equipment calibration due date:

Equipment No.	Cal. Due date (DD-MM-YYYY)	Equipment No.	Cal. Due date (DD-MM-YYYY)
Conducted Disturbance-Mains Terminal (1)			
EM080-05	17/07/2020	EM080-05	17/07/2020
EM006-05	16/06/2020	EM003-02	10/11/2020
SA047-112	08/11/2020	EM003-03	10/11/2020
EM004-04	13/01/2020	EM003-01-05	08/09/2020
Conducted Disturbance-Mains Terminal (2)			
EM080-04	10/11/2020	SA047-112	08/11/2020
EM031-04	15/01/2020	EM004-04	13/01/2020
EM006-06	08/09/2020		
SA047-111	08/11/2020		
EM004-03	03/01/2020		
EM031-04-01	N/A		
Conducted Disturbance-Load and Control Terminal (1)			
EM080-05	17/07/2020	EM030-04	09/04/2020
EM080-05-01	08/09/2020	EM031-02	22/10/2020
SA047-112	08/11/2020	EM011-04	24/06/2020
EM004-04	13/01/2020	EM031-02-01	09/04/2020
Conducted Disturbance-Load and Control Terminal (2)			
EM080-05	17/07/2020	SA047-118	16/7/2020
EM005-06-01	09/09/2020	EM045-01-01	N/A
SA047-112	08/11/2020		
EM004-04	13/01/2020		
Conducted Disturbance-Telecom Terminal			
EM080-05	17/07/2020	EM030-04	9/04/2020
EM011-05	07/04/2020	EM031-02	22/10/2020
EM011-06	07/04/2020	EM033-01	19/09/2020
EM006-06	08/09/2020	EM031-02-01	9/04/2020
SA047-112	08/11/2020	EM036-01	21/07/2020
EM004-04	13/01/2020	SA047-118	16/07/2020
Conducted Disturbance-Antenna Terminal			
EM080-04	10/11/2020	EM045-01-01	N/A
EM031-04	15/01/2020		
EM084-02	18/07/2020		
EM041-01	07/01/2020		
EM041-02	07/01/2020		
SA047-111	08/11/2020		
EM004-03	03/01/2020		
...			


TEST REPORT

5. EMI TEST

5.1 FCC part 18 Continuous Conducted Disturbance Voltage Test

Test Result: Pass

5.1.1 Block Diagram of Test Setup

5.1.2 Test Setup and Procedure

The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a 50Ω linear impedance artificial hand is used if appropriate (for handheld apparatus).

The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane (Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP. The EUT keeps a distance of at least 0.4m from a vertical metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m.

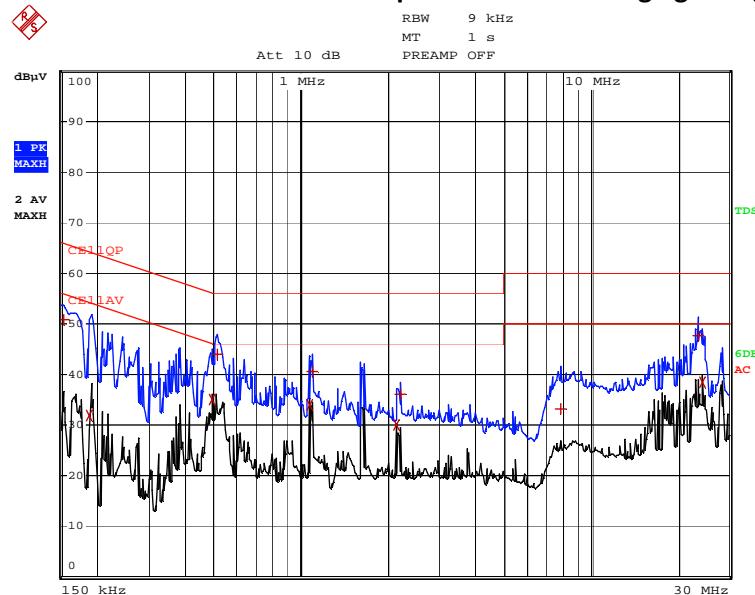
The bandwidth of test receiver was set at 200 Hz for measurements from 9 kHz to 150 kHz and 9 kHz for measurements from 150 kHz to 30 MHz.

TEST REPORT**5.1.3 Limit**

Frequency range MHz	AC mains terminals dB (uV)	
	Quasi-peak	Average
0.15 to 0.5	66 to 56*	56 to 46*
0.5 to 5	56	46
5 to 30	60	50

Note 1: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note 2: The lower limit is applicable at the transition frequency.

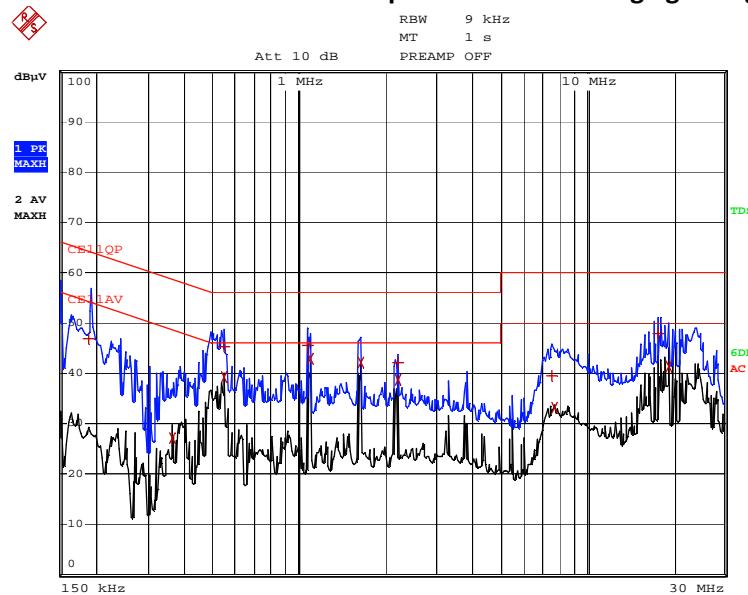

TEST REPORT

5.1.4 Test Data and curve

At mains terminal:

Tested Wire: Live

Operation Mode: charging for Lighting pads

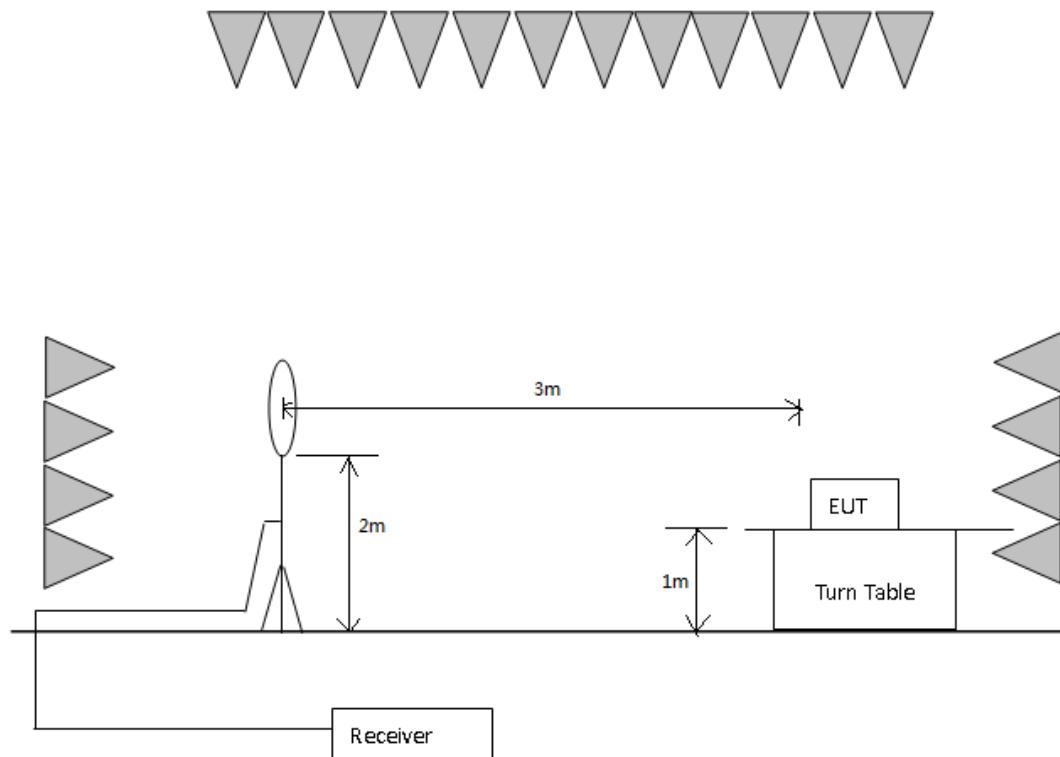

EDIT PEAK LIST (Final Measurement Results)				
Trace1:	CE11QP			
Trace2:	CE11AV			
Trace3:	---			
TRACE	FREQUENCY	LEVEL dB μ V	DELTA LIMIT dB	
1 Quasi Peak	154 kHz	50.75 L1	-15.02	
2 Average	190 kHz	32.01 L1	-22.02	
2 Average	494 kHz	34.94 L1	-11.15	
1 Quasi Peak	514 kHz	43.94 L1	-12.05	
2 Average	1.078 MHz	33.99 L1	-12.00	
1 Quasi Peak	1.098 MHz	40.52 L1	-15.47	
2 Average	2.15 MHz	30.12 L1	-15.87	
1 Quasi Peak	2.198 MHz	36.03 L1	-19.96	
1 Quasi Peak	7.958 MHz	33.32 L1	-26.67	
1 Quasi Peak	23.622 MHz	47.51 L1	-12.48	
2 Average	24.378 MHz	38.48 L1	-11.51	

Remark:

1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

Tested Wire: Neutral


EDIT PEAK LIST (Final Measurement Results)					
Trace1:	CE11QP	TRACE	FREQUENCY	LEVEL dB μ V	DELTA LIMIT dB
Trace2:	CE11AV	1	Quasi Peak 190 kHz	46.84 L1	-17.18
Trace3:	---	2	Average 362 kHz	27.29 L1	-21.39
		1	Quasi Peak 550 kHz	45.27 L1	-10.72
		2	Average 550 kHz	39.35 L1	-6.64
		1	Quasi Peak 1.078 MHz	45.45 L1	-10.54
		2	Average 1.098 MHz	43.02 L1	-2.97
		2	Average 1.646 MHz	42.04 L1	-3.95
		1	Quasi Peak 2.198 MHz	42.02 L1	-13.97
		2	Average 2.198 MHz	38.80 L1	-7.19
		1	Quasi Peak 7.598 MHz	39.58 L1	-20.41
		2	Average 7.69 MHz	33.19 L1	-16.80
		1	Quasi Peak 17.578 MHz	47.86 L1	-12.13
		2	Average 19.226 MHz	41.32 L1	-8.67

Remark:

1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT**5.2 FCC part 18 Radiated Emission 9 kHz to 30 MHz**

Test Result: PASS

5.2.1 Block Diagram of Test Setup**5.2.2 Test Setup and Procedure**

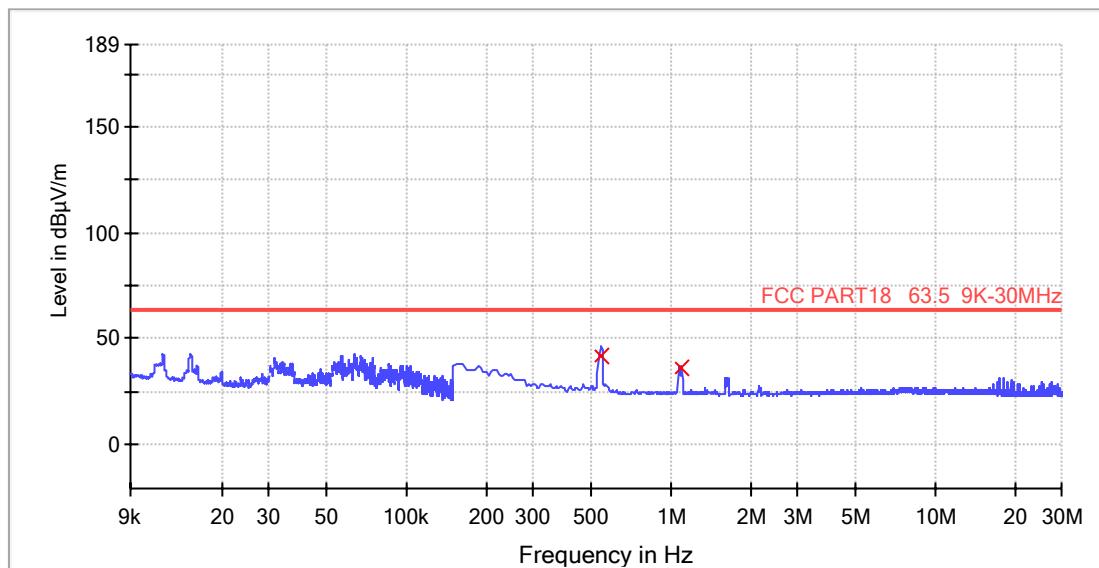
The measurement was applied in a semi-anechoic chamber. The EUT were placed on a 1 m high foam table above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna tripod.

Loop antenna was used as receiving antenna. The antenna was supported in the vertical plane and was rotatable about a vertical axis to obtain the maximum emission. The antenna height of was set at 2 m above ground level.

The bandwidth setting on Receiver was 9 kHz. The frequency range from 9 kHz to 30MHz was checked.

TEST REPORT**5.2.3 Limit**

Frequency range (MHz)	Field strength at 300 meters (μ V/m)	Field strength at 3 meters (dB μ V/m)
0.009-30	15	63.5

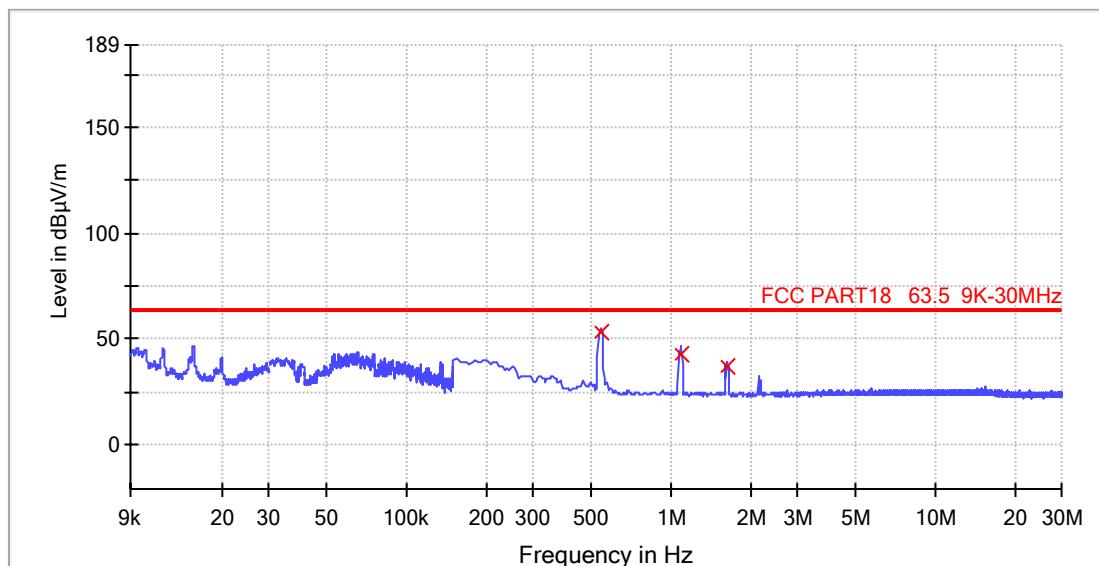

Note:
Test limit is calculated and base on equipment type and operating frequency.
Detector: Peak for pre-scan, Average for the final result

TEST REPORT

5.2.4 Test Data and Curve

Operation Mode: charging for Lighting pads

Horizontal


Frequency (MHz)	Read Level (dB μ V)	Correction Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
0.542	20.8	20.6	41.4	63.5	22.1	AV
1.098	14.6	21.1	35.7	63.5	27.8	AV

Remark:

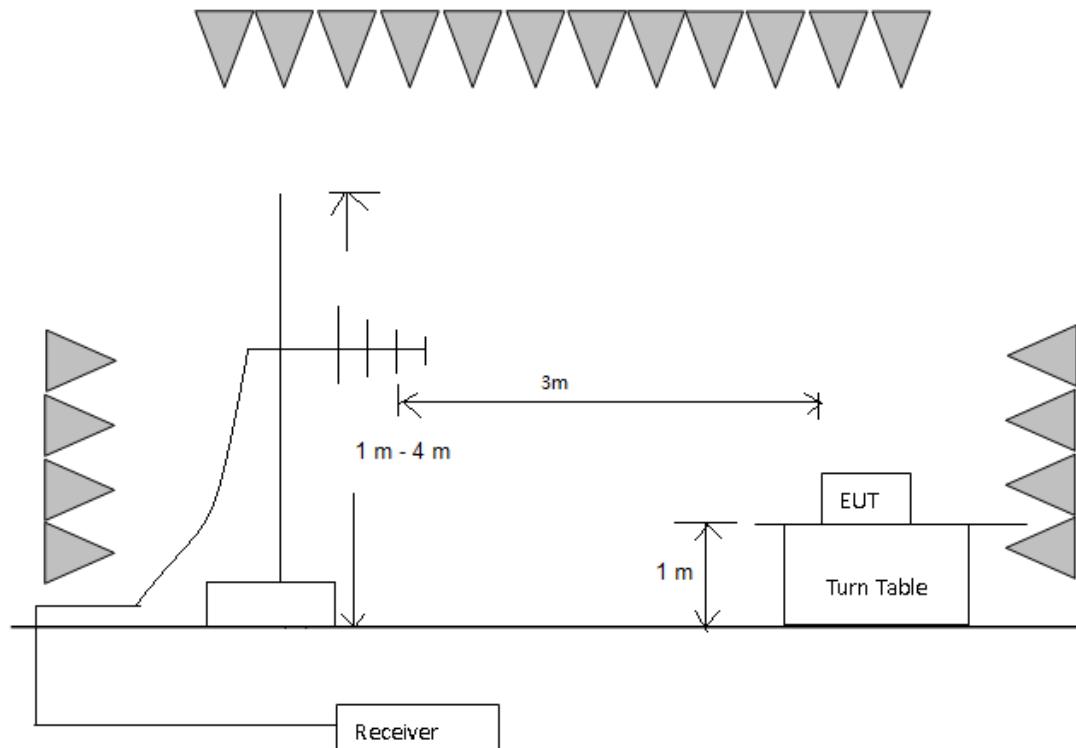
1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
2. Average (dB μ V/m) = Corr. (dB) + Read Level (dB μ V)
3. Margin (dB) = Limit AVG (dB μ V/m) – Average (dB μ V/m)

TEST REPORT

Vertical

Frequency (MHz)	Read Level (dB μ V)	Correction Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
0.542	32.1	20.6	52.7	63.5	10.8	AV
1.098	22.0	21.1	43.1	63.5	20.4	AV
1.626	15.6	21.1	36.7	63.5	26.8	AV

Remark:


1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
2. Average (dB μ V/m) = Corr. (dB) + Read Level (dB μ V)
3. Margin (dB) = Limit AVG (dB μ V/m) – Average (dB μ V/m)

TEST REPORT

5.3 FCC part 18 Radiated Emission 30 MHz -1000 MHz

Test Result: Pass

5.3.1 Block Diagram of Test Setup

5.3.2 Test Setup and Procedure

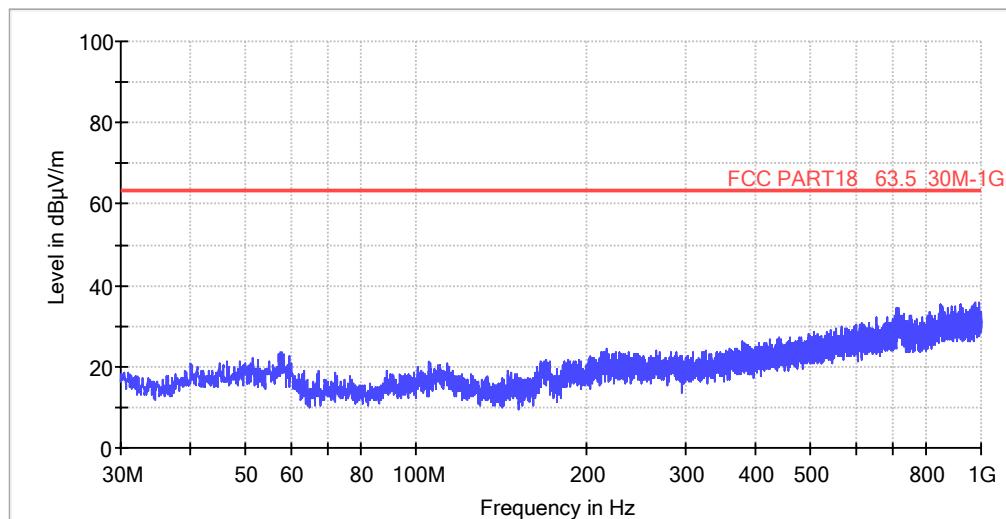
The measurement was applied in a semi-anechoic chamber. The EUT and simulators were placed on a 1 m high foam table above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mask. The antenna moved up and down between from 1 meter to 4 meters to find out the maximum emission level.

Broadband antenna was used as receiving antenna. Both horizontal and vertical polarization of the antenna was set on measurement. In order to find the maximum emission, all of the interface cables were manipulated according to FCC OST/MP-5 requirement during radiated test.

The bandwidth setting on R&S Test Receiver was 120 kHz.

The frequency range from 30 MHz to 1000 MHz was checked

TEST REPORT**5.3.3 Limit**

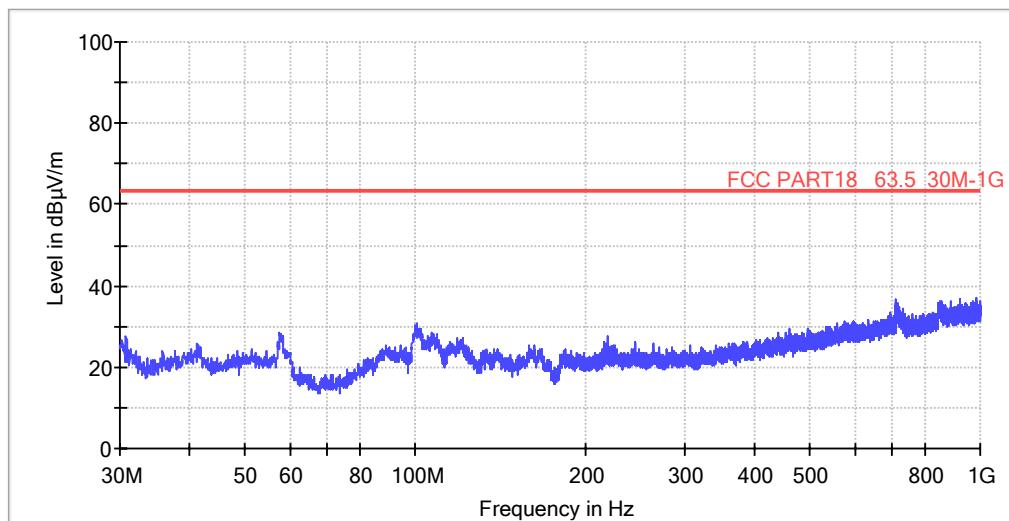

Frequency range (MHz)	Field strength at 300 meters (μ V/m)	Field strength at 3 meters (dB μ V/m)
30-1000	15	63.5

Note:
Test limit is calculated and base on equipment type and operating frequency.
Detector: Peak for pre-scan, Average for the final result

TEST REPORT

5.3.4 Test Data and Curve

Operation Mode: charging for Lighting pads
Horizontal


All emission levels are more than 20 dB below the limit.

Remark:

1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
2. Average (dB μ V/m) = Corr. (dB) + Read Level (dB μ V)
3. Margin (dB) = Limit AVG (dB μ V/m) – Average (dB μ V/m)

TEST REPORT

Vertical

All emission levels are more than 20 dB below the limit.

Remark:

1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
2. Average (dB μ V/m) = Corr. (dB) + Read Level (dB μ V)
3. Margin (dB) = Limit AVG (dB μ V/m) – Average (dB μ V/m)

*****End of Report*****