FCCID: 2AMEV-R30D

RF Exposure evaluation

According to 447498 D01 General RF Exposure Guidance v06

- 4.3. General SAR test exclusion guidance
- 4.3.1. Standalone SAR test exclusion considerations
- a) For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following: [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, and \leq 7.5 for 10-g extremity SAR, 30 where
 - f(GHz) is the RF channel transmit frequency in GHz
 - •Power and distance are rounded to the nearest mW and mm before calculation31
 - •The result is rounded to one decimal place for comparison
 - •The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm,and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is \leq 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

30 This is equivalent to the formula written as: [(max. power of channel, including tune-up tolerance,mW)/(60/ $\sqrt{f(GHz)}$ mW)]·[20 mm/(min. test separation distance, mm)] \leq 1.0 for 1-g SAR; also see Appendix A for approximate exclusion threshold numerical values at selected frequencies and distances.

```
eirp = pt x gt = (EXd)2/30
where:
   pt = transmitter output power in watts,
   gt = numeric gain of the transmitting antenna (unitless),
   E = electric field strength in V/m, --- 10((dBuV/m)/20)/106
d = measurement distance in meters (m)---3m
So pt = (EXd)2/30 x gt
```

Copied from the FCC test report:

RF Exposure evaluation

Carrier Frequency (MHz)	Factual Level dBm (mW)
202.9MHz	-2.94dBm(i.e.0.51mW)

min. test separation distance = 5 mm, since the min distance from the antenna to the outer = 5.0 mm

Field strength = -2.94 dBm=0.51 mW So (0.51 mW)/5.0mm)x $\sqrt{0.20290}$ GHz = 0.46 <3

Then SAR evaluation is not required