

**FCC 47 CFR PART 15 SUBPART C
ISED CANADA RSS-210 ISSUE 9**

CERTIFICATION TEST REPORT

FOR

RFID DRAWER UNIT

MODEL NUMBER: MEDLINK

**FCC ID: 2AMDTML1
IC: 23760-ML1**

REPORT NUMBER: R11708122-E3

ISSUE DATE: 2018-07-25

**Prepared for
HUMANSCALE CORPORATION
11 E 26TH ST, 8TH FLOOR
NEW YORK
NY, 10010, USA**

**Prepared by
UL LLC
12 LABORATORY DR.
RESEARCH TRIANGLE PARK, NC 27709 USA
TEL: (919) 549-1400**

Revision History

Ver.	Issue Date	Revisions	Revised By
1	2018-04-11	Initial Issue	Brian T. Kiewra
2	2018-05-18	Revised EUT description to 'RFID Drawer Unit'	Brian T. Kiewra
3	2018-07-25	Revised number of antennas to 8 based of OD. Revised to use new accreditation logo.	Brian T. Kiewra

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION	5
4. CALIBRATION AND UNCERTAINTY	6
4.1. MEASURING INSTRUMENT CALIBRATION	6
4.2. SAMPLE CALCULATION	6
4.3. MEASUREMENT UNCERTAINTY	6
5. EQUIPMENT UNDER TEST	7
5.1. DESCRIPTION OF EUT	7
5.2. MAXIMUM OUTPUT POWER	7
5.3. DESCRIPTION OF AVAILABLE ANTENNAS	7
5.4. SOFTWARE AND FIRMWARE	7
5.5. WORST-CASE CONFIGURATION AND MODE	7
5.6. MODIFICATIONS	7
5.7. DESCRIPTION OF TEST SETUP	8
6. TEST AND MEASUREMENT EQUIPMENT	9
7. OCCUPIED BANDWIDTH	11
8. RADIATED EMISSION TEST RESULTS	12
8.1. LIMITS AND PROCEDURE	12
8.2. FUNDAMENTAL AND SPURIOUS EMISSIONS (0.15 – 30 MHz)	14
8.3. TX SPURIOUS EMISSION 30 TO 1000 MHz	17
9. MAINS LINE CONDUCTED EMISSIONS	18
10. FREQUENCY STABILITY	21
11. SETUP PHOTOS	24

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Humanscale Corporation
11 E 26TH ST, 8TH Floor
New York, NY 10010, USA

EUT DESCRIPTION: RFID Drawer Unit

MODEL: MedLink

SERIAL NUMBER: Non-Serialized

DATE TESTED: 2018-01-23 to 2018-02-13

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	Compliant
ISED CANADA RSS-210 Issue 9	Compliant
ISED CANADA RSS-GEN Issue 4	Compliant

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Approved & Released
For UL LLC By:

Jeffrey Moser
Operations Leader
UL – Consumer Technology Division

Prepared By:

Brian T. Kiewra
Project Engineer
UL – Consumer Technology Division

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-210 Issue 9.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 12 Laboratory Dr., Research Triangle Park, NC 27709, USA and 2800 Perimeter Park Dr., Suite B, Morrisville, NC 27560, USA.

12 Laboratory Dr., RTP, NC 27709
<input type="checkbox"/> Chamber A
<input type="checkbox"/> Chamber C

2800 Perimeter Park Dr., Suite B, Morrisville, NC 27560
<input checked="" type="checkbox"/> Chamber NORTH
<input type="checkbox"/> Chamber SOUTH

The onsite chambers are covered under Industry Canada company address code 2180C with site numbers 2180C -1 through 2180C-4, respectively.

UL LLC (RTP) is accredited by NVLAP, Laboratory Code 200246-0. The full scope of accreditation can be viewed at <http://www.nist.gov/nvlap/>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

$$\begin{aligned}\text{Field Strength (dBuV/m)} &= \text{Measured Voltage (dBuV)} + \text{Antenna Factor (dB/m)} + \\ \text{Cable Loss (dB)} - \text{Preamp Gain (dB)} & \\ 36.5 \text{ dBuV} + 18.7 \text{ dB/m} + 0.6 \text{ dB} - 26.9 \text{ dB} &= 28.9 \text{ dBuV/m}\end{aligned}$$

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty	Required by standard
Occupied Channel Bandwidth	2.00%	±5 %
RF output power, conducted	1.3 dB	±1,5 dB
Power Spectral Density, conducted	2.47 dB	±3 dB
Unwanted Emissions, conducted	2.94 dB	±3 dB
All emissions, radiated	5.36 dB	±6 dB
Temperature	2.26 °C	±3 °C
Supply voltages	2.40%	±3 %
Time	3.39%	±5 %

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a RFID drawer unit.

5.2. MAXIMUM OUTPUT POWER

The testing was performed at 3 meter. The PK transmitter maximum E-field reading at 30m is 9.35dBuV/m corrected from the 3m reading of 49.35dBuV/m.

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes eight integral loop coil antennas, each with an area of 0.000113 m².

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 1.09, rev. 1.11.

The EUT driver software installed during testing was FTDI RS232, rev. 00.

The test utility software used during testing was RFID.py, rev. 00.

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT is intended to operate in only one orientation. The EUT fundamental was investigated with 4 cassettes installed. Each bin (drawer location) was investigated and it was determined that a drawer in bin 6 was the worst-case configuration. Therefore all radiated testing was performed with 4 cassettes installed and a drawer located in bin 6 on each cassette with the EUT in the intended orientation. RFID radios do not transmit simultaneously.

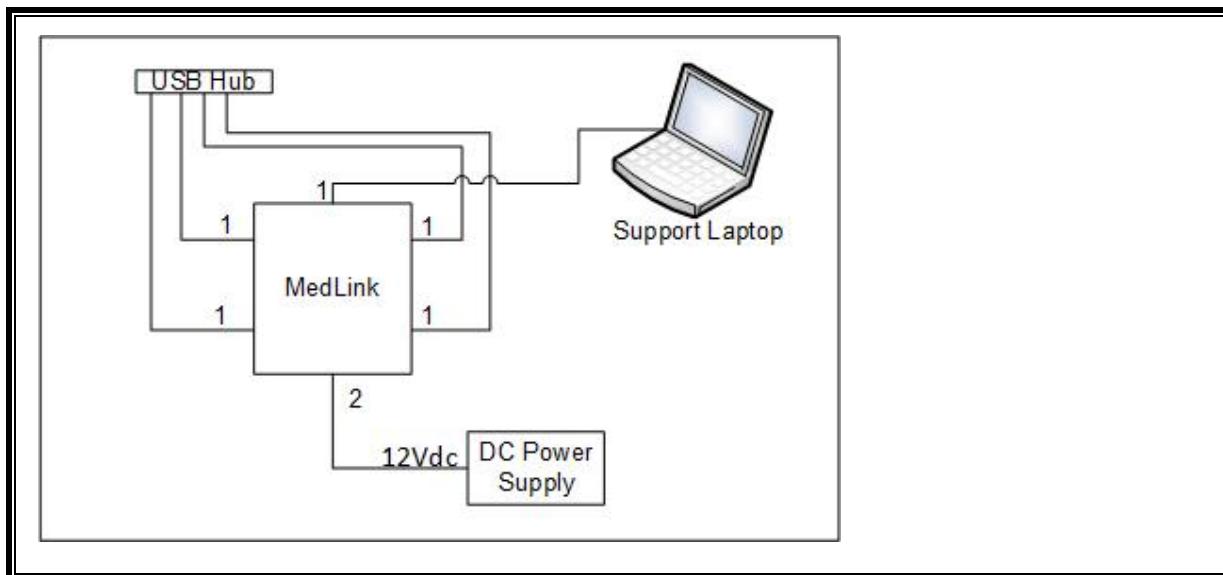
5.6. MODIFICATIONS

No modifications were made during testing.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List				
Description	Manufacturer	Model	Serial Number	FCC ID
Laptop	HP	Zbook 15u G4	5CG7222J2J	NA
DC Power Supply	CircuitSpecialist.com	CS13005X5	NA	NA
USB Hub	Insignia	NS-PCH6430	NA	NA


I/O CABLES

I/O Cable List						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	USB	5	USB	USB	<3m	Test purposes only. Cables not present in production model. Used to configure radios for test.
2	DC Mains	1	Molex 6pin	DC	<3m	12Vdc

TEST SETUP

The EUT was connected to a support computer via USB cable. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment Used – Frequency Stability Measurement Equipment

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
T177	Spectrum Analyzer	Agilent Technologies	E4446A	2017-03-30	2018-03-30
1100502	Temp/Humid Chamber	Cincinnati Sub-Zero	ZPH-8-3.5-SCT/AC	2017-06-06	2018-06-06
139843	Temp/Humid/Pressure Meter	Control Co./Fisher	14-650-118	2017-12-23	2018-12-23
MM0167	Multi-meter	Agilent	U1232A	2017-10-21	2018-10-30

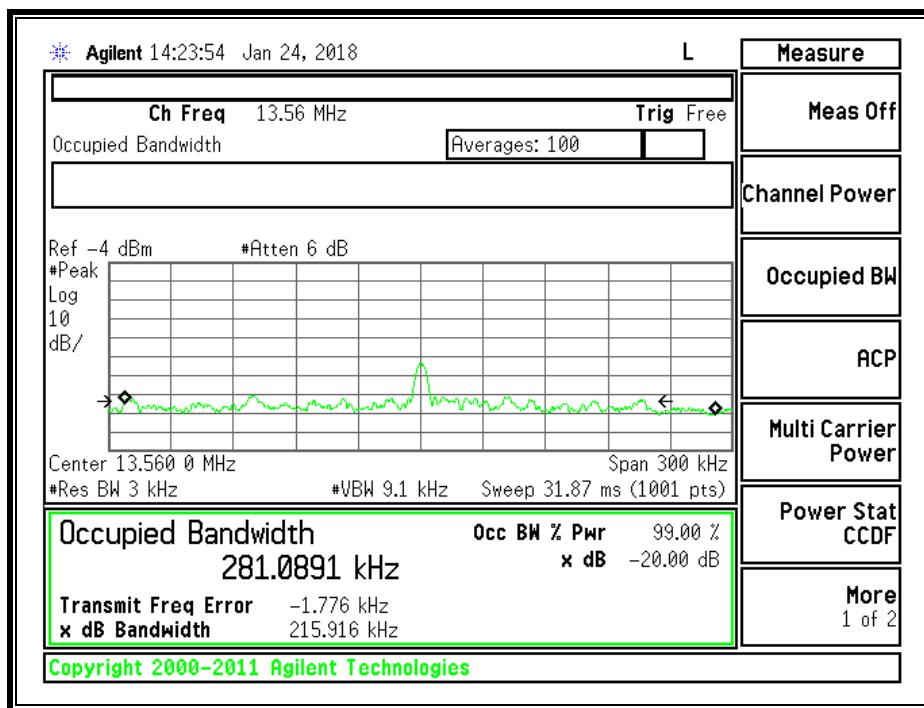
Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - North Chamber)

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
0.009-30MHz (Loop Ant.)					
AT0059	Active Loop Antenna	ETS-Lindgren	6502	2017-06-05	2018-06-05
30-1000 MHz					
AT0073	Hybrid Broadband Antenna	Sunol Sciences Corp.	JB3	2017-07-18	2018-07-31
Gain-Loss Chains					
N-SAC01	Gain-loss string: 0.009-30MHz	Various	Various	2017-09-15	2018-09-15
N-SAC02	Gain-loss string: 30-1000MHz	Various	Various	2017-06-11	2018-06-11
Receiver & Software					
SA0027	Spectrum Analyzer	Agilent	N9030A	2017-03-16	2018-03-16
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
Additional Equipment used					
s/n 161024690	Environmental Meter	Fisher Scientific	15-077-963	2016-12-21	2018-12-21

Test Equipment Used - Line-Conducted Emissions – Voltage (Morrisville – Conducted 1)

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
CBL076	Coax cable, RG223, N-male to BNC-male, 20-ft.	Pasternack	PE3476-240	2017-06-12	2018-06-12
s/n 160938893	Environmental Meter	Fisher Scientific	14-650-118	2016-11-02	2018-11-02
LISN003	LISN, 50-ohm/50-uH, 2-conductor, 25A	Fischer Custom Com.	FCC-LISN-50-25-2-01-550V	2017-08-22	2018-08-22
PRE0101521 (75141)	EMI Test Receiver 9kHz-7GHz	Rohde & Schwarz	ESCI 7	2017-08-23	2018-08-23
TL001	Transient Limiter, 0.009-30MHz	Com-Power	LIT-930A	2017-06-12	2018-06-12
PS215	AC Power Source	Elgar	CW2501M (s/n 1523A02397)	NA	NA
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
MM0168	Multi-meter	Agilent	U1232A	2017-09-25	2018-09-30
LISN008	LISN, 50-ohm/50-uH, 2-conductor, 25A (For support gear only.)	Solar Electronics	8012-50-R-24-BNC	2017-08-22	2018-08-22

7. OCCUPIED BANDWIDTH


LIMITS

None; for reporting purposes only.

FCC §15.215 (c) and RSS-GEN, ANSI C63.10 Sections 6.9.2 and 6.9.3 were used for the measurement procedure.

RESULTS

Frequency (MHz)	20dB Bandwidth (MHz)	99% Bandwidth (MHz)
13.56	0.2159	0.2811

Test Information

Test Date: 2018-01-24

Tested By: Jeffrey Cabrera

8. RADIATED EMISSION TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMIT

§15.209

§15.225

IC RSS-210, Annex B.6 (Transmitter)

IC RSS-GEN, Section 8.9 (Transmitter)

(a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.

(b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz and shall not exceed the general radiated emission limits in § 15.209 as follows:

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Limits for radiated disturbance of an intentional radiator		
Frequency range (MHz)	Limits (μ V/m)	Measurement Distance (m)
0.009 – 0.490	2400 / F (kHz)	300
0.490 – 1.705	24000 / F (kHz)	30
1.705 – 30.0	30	30
30 – 88	100**	3
88 - 216	150**	3
216 – 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Formula for converting the field strength from uV/m to dBuV/m is:

Limit (dBuV/m) = 20 log limit (uV/m)

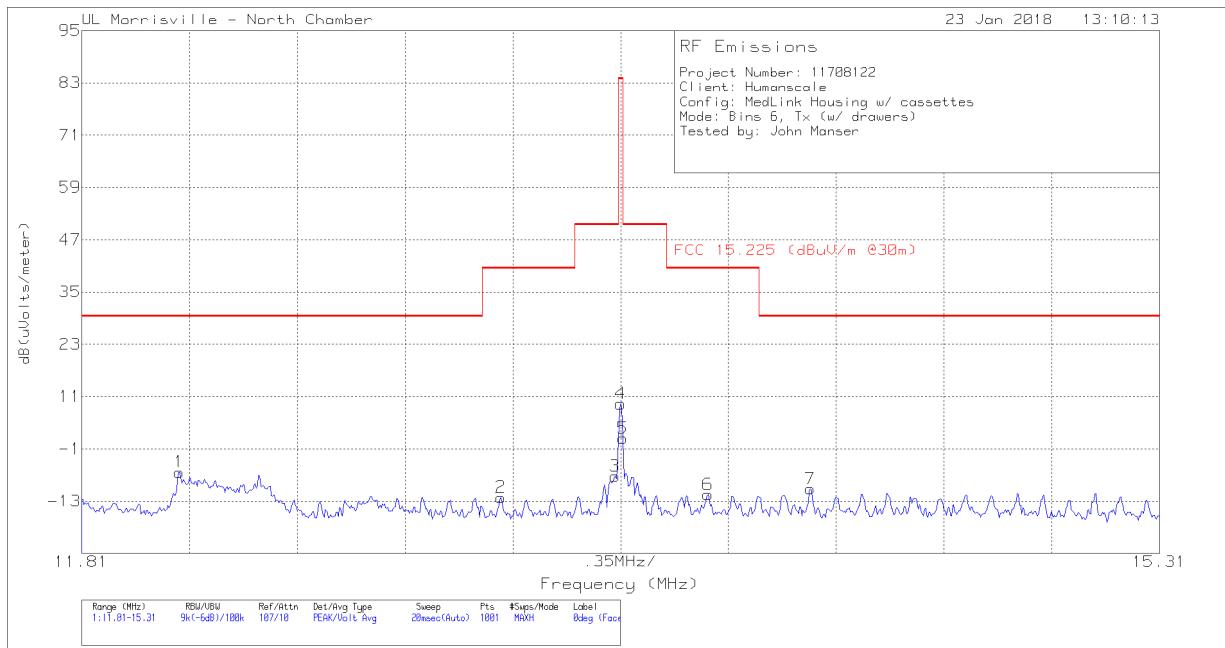
In addition:

§15.209 (d) The emission limits shown the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.

§15.209 (d) The provisions in §§ 15.225, measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

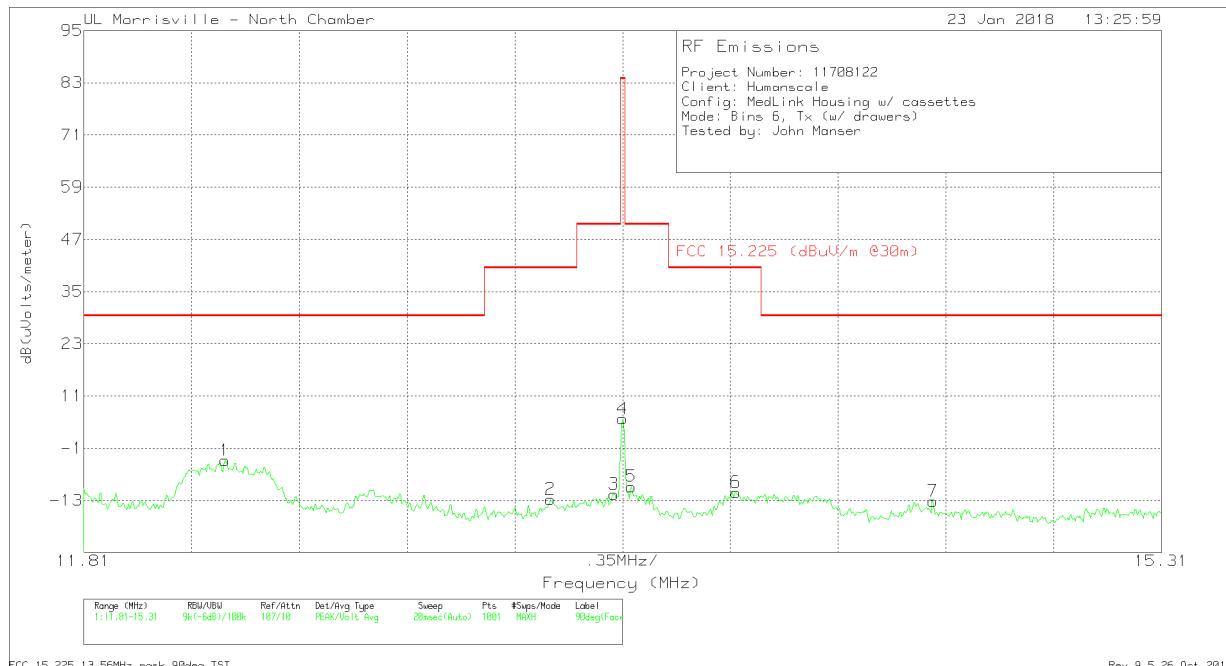
TEST PROCEDURE

ANSI C63.10-2013


The EUT is an intentional radiator that incorporates a digital device. The highest fundamental frequency generated or used in the device is 13.56 MHz. The frequency range was investigated from 0.15 MHz to the 10th harmonic of the highest fundamental frequency, or 1000 MHz, whichever is greater (1000MHz)

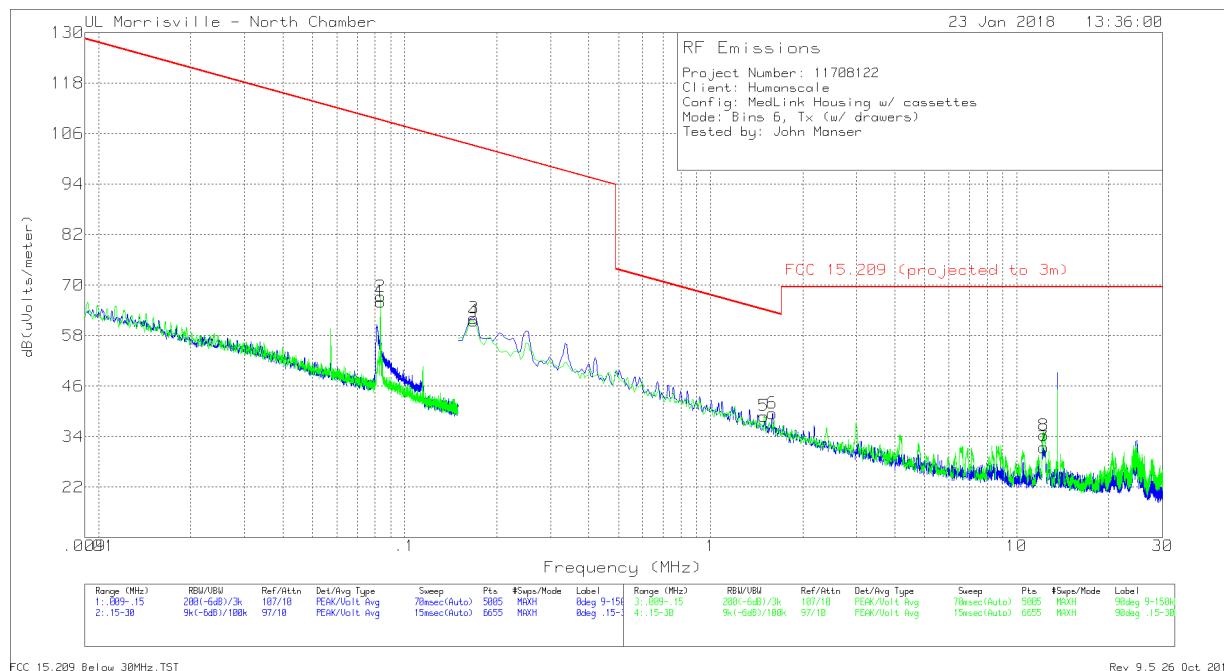
8.2. FUNDAMENTAL AND SPURIOUS EMISSIONS (0.15 – 30 MHz)

Note: All measurements were made at a test distance of 3 m. The limits in the plots and tabular data are the FCC/IC limits extrapolated from the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz – 30 MHz) to the measurement distance to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were $40 \times \log$ (specification distance / test distance).


Although these tests were performed at a test site other than an open area test site, adequate comparison measurements were confirmed against an open area test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

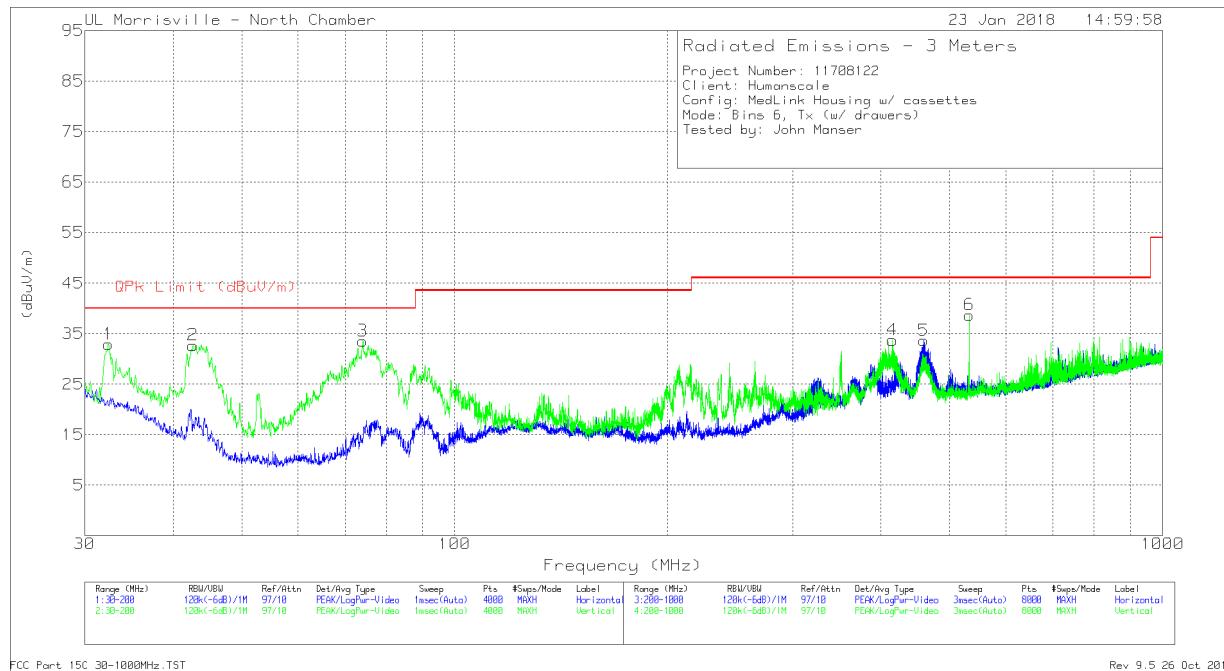
Fundamental

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF (dB/m)	CBI (dB)	Dist. Corr. Factor (dB)	Corrected Reading dB(uVolts/meter)	FCC 15.225 (dBuV/m @30m)	Margin (dB)	Azimuth (Degs)
1	12.12675	22.27	Pk	10.8	.6	-40	-6.33	29.5	-35.83	147
2	13.1715	16.45	Pk	10.8	.6	-40	-12.15	40.5	-52.65	147
3	13.5425	21.34	Pk	10.8	.6	-40	-7.26	50.5	-57.76	147
4	13.56	37.95	Pk	10.8	.6	-40	9.35	84	-74.65	147
5	13.567	30.04	Pk	10.8	.6	-40	1.44	50.5	-49.06	147
6	13.8435	17.13	Pk	10.8	.6	-40	-11.47	40.5	-51.97	147
7	14.176	18.42	Pk	10.8	.6	-40	-10.18	29.5	-39.68	147


Pk - Peak detector

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF (dB/m)	CBI (dB)	Dist. Corr. Factor (dB)	Corrected Reading dB(uVolts/meter)	FCC 15.225 (dBuV/m @30m)	Margin (dB)	Azimuth (Degs)
1	12.2685	24.77	Pk	10.8	.6	-40	-3.83	29.5	-33.33	201
2	13.3255	15.88	Pk	10.8	.6	-40	-12.72	40.5	-53.22	201
3	13.532	17.04	Pk	10.8	.6	-40	-11.56	50.5	-62.06	201
4	13.56	34.34	Pk	10.8	.6	-40	5.74	84	-78.26	201
5	13.588	18.79	Pk	10.8	.6	-40	-9.81	50.5	-60.31	201
6	13.9275	17.47	Pk	10.8	.6	-40	-11.13	40.5	-51.63	201
7	14.568	15.44	Pk	10.8	.6	-40	-13.16	29.5	-42.66	201

Pk - Peak detector


Spurious Emissions

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF (dB/m)	CBI (dB)	Corrected Reading dB(uVolts/meter)	FCC 15.209 (projected to 3m)	Margin (dB)	Azimuth (Degs)
2	.0834	56.29	Pk	10.9	.1	67.29	109.18	-41.89	0-360
1	.08341	55.03	Pk	10.9	.1	66.03	109.18	-43.15	0-360
3	.16794	51.67	Pk	10.4	.1	62.17	103.1	-40.93	0-360
4	.16794	50.99	Pk	10.4	.1	61.49	103.1	-41.61	0-360
5	1.4958	28.11	Pk	10.6	.2	38.91	64.11	-25.2	0-360
6	1.59001	28.72	Pk	10.6	.2	39.52	63.58	-24.06	0-360
7	12.28014	20.04	Pk	10.8	.6	31.44	69.54	-38.1	0-360
8	12.28463	22.91	Pk	10.8	.6	34.31	69.54	-35.23	0-360

Pk - Peak detector

8.3. TX SPURIOUS EMISSION 30 TO 1000 MHz

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AT0073 (dB/m)	Amp/Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	32.4231	39.51	Pk	25.1	-31.7	32.91	40	-7.09	0-360	102	V
2	42.6683	47.1	Pk	17.2	-31.6	32.7	40	-7.3	0-360	102	V
3	74.1689	51.55	Pk	13.2	-31.2	33.55	40	-6.45	0-360	102	V
4	415.428	41.12	Pk	21.5	-28.9	33.72	46.02	-12.3	0-360	102	V
5	460.1338	40.03	Pk	22.2	-28.6	33.63	46.02	-12.39	0-360	102	H
6	532.8433	43.8	Pk	23.3	-28.4	38.7	46.02	-7.32	0-360	102	V

Pk - Peak detector

9. MAINS LINE CONDUCTED EMISSIONS

LIMITS

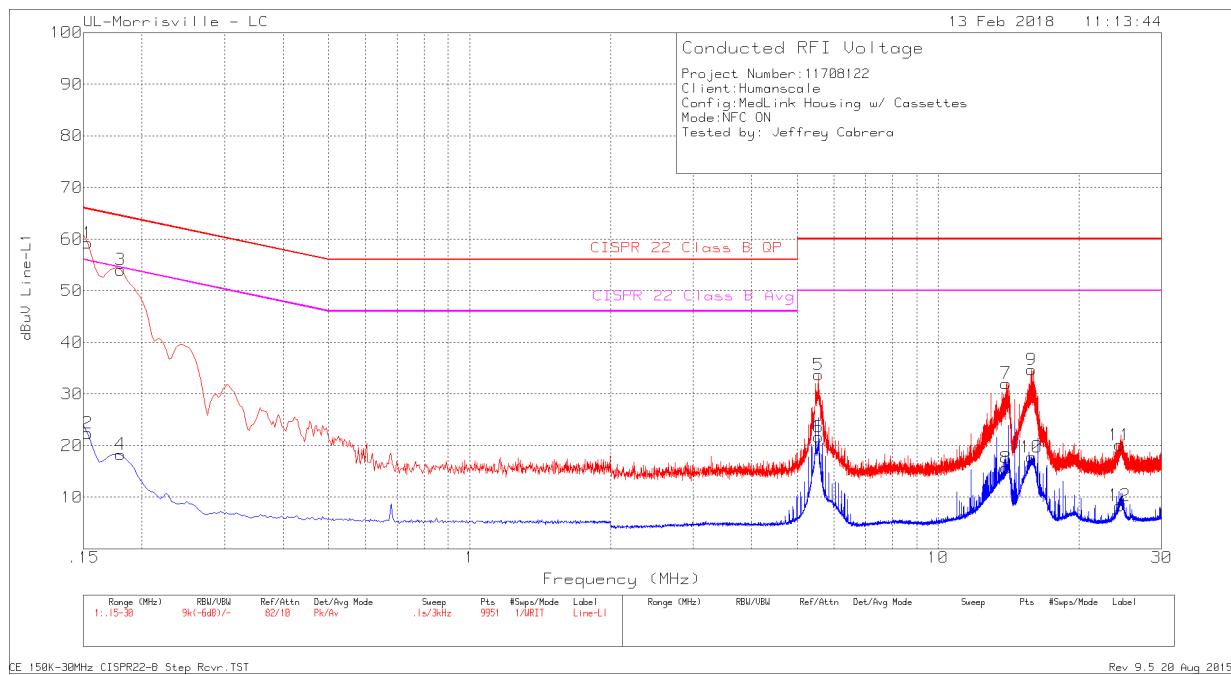
§15.207
IC RSS-GEN, Section 8.8

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Frequency range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

Notes:

1. The lower limit shall apply at the transition frequencies
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

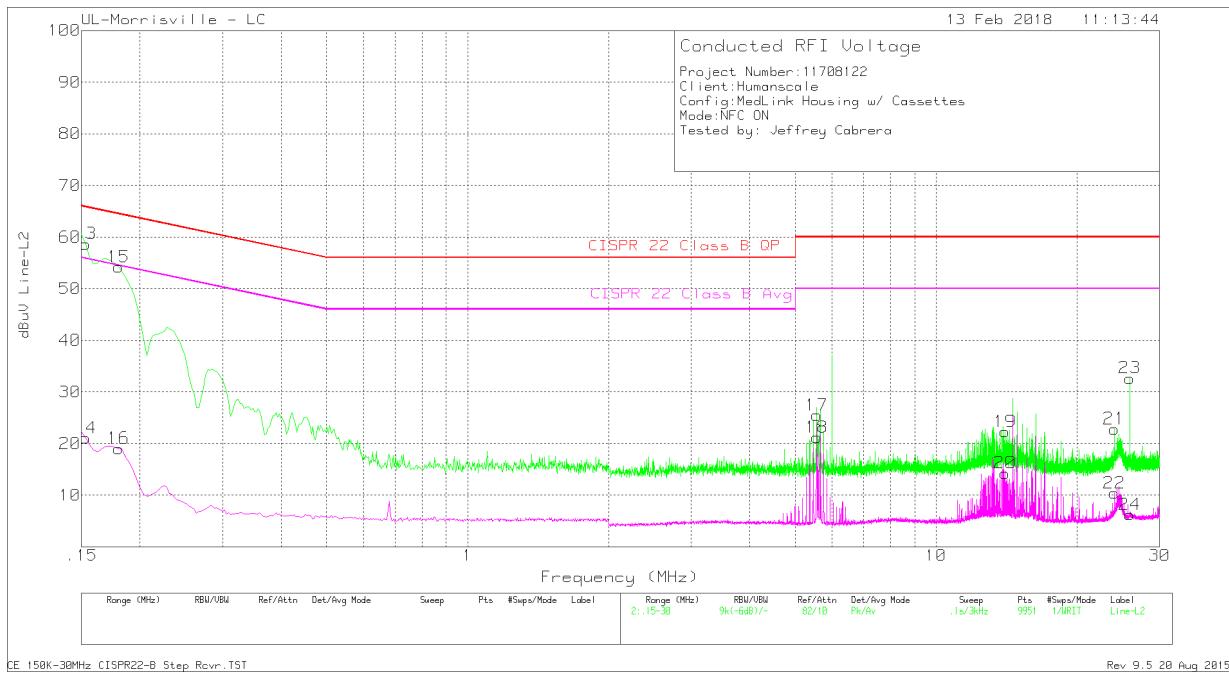

TEST PROCEDURE

ANSI C63.10

RESULTS

No non-compliance noted:

LINE 1 RESULTS



Range 1: Line-L1 .15 - 30MHz										
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN VCF (dB)	Cbl/Limiter (dB)	Corrected Reading dBuV	CISPR 22 Class B QP	Margin (dB)	CISPR 22 Class B Avg	Margin (dB)
1	.153	49.05	Pk	.2	10	59.25	65.84	-6.59	-	-
2	.153	12.18	Av	.2	10	22.38	-	-	55.84	-33.46
3	.18	43.84	Pk	.2	10	54.04	64.49	-10.45	-	-
4	.18	8.09	Av	.2	10	18.29	-	-	54.49	-36.2
5	5.55	23.63	Pk	.1	10	33.73	60	-26.27	-	-
6	5.55	11.59	Av	.1	10	21.69	-	-	50	-28.31
7	13.965	21.84	Pk	.1	10.1	32.04	60	-27.96	-	-
8	13.965	5.45	Av	.1	10.1	15.65	-	-	50	-34.35
9	15.813	24.5	Pk	.1	10.1	34.7	60	-25.3	-	-
10	15.813	7.56	Av	.1	10.1	17.76	-	-	50	-32.24
11	24.402	9.71	Pk	.2	10.2	20.11	60	-39.89	-	-
12	24.402	-2.04	Av	.2	10.2	8.36	-	-	50	-41.64

Pk - Peak detector

Av - Average detection

LINE 2 RESULTS

Range 2: Line-L2 .15 - 30MHz										
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN VCF (dB)	Cbl/Limiter (dB)	Corrected Reading dBuV	CISPR 22 Class B QP	Margin (dB)	CISPR 22 Class B Avg	Margin (dB)
13	.153	48.48	Pk	.2	10	58.68	65.84	-7.16	-	-
14	.153	10.87	Av	.2	10	21.07	-	-	55.84	-34.77
15	.18	43.99	Pk	.2	10	54.19	64.49	-10.3	-	-
16	.18	8.85	Av	.2	10	19.05	-	-	54.49	-35.44
17	5.565	15.37	Pk	.1	10	25.47	60	-34.53	-	-
18	5.565	11.12	Av	.1	10	21.22	-	-	50	-28.78
19	14.049	12.1	Pk	.1	10.1	22.3	60	-37.7	-	-
20	14.049	4.08	Av	.1	10.1	14.28	-	-	50	-35.72
21	24	12.45	Pk	.2	10.2	22.85	60	-37.15	-	-
22	24	.02	Av	.2	10.2	10.42	-	-	50	-39.58
23	25.92	22.18	Pk	.2	10.3	32.68	60	-27.32	-	-
24	25.92	-4.27	Av	.2	10.3	6.23	-	-	50	-43.77

Pk - Peak detector

Av - Average detection

10. FREQUENCY STABILITY

LIMIT

§15.225 (e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency, over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

RSS-210 Annex B.6: Carrier frequency stability shall be maintained to $\pm 0.01\%$ (± 100 ppm).

TEST PROCEDURE

ANSI C63.10:2013

TEST INFORMATION

Test Date: 2018-01-24

Tested By: Jeffrey Cabrera

RESULTS

No non-compliance noted.

Start-Up

Reference Frequency: EUT Channel 13.56 MHz @ 20°C				
		Limit: ± 100 ppm = 1.356 kHz		
Power Supply (Vdc)	Environment Temperature (°C)	Frequency Deviation Measured with Time Elapse		
		(MHz)	Delta (ppm)	Limit (ppm)
12.00	50	13.5601680	0.295	± 100
12.00	40	13.5601670	0.369	± 100
12.00	30	13.5601650	0.516	± 100
12.00	20	13.5601720	0.000	± 100
12.00	10	13.5601660	0.442	± 100
12.00	0	13.5601650	0.516	± 100
12.00	-10	13.5601680	0.295	± 100
12.00	-20	13.5601680	0.295	± 100
10.80	20	13.5601720	0.000	± 100
13.20	20	13.5601720	0.000	± 100

2 Minutes

Reference Frequency: EUT Channel 13.56 MHz @ 20°C				
Limit: ± 100 ppm = 1.356 kHz				
Power Supply (Vdc)	Environment Temperature (°C)	Frequency Deviation Measured with Time Elapse		
		(MHz)	Delta (ppm)	Limit (ppm)
12.00	50	13.5601650	0.516	± 100
12.00	40	13.5601670	0.369	± 100
12.00	30	13.5601680	0.295	± 100
12.00	20	13.5601720	0.000	± 100
12.00	10	13.5601660	0.442	± 100
12.00	0	13.5601680	0.295	± 100
12.00	-10	13.5601680	0.295	± 100
12.00	-20	13.5601710	0.074	± 100
10.80	20	13.5601680	0.295	± 100
13.20	20	13.5601730	-0.074	± 100

5 Minutes

Reference Frequency: EUT Channel 13.56 MHz @ 20°C				
Limit: ± 100 ppm = 1.356 kHz				
Power Supply (Vdc)	Environment Temperature (°C)	Frequency Deviation Measured with Time Elapse		
		(MHz)	Delta (ppm)	Limit (ppm)
12.00	50	13.5601610	0.590	± 100
12.00	40	13.5601660	0.221	± 100
12.00	30	13.5601660	0.221	± 100
12.00	20	13.5601690	0.000	± 100
12.00	10	13.5601670	0.147	± 100
12.00	0	13.5601670	0.147	± 100
12.00	-10	13.5601680	0.074	± 100
12.00	-20	13.5601690	0.000	± 100
10.80	20	13.5601680	0.074	± 100
13.20	20	13.5601720	-0.221	± 100

10 Minutes

Reference Frequency: EUT Channel 13.56 MHz @ 20°C				
		Limit: ± 100 ppm = 1.356 kHz		
Power Supply (Vdc)	Environment Temperature (°C)	Frequency Deviation Measured with Time Elapse		
		(MHz)	Delta (ppm)	Limit (ppm)
12.00	50	13.5601680	0.295	± 100
12.00	40	13.5601670	0.369	± 100
12.00	30	13.5601650	0.516	± 100
12.00	20	13.5601720	0.000	± 100
12.00	10	13.5601660	0.442	± 100
12.00	0	13.5601650	0.516	± 100
12.00	-10	13.5601680	0.295	± 100
12.00	-20	13.5601680	0.295	± 100
10.80	20	13.5601720	0.000	± 100
13.20	20	13.5601720	0.000	± 100