

FCC TEST REPORT

Product Name: Personal Emergency Response System
Trade Mark: Identifind
Model No.: IF-4G
Report Number: 180621015RFM-1
Test Standards: FCC 47 CFR Part 22 Subpart H
FCC 47 CFR Part 2
FCC ID: 2AMCHIF4G
Test Result: PASS
Date of Issue: August 7, 2018

Prepared for:

Identifind LLC
1504 Penny Ln, Keller, Texas, United States

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd.
16/F, Block A, Building 6, Baoneng Science and Technology Park,
Qingxiang Road No.1, Longhua New District, Shenzhen, China
TEL: +86-755-2823 0888
FAX: +86-755-2823 0886

Tested by: Henry Lu
Henry Lu
Project Engineer

Reviewed by: Kevin Liang
Kevin Liang
Assistant Manager

Approved by: Billy Li
Billy Li
Technical Director

Date: August 7, 2018

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com [Http://www.uttlab.com](http://www.uttlab.com)

Version

Version No.	Date	Description
V1.0	August 7, 2018	Original

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888

Fax: +86-755-28230886

E-mail: info@uttlab.com

[Http://www.uttlab.com](http://www.uttlab.com)

CONTENTS

1. GENERAL INFORMATION	4
1.1 CLIENT INFORMATION	4
1.2 EUT INFORMATION	4
1.2.1 GENERAL DESCRIPTION OF EUT	4
1.2.2 DESCRIPTION OF ACCESSORIES.....	4
1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.....	5
1.4 DESCRIPTION OF SUPPORT UNITS	5
1.5 TEST LOCATION.....	5
1.6 TEST FACILITY.....	6
1.7 DEVIATION FROM STANDARDS	6
1.8 ABNORMALITIES FROM STANDARD CONDITIONS.....	6
1.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
1.10 MEASUREMENT UNCERTAINTY	6
2. TEST SUMMARY	7
3. EQUIPMENT LIST	8
4. TEST CONFIGURATION	9
4.1 ENVIRONMENTAL CONDITIONS FOR TESTING	9
4.1.1 NORMAL OR EXTREME TEST CONDITIONS	9
4.2 TEST SETUP	10
4.2.1 FOR RADIATED EMISSIONS TEST SETUP	10
4.2.3 FOR CONDUCTED RF TEST SETUP	12
4.3 TEST CHANNELS	13
4.4 SYSTEM TEST CONFIGURATION	13
4.5 PRE-SCAN.....	13
5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION	14
5.1 REFERENCE DOCUMENTS FOR TESTING	14
5.2 EFFECTIVE RADIATED POWER (ERP)	14
5.3 CONDUCTED OUTPUT POWER	16
5.4 PEAK-TO-AVERAGE RATIO	17
5.5 99%&26dB BANDWIDTH.....	20
5.6 BAND EDGE AT ANTENNA TERMINALS	23
5.7 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	25
5.8 FIELD STRENGTH OF SPURIOUS RADIATION.....	28
5.9 FREQUENCY STABILITY	35
APPENDIX 1 PHOTOS OF TEST SETUP	37
APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	37

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	Identifind LLC
Address of Applicant:	1504 Penny Ln, Keller, Texas, United States
Manufacturer:	Identifind LLC
Address of Manufacturer:	1504 Penny Ln, Keller, Texas, United States

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Personal Emergency Response System	
Model No.:	IF-4G	
Add. Model No.:	N/A	
Trade Mark:	IdentifiFind	
DUT Stage:	Identical Prototype	
EUT Supports Function:	UTRA Bands:	Band II / Band V
	E-UTRA Bands:	FDD Band 2/ Band 4/ Band 12
Sample Received Date:	June 22, 2018	
Sample Tested Date:	June 22, 2018 to July 28, 2018	

1.2.2 Description of Accessories

Adapter	
Model No.:	S005BNU0500100
Input:	100-240 V~50/60 Hz 0.15 A
Output:	5.0 V \pm 1000 mA
AC Cable:	N/A
DC Cable:	N/A

Battery	
Battery Type:	Ni-Mh Battery
Rated Voltage:	3.6 Vdc
Rated Capacity:	2500 mAh

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Support Networks:	WCDMA, HSDPA, HSUPA, LTE	
Type of Modulation:	WCDMA	BPSK
	HSDPA:	QPSK
	HSUPA:	QPSK
Frequency Range:	WCDMA Band V:	826.4-846.6 MHz
Max RF Output Power:	WCDMA Band V:	23.46 dBm
Type of Emission:	WCDMA Band V:	4M14F9W
Antenna Type:	PCB Antenna	
Antenna Gain:	0.86 dBi	
Normal Test Voltage:	3.6 Vdc or/and 120V~60Hz	
Extreme Test Voltage:	3.3 to 4.1Vdc or 102V~60Hz to 138V~60Hz	
Extreme Test Temperature:	-30 °C to +50 °C	

1.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
N/A	N/A	N/A	N/A	N/A

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust

1.5 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109

Telephone: +86 (0) 755 2823 0888

Fax: +86 (0) 755 2823 0886

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888

Fax: +86-755-28230886

E-mail: info@uttlab.com

[Http://www.uttlab.com](http://www.uttlab.com)

1.6 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.7 DEVIATION FROM STANDARDS

None.

1.8 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.10 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 22 Subpart H Test Cases			
Test Item	Test Requirement	Test Method	Result
Effective Radiated Power (ERP)	FCC 47 CFR Part 2.1046(a) & FCC 47 CFR Part 22.913(a)	ANSI/TIA-603-E-2016 & KDB 971168 D01v03	PASS
Conducted Output Power	FCC 47 CFR Part 2.1046(a) & FCC 47 CFR Part 22.913(a)	ANSI/TIA-603-E-2016 & KDB 971168 D01v03	PASS
Peak-to-average ratio	FCC 47 CFR Part 22.913(a)	ANSI/TIA-603-E-2016 & KDB 971168 D01v03	PASS
99%&26dB Bandwidth	FCC 47 CFR Part 2.1049(h)	ANSI/TIA-603-E-2016 & KDB 971168 D01v03	PASS
Band Edge at antenna terminals	FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 22.917(a)	ANSI/TIA-603-E-2016 & KDB 971168 D01v03	PASS
Spurious emissions at antenna terminals	FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 22.917(a)(b)	ANSI/TIA-603-E-2016 & KDB 971168 D01v03	PASS
Field strength of spurious radiation	FCC 47 CFR Part 2.1053 & FCC 47 CFR Part 22.917(a)(b)	ANSI/TIA-603-E-2016 & KDB 971168 D01v03	PASS
Frequency stability	FCC 47 CFR Part 2.1055 & FCC 47 CFR Part 22.355	ANSI/TIA-603-E-2016 & KDB 971168 D01v03	PASS

3. EQUIPMENT LIST

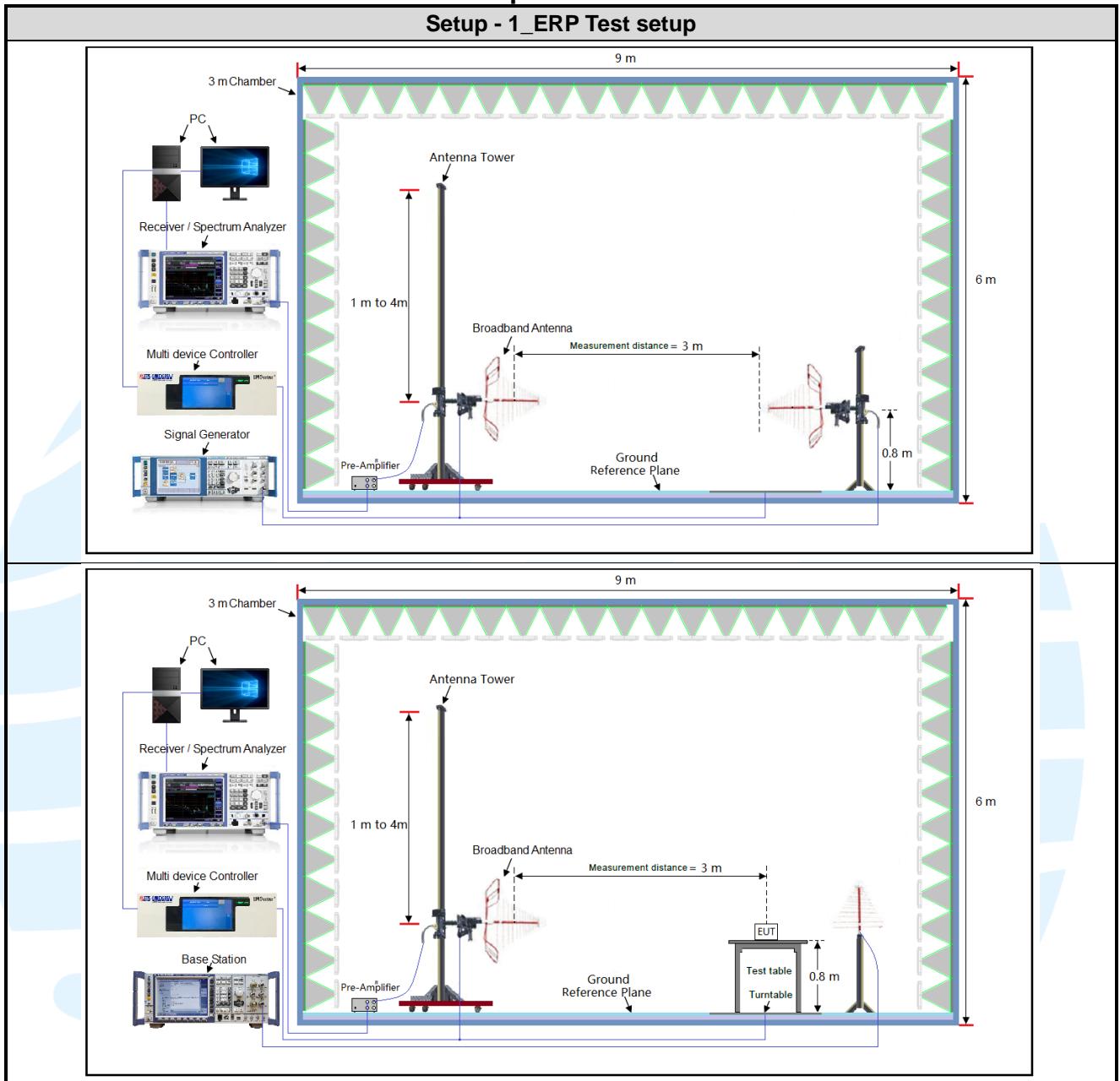
Radiated Emission Test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
<input checked="" type="checkbox"/>	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 20, 2015	Dec. 19, 2018
<input checked="" type="checkbox"/>	Receiver	R&S	ESIB26	100114	Dec. 10, 2017	Dec. 10, 2018
<input checked="" type="checkbox"/>	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Dec. 17, 2017	Dec. 17, 2018
<input checked="" type="checkbox"/>	Preamplifier	HP	8447F	2805A02960	Dec. 10, 2017	Dec. 10, 2018
<input checked="" type="checkbox"/>	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	May 19, 2018	May 19, 2019
<input checked="" type="checkbox"/>	Horn Antenna	ETS-LINDGREN	3117	00164202	Dec. 17, 2017	Dec. 17, 2018
<input checked="" type="checkbox"/>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 22, 2018	May 22, 2019
<input checked="" type="checkbox"/>	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
<input checked="" type="checkbox"/>	Wideband Radio Communication Tester	R&S	CMW500	116254	June 07, 2018	June 07, 2019
<input checked="" type="checkbox"/>	Analog Signal Generator	R&S	SMF 100A	100725	June 06, 2018	June 06, 2019
<input checked="" type="checkbox"/>	Test Software	Audix	e3	Software Version: 9.160323		

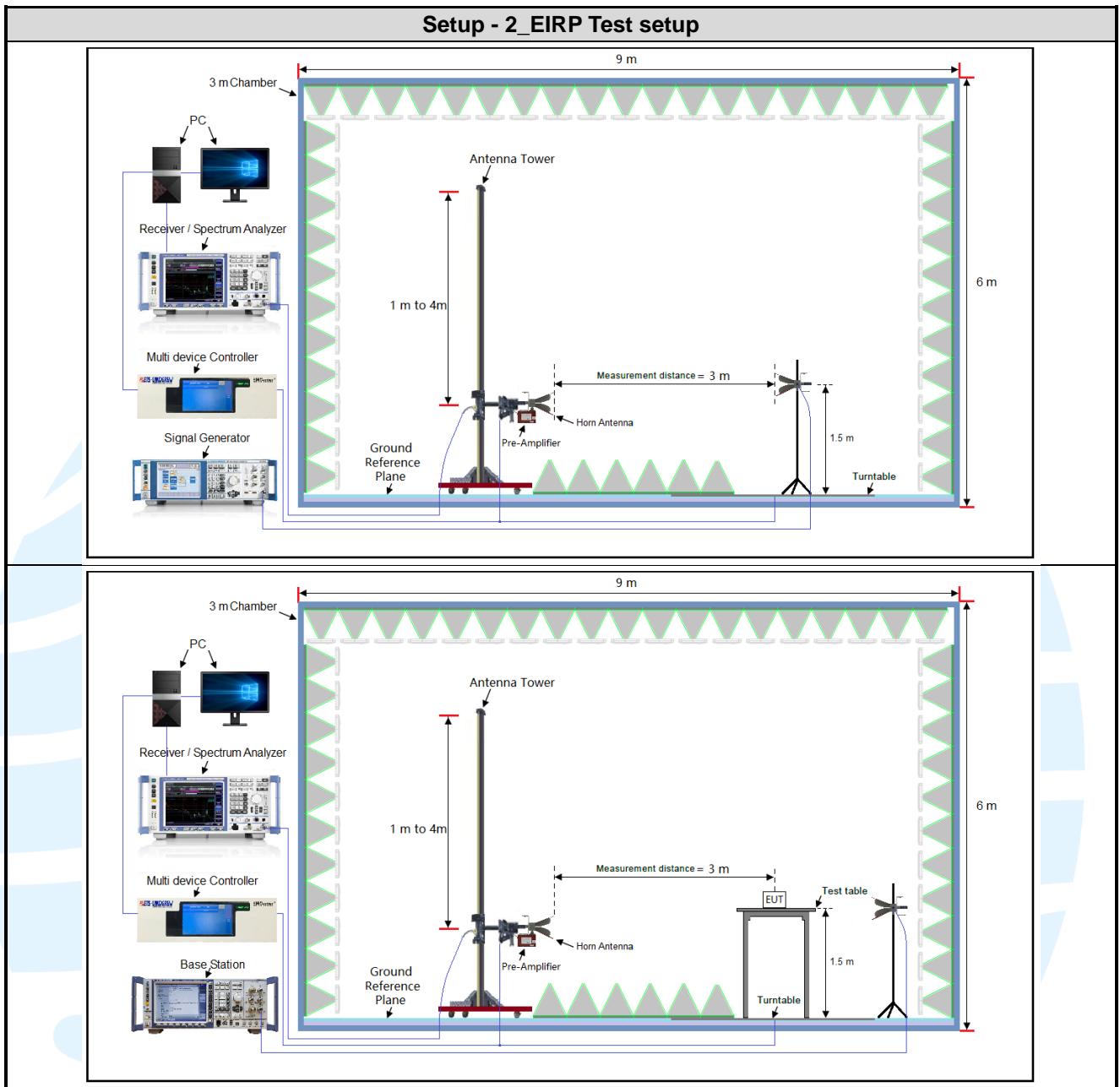
2/3/4G RF Test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
<input checked="" type="checkbox"/>	Receiver	R&S	ESR7	1316.3003K07-101181-K3	Dec. 10, 2017	Dec. 10, 2018
<input checked="" type="checkbox"/>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec.10, 2017	Dec. 10, 2018
<input checked="" type="checkbox"/>	Wideband Radio Communication Tester	R&S	CMW500	116254	June 07, 2018	June 07, 2019
<input checked="" type="checkbox"/>	Universal Radio Communication Tester	R&S	CMU200	114713	Dec. 10, 2017	Dec. 10, 2018
<input checked="" type="checkbox"/>	DC Source	KIKUSUI	PWR400L	LK003024	Sep. 14, 2017	Sep. 13, 2018
<input checked="" type="checkbox"/>	Temp & Humidity chamber	Votisch	VT4002	58566133290020	June 05, 2018	June 05, 2019

4. TEST CONFIGURATION

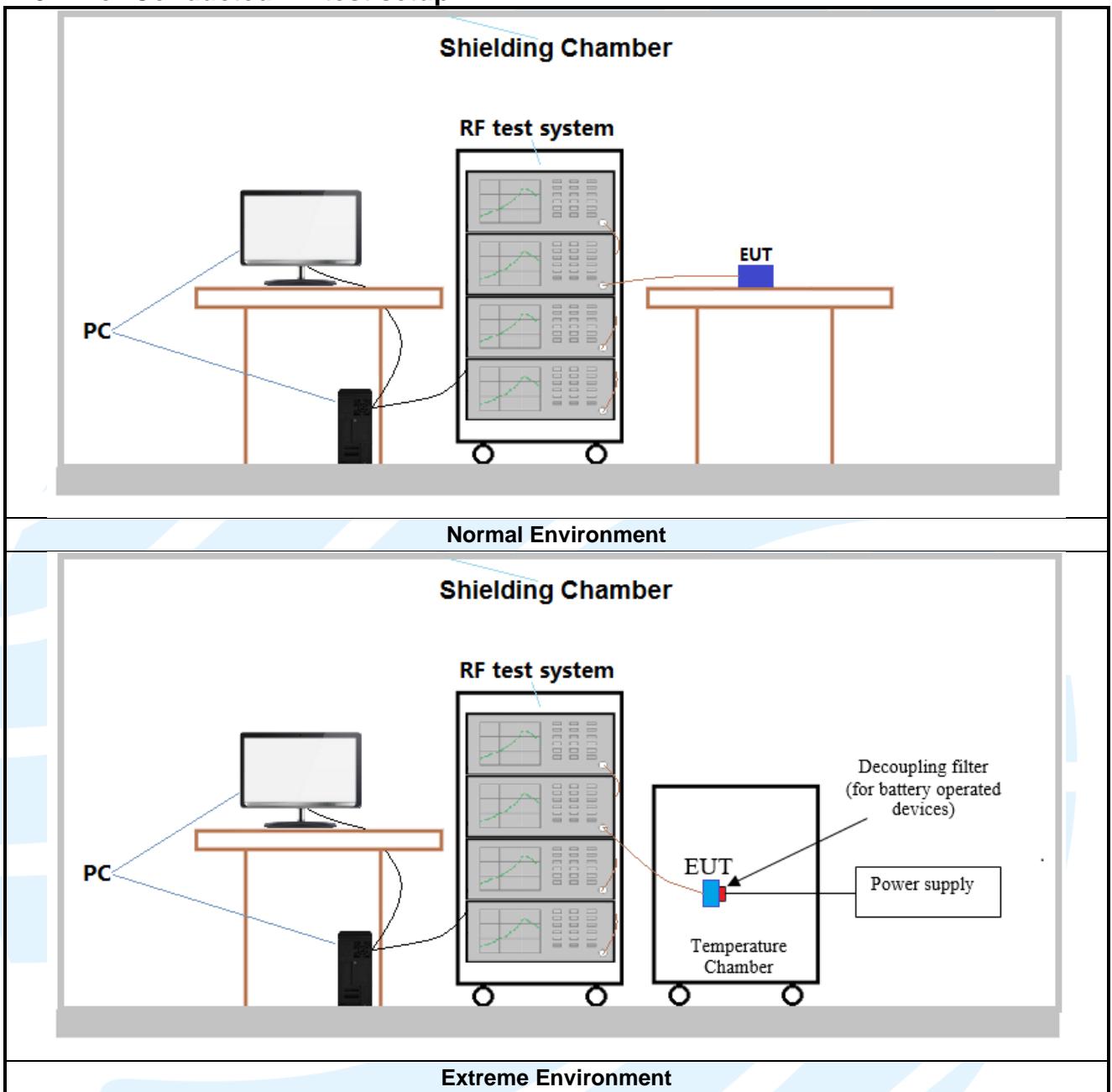
4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions


Test Environment	Selected Values During Tests		
Test Condition	Ambient		
	Temperature (°C)	Voltage (V)	Relative Humidity (%)
TN/VN	+15 to +35	3.6 V or 120V~60Hz	20 to 75
TL/VL	-30	3.3 V or 102V~60Hz	20 to 75
TH/VL	+50	3.3 V or 102V~60Hz	20 to 75
TL/VH	-30	4.1 V or 138V~60Hz	20 to 75
TH/VH	+50	4.1 V or 138V~60Hz	20 to 75


Remark:

- 1) The EUT just work in such extreme temperature of -30 °C to +50 °C and the extreme voltage of 3.3 V to 4.1 V or 102-138~60Hz, so here the EUT is tested in the temperature of -30 °C to +50 °C and the voltage of 3.3 V to 4.1 V or 102-138~60Hz.
- 2) VN: Normal Voltage; TN: Normal Temperature;
TL: Low Extreme Test Temperature; TH: High Extreme Test Temperature;
VL: Low Extreme Test Voltage; VH: High Extreme Test Voltage.


4.2 TEST SETUP

4.2.1 For Radiated Emissions test setup

4.2.3 For Conducted RF test setup

4.3 TEST CHANNELS

Band	Tx/Rx Frequency	RF Channel		
		Low(L)	Middle(M)	High(H)
WCDMA band V	Tx (824 MHz ~ 849 MHz)	Channel 4132	Channel 4182	Channel 4233
		826.4 MHz	836.4 MHz	846.6 MHz

4.4 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 120V~60Hz and/or 3.6V battery. Only the worst case data were recorded in this test report.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, X/Y/Z axis, and antenna ports.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

The worst case was found when positioned as the table below.

Band	Mode	Antenna Port	Worst-case axis positioning
WCDMA Band V	1TX	Chain 0	Y axis

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.5 PRE-SCAN

Pre-scan under all rate at lowest middle and highest channel, find the transmitter power as below:
SIM 1 Card Conducted transmitter power measurement result.

WCDMA Band V Maximum Average Power (dBm)			
Channel	4132	4182	4233
Frequency(MHz)	826.4 MHz	836.4 MHz	846.6 MHz
RMC 12.2K	23.46	23.41	23.40
HSDPA Subtest-1	22.38	22.33	22.42
HSDPA Subtest-2	22.39	22.30	22.41
HSDPA Subtest-3	21.86	21.83	21.90
HSDPA Subtest-4	21.88	21.80	21.85
HSUPA Subtest-1	21.52	21.56	21.52
HSUPA Subtest-2	19.69	19.83	19.80
HSUPA Subtest-3	20.68	20.79	20.84
HSUPA Subtest-4	19.66	19.82	19.83
HSUPA Subtest-5	21.72	21.84	21.86

Pre-scan all bandwidth and RB, find worse case mode are chosen to the report, the worse mode applicability and tested channel detail as below:

Band	Radiated	Conducted
WCDMA Band V	RMC 12.2Kbps Link	RMC 12.2Kbps Link

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION

5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 2 Subpart J	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 22 Subpart H	Cellular Radiotelephone Service
3	ANSI/TIA-603-E-2016	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
4	KDB 971168 D01	KDB 971168 D01 Power Meas License Digital Systems v03

5.2 EFFECTIVE RADIATED POWER (ERP)

Test Requirement: FCC 47 CFR Part 2.1046(a) & FCC 47 CFR Part 22.913(a)

Test Method: KDB 971168 D01v03& ANSI/TIA-603-E-2016

Limit:

The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

Test Procedure:

Test procedure as below:

- 1) The EUT was powered ON and placed on a 0.8/1.5m high table at a 3 meter semi/fully Anechoic Chamber. The antenna of the transmitter was extended to its maximum length. Modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 4) Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 5) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 6) A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions.
- 7) The output power into the substitution antenna was then measured.
- 8) Steps 6) and 7) were repeated with both antennas polarized.
- 9) Calculate power in dBm by the following formula:

$$\text{ERP(dBm)} = \text{Pg(dBm)} - \text{cable loss (dB)} + \text{antenna gain (dBd)}$$

$$\text{EIRP(dBm)} = \text{Pg(dBm)} - \text{cable loss (dB)} + \text{antenna gain (dBi)}$$

$$\text{EIRP} = \text{ERP} + 2.15\text{dB}$$

where:

Pg is the generator output power into the substitution antenna.

- 10) Test the EUT in the lowest channel, the middle channel the Highest channel
- 11) The radiation measurements are performed in X, Y, Z axis positioning for EUT operation mode, and found the Y axis positioning which it is worse case.
- 12) Repeat above procedures until all frequencies measured was complete.

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Peak	100kHz	300kHz	Peak
	Above 1GHz	Peak	1MHz	3MHz	Peak

Test Setup: Refer to section 4.2.1 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Link mode

Test Results: Pass

Test Data: See table below

Maximum ERP (dBm)			
Channel	WCDMA RMC 12.2Kbps	Limit (dBm)	Result
Lowest	18.58	38.45	Pass
Middle	18.50	38.45	Pass
Highest	19.54	38.45	Pass

5.3 CONDUCTED OUTPUT POWER

Test Requirement: FCC 47 CFR Part 2.1046(a) & FCC 47 CFR Part 22.913(a)

Test Method: ANSI/TIA-603-E-2016 & KDB 971168 D01v03

Limit:

The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

Test Procedure:

The EUT was set up for the maximum power with GSM, GPRS, EDGE, WCDMA, CDMA2000, and LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.2.2 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Link mode

Test Results: Pass

Test Data: The full result refer to section 4.5 for details.

5.4 PEAK-TO-AVERAGE RATIO

Test Requirement: FCC 47 CFR Part 22.913(a)

Test Method: KDB 971168 D01v03

Limit: In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB

Test Procedure:

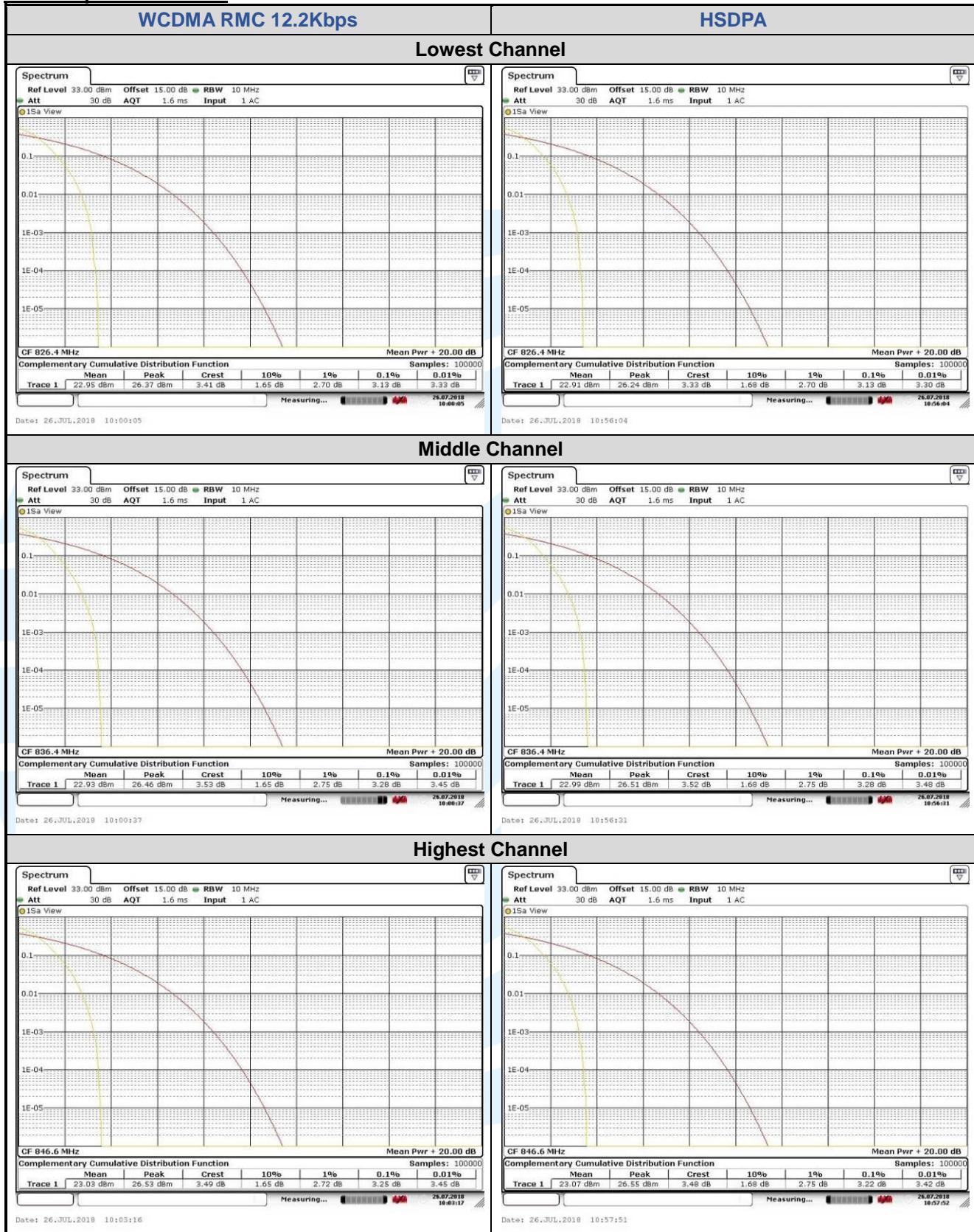
The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer.

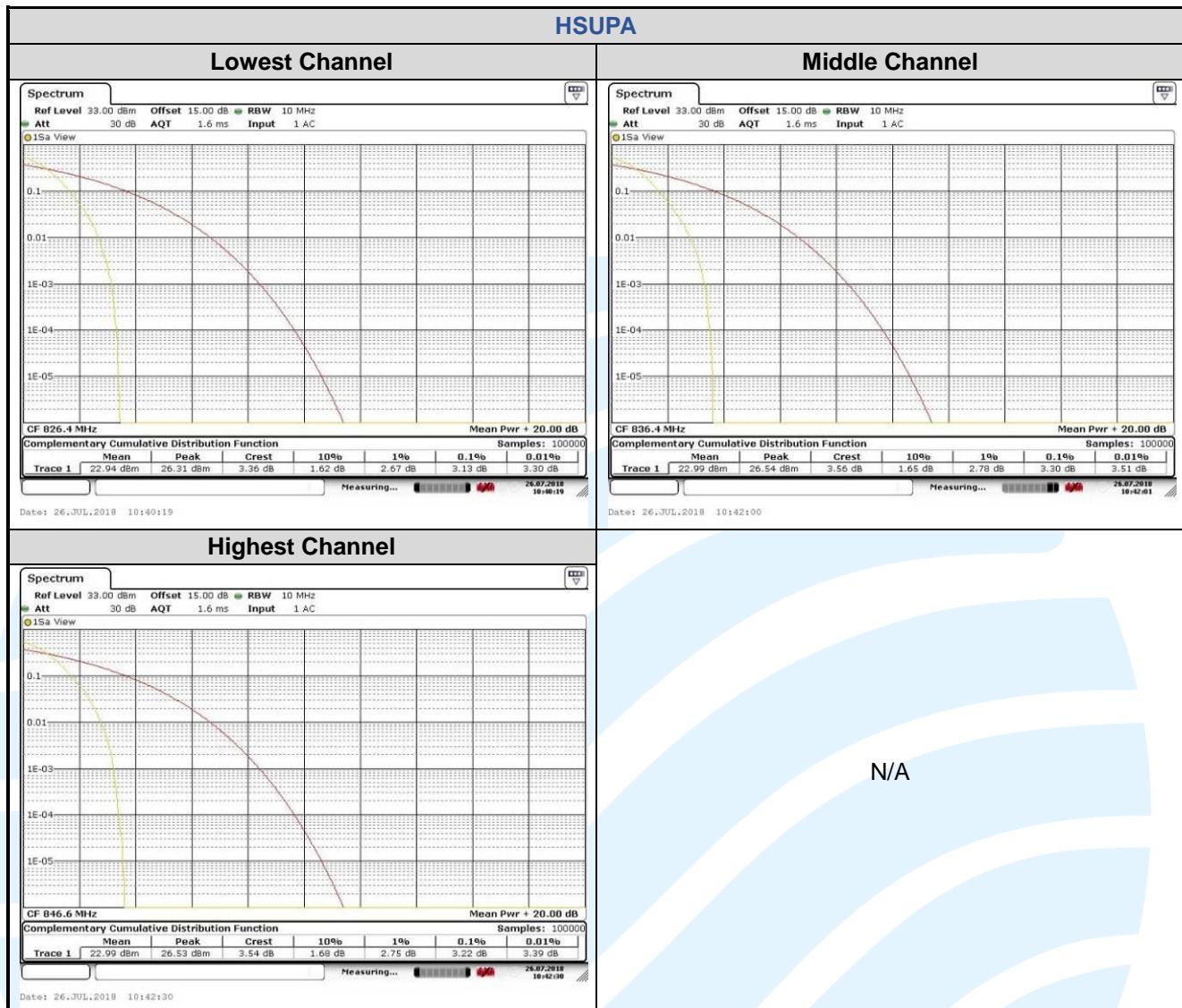
- a) Set resolution/measurement bandwidth \geq signal's occupied bandwidth
- b) Set the number of counts to a value that stabilizes the measured CCDF curve
- c) Record the maximum PAPR level associated with a probability of 0.1 %

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.2.2 for details.

Instruments Used: Refer to section 3 for details


Test Mode: Link mode


Test Results: Pass

Test Data: See table below

Channel	WCDMA RMC 12.2Kbps	HSDPA	HSUPA	Limit (dBm)	Result
Lowest	3.13	3.13	3.13	13	Pass
Middle	3.28	3.28	3.30	13	Pass
Highest	3.25	3.22	3.22	13	Pass

The test plot as follows:

5.5 99%&26DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 2.1049(h) & FCC 47 CFR Part 22.917(b)

Test Method: ANSI/TIA-603-E-2016 & KDB 971168 D01v03

Limit: No Limit

Test Procedure:

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The 99% and -26dB bandwidths was also measured and recorded.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.2.2 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Link mode


Test Results: Pass

Test Data: See table below

99% & 26 dB Bandwidth				
Test Mode	Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
WCDMA RMC 12.2Kbps	4132	826.4	4.715	4.1199
	4182	836.4	4.719	4.1298
	4233	846.6	4.712	4.1322
HSDPA	4132	826.4	4.713	4.1208
	4182	836.4	4.706	4.1348
	4233	846.6	4.704	4.1425
HSUPA	4132	826.4	4.717	4.1174
	4182	836.4	4.709	4.1368
	4233	846.6	4.722	4.1342

The test plot as follows:

5.6 BAND EDGE AT ANTENNA TERMINALS

Test Requirement: FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 22.917(a)

Test Method: ANSI/TIA-603-E-2016 & KDB 971168 D01v03

Limit:

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13 dBm.

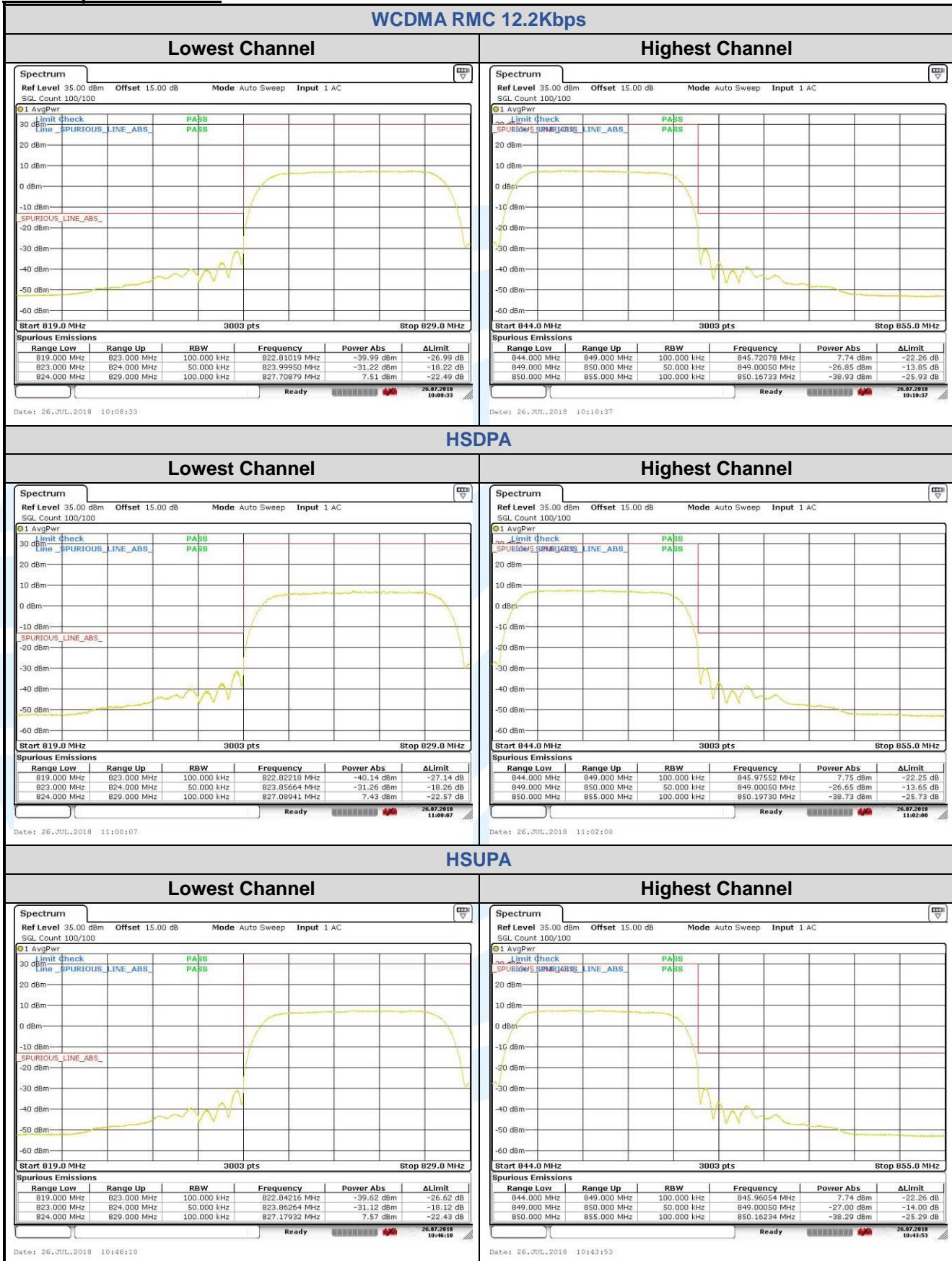
Test Procedure:

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer.

For each band edge measurement:

- 1) Set the spectrum analyzer span to include the block edge frequency.
- 2) Set a marker to point the corresponding band edge frequency in each test case.
- 3) Set display line at -13 dBm
- 4) Set resolution bandwidth to at least 1% of emission bandwidth.
- 5) Set spectrum analyzer with RMS detector.
- 6) Record the max trace plot into the test report

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.


Test Setup: Refer to section 4.2.2 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Link mode

Test Results: Pass

The test plot as follows:

5.7 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Test Requirement: FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 22.917(a)(b)

Test Method: ANSI/TIA-603-E-2016 & KDB 971168 D01v03

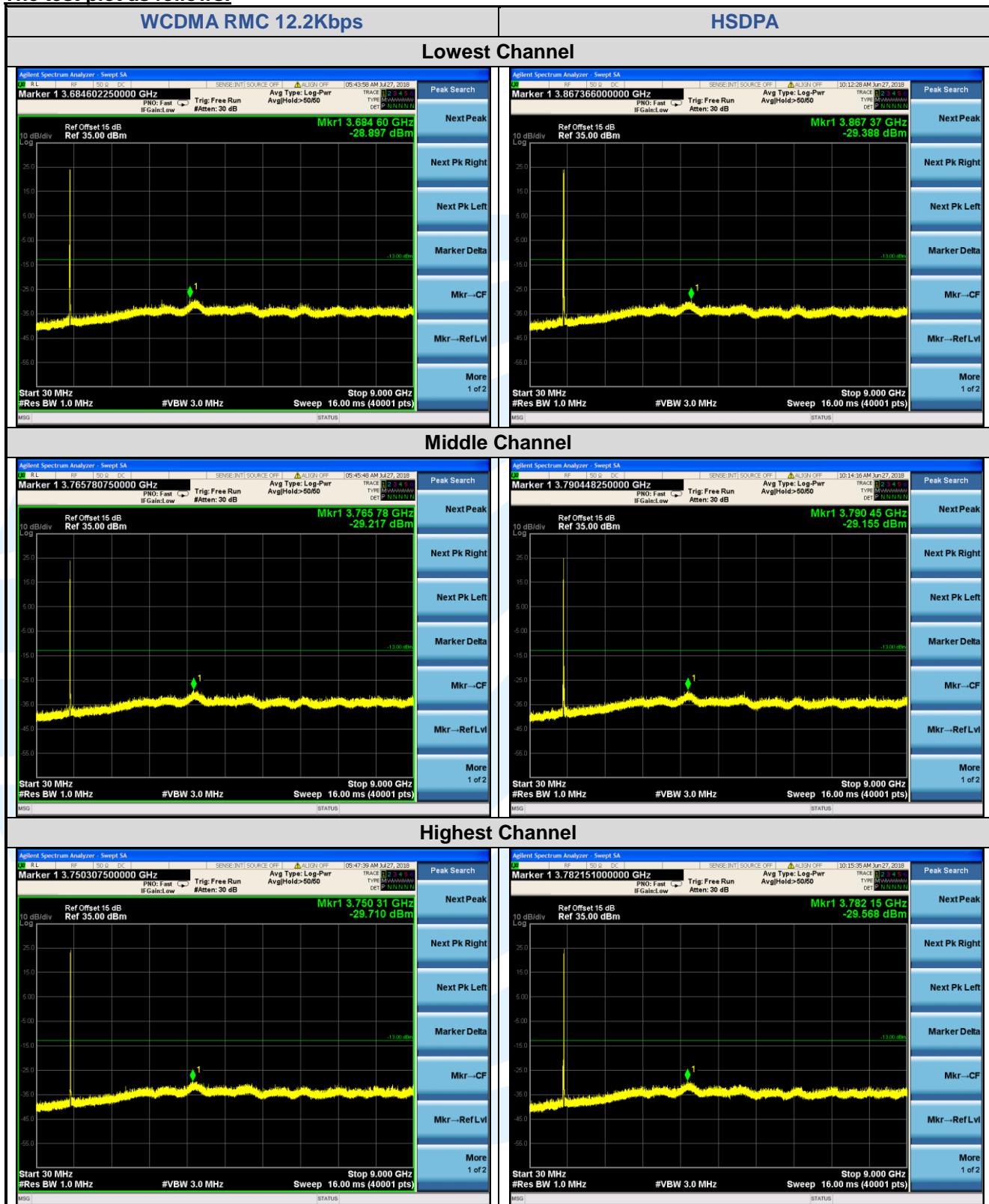
Limit:

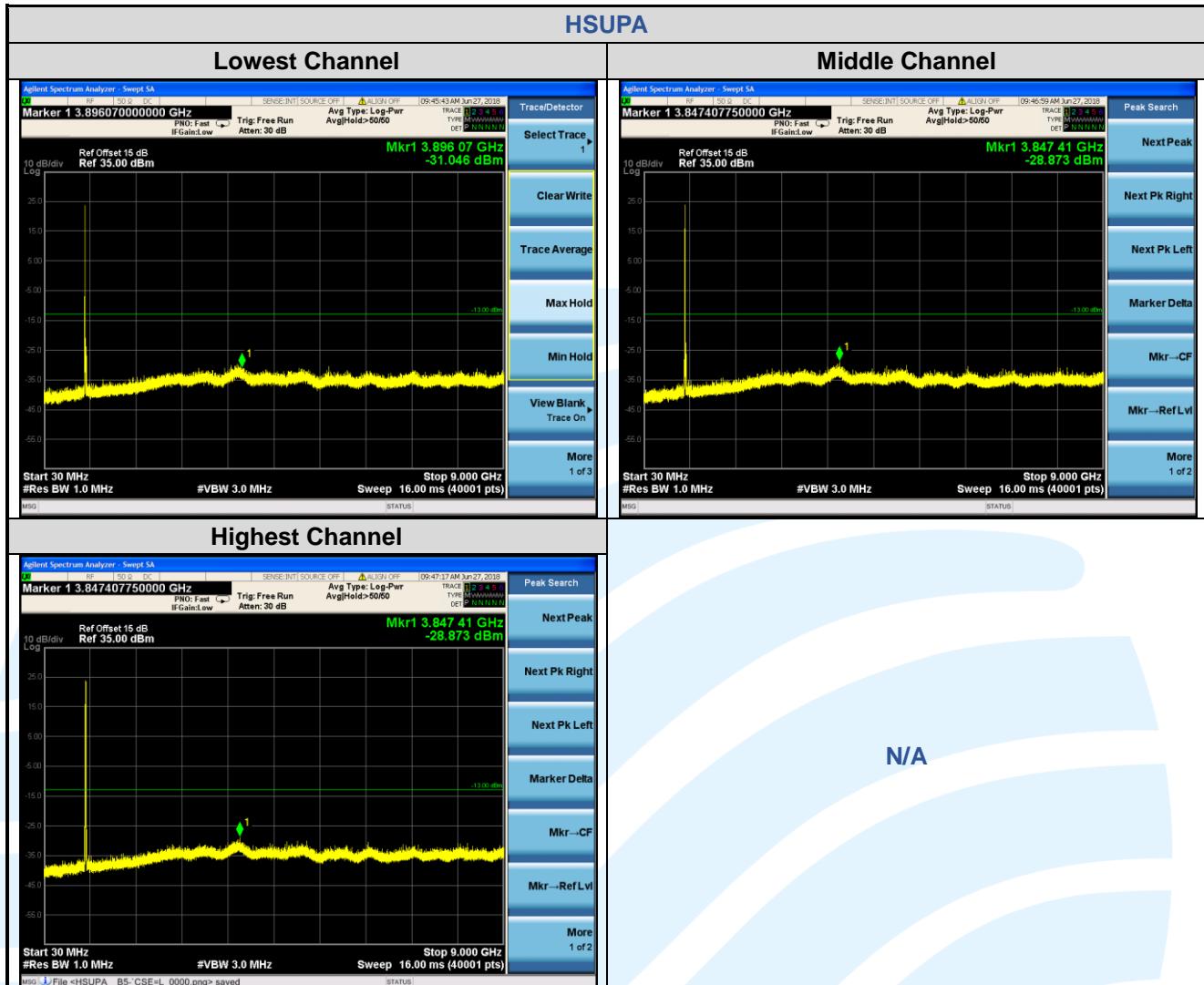
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13 dBm.

Test Procedure:

The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range. b. Measuring frequency range is from 30 MHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. Set RBW & VBW to 100 kHz for the measurement below 1 GHz, and 1 MHz for the measurement above 1 GHz.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.


Test Setup: Refer to section 4.2.2 for details.


Instruments Used: Refer to section 3 for details

Test Mode: Link mode

Test Results: Pass

The test plot as follows:

5.8 FIELD STRENGTH OF SPURIOUS RADIATION

Test Requirement: FCC 47 CFR Part 2.1053 & FCC 47 CFR Part 22.917(a)(b)

Test Method: ANSI/TIA-603-E-2016 & KDB 971168 D01v03

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009 MHz-30 MHz	Peak	10 kHz	30 KHz	Peak
30 MHz-1 GHz	Quasi-peak	100 kHz	300 KHz	Peak
Above 1 GHz	Peak	1 MHz	3 MHz	Peak

Limits:

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13 dBm.

Test Setup: Refer to section 4.2.1 for details.

Test Procedures:

1. Scan up to 10th harmonic, find the maximum radiation frequency to measure.
2. The technique used to find the Spurious Emissions of the transmitter was the antenna substitution method. Substitution method was performed to determine the actual ERP/EIRP emission levels of the EUT.

Test procedure as below:

- 1) The EUT was powered ON and placed on a 0.8/1.5m high table at a 3 meter semi/fully Anechoic Chamber. The antenna of the transmitter was extended to its maximum length. Modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 4) Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 5) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 6) A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions.
- 7) The output power into the substitution antenna was then measured.
- 8) Steps 6) and 7) were repeated with both antennas polarized.
- 9) Calculate power in dBm by the following formula:

$$\text{ERP(dBm)} = \text{Pg(dBm)} - \text{cable loss (dB)} + \text{antenna gain (dBd)}$$

$$\text{EIRP(dBm)} = \text{Pg(dBm)} - \text{cable loss (dB)} + \text{antenna gain (dBi)}$$

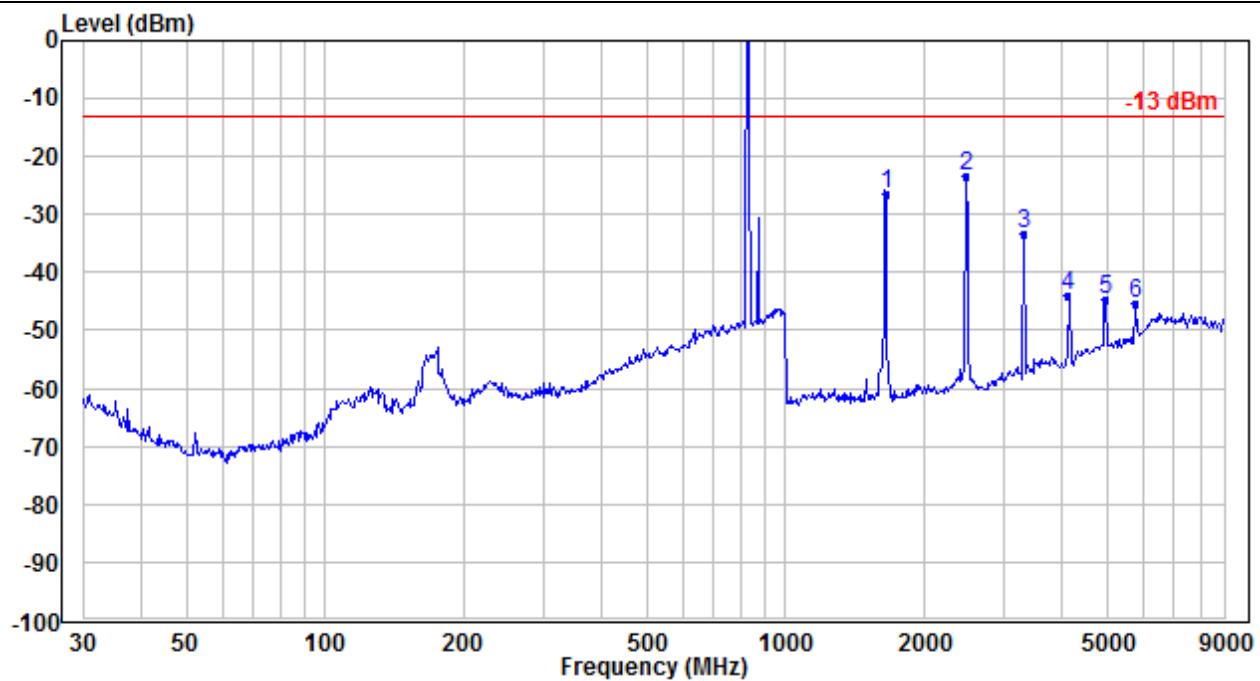
$$\text{EIRP} = \text{ERP} + 2.15 \text{dB}$$

where:

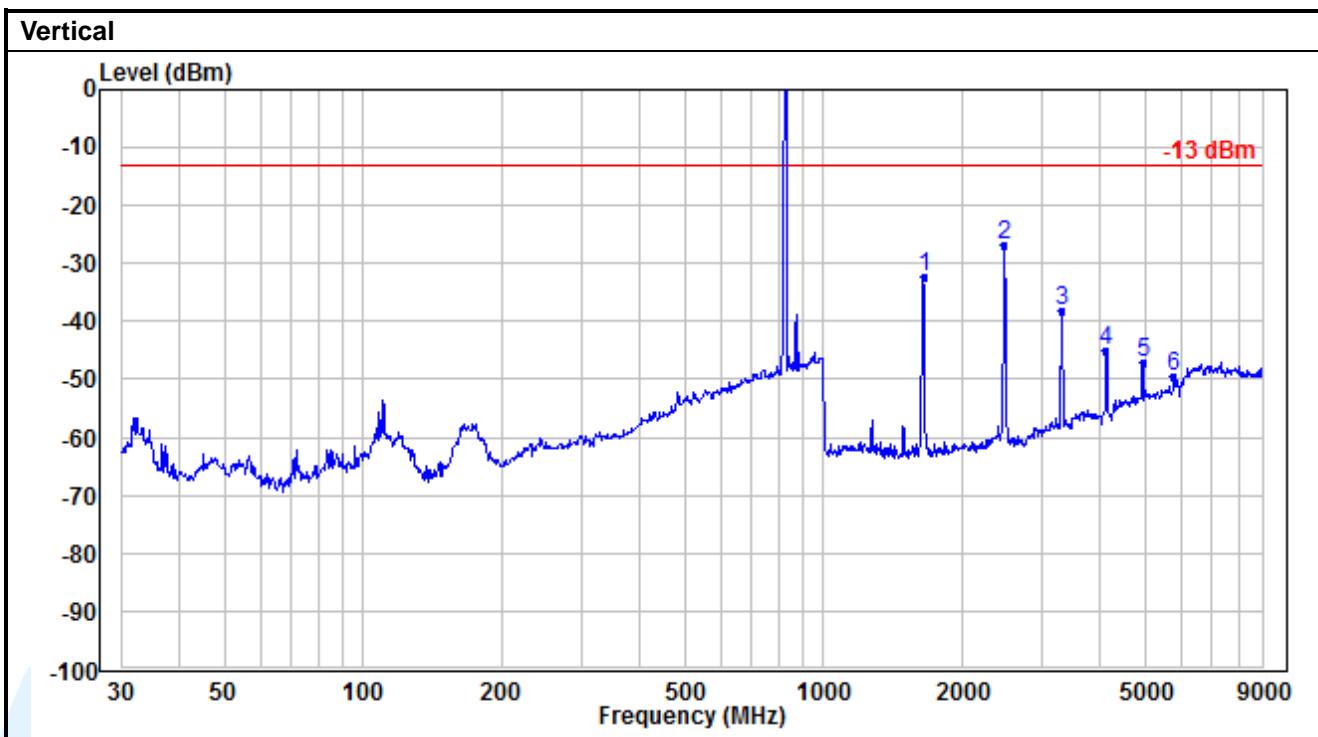
Pg is the generator output power into the substitution antenna.

- 10) Test the EUT in the lowest channel, the middle channel the Highest channel
- 11) The radiation measurements are performed in X, Y, Z axis positioning for EUT operation mode, and found the Y axis positioning which it is worse case.
- 12) Repeat above procedures until all frequencies measured was complete.

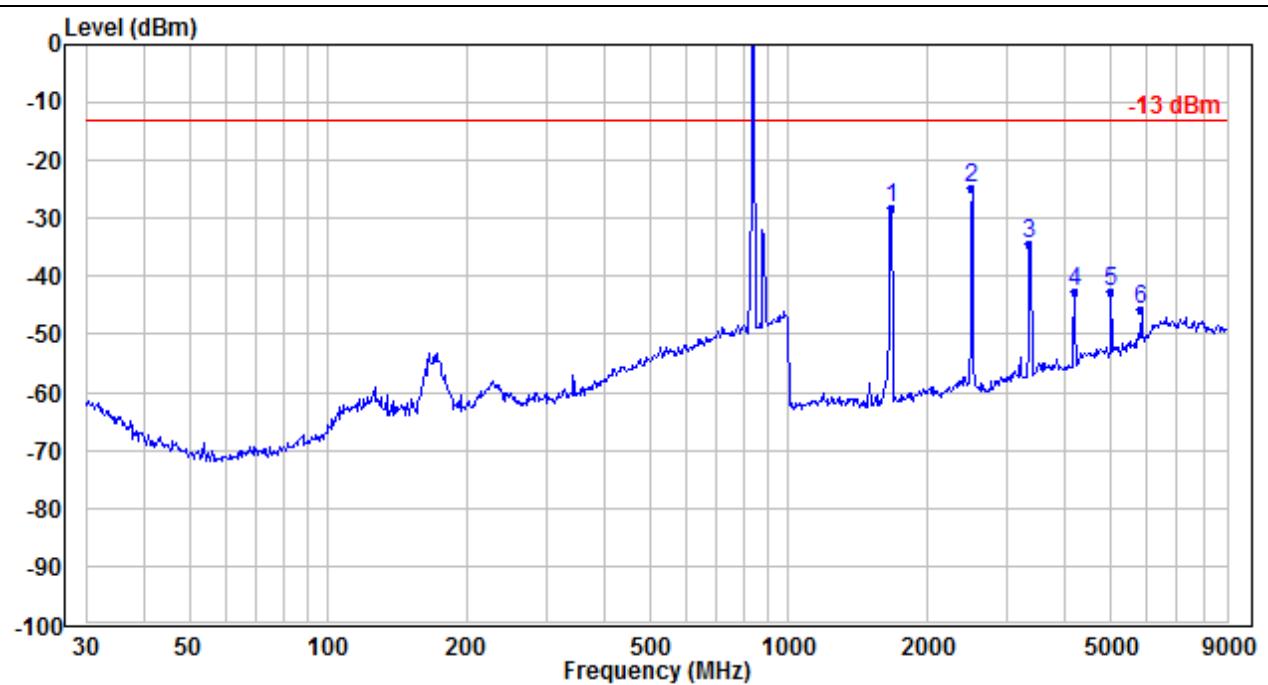
Equipment Used: Refer to section 3 for details.

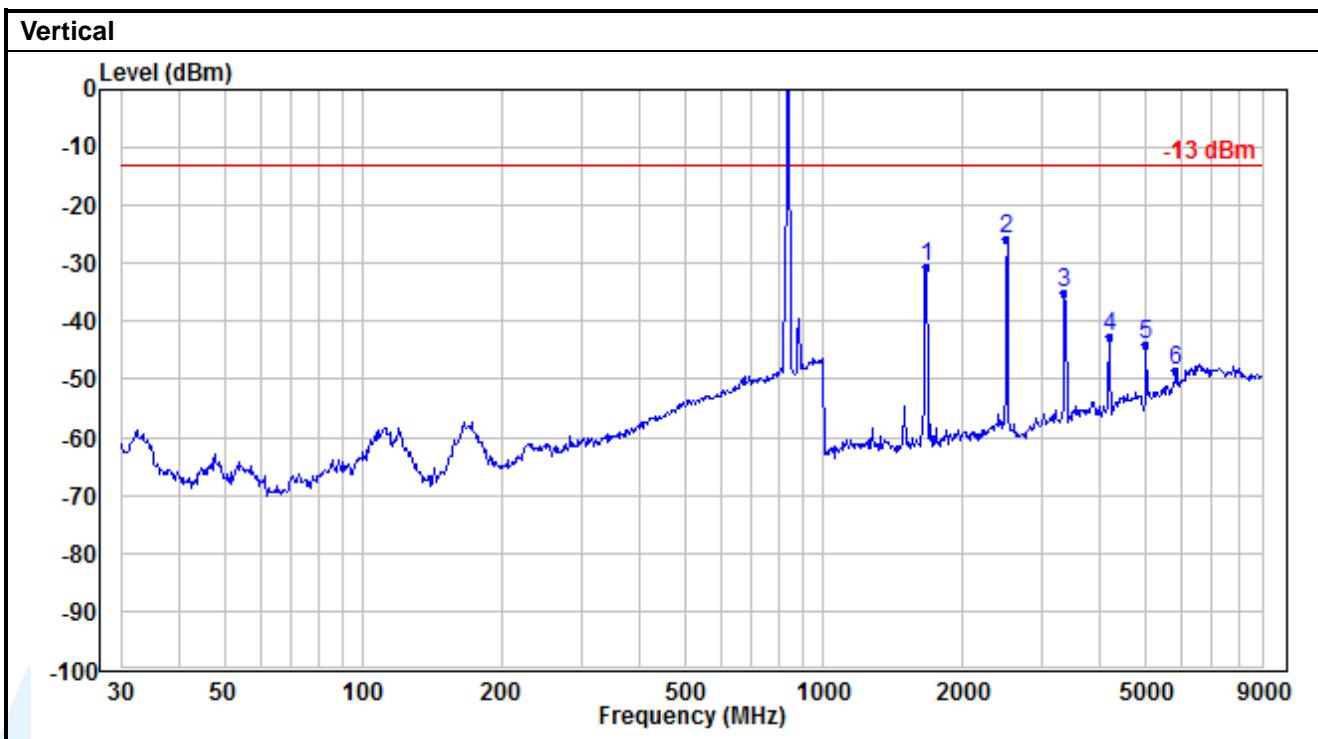

Test Result: Pass

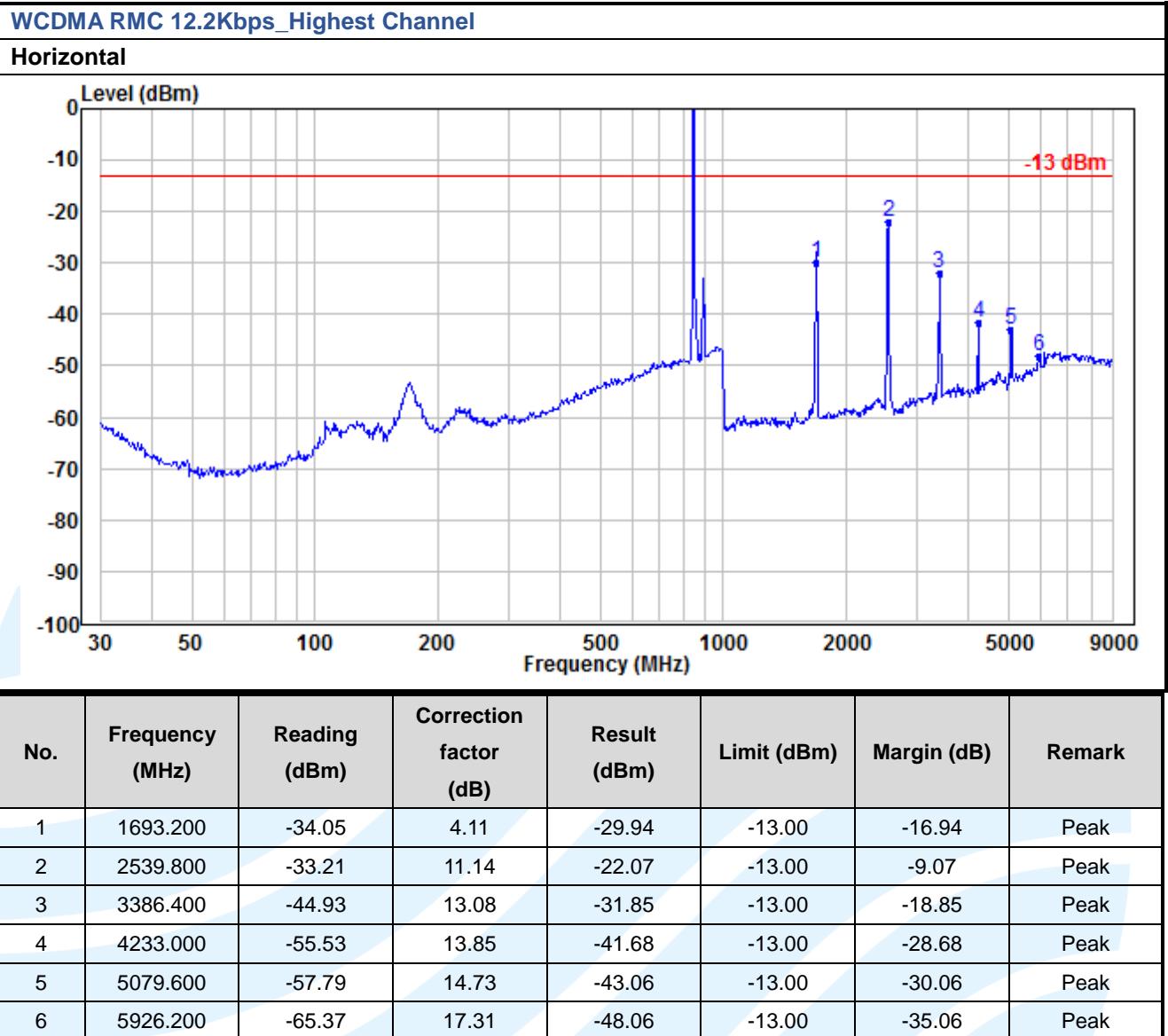
The measurement data as follows:

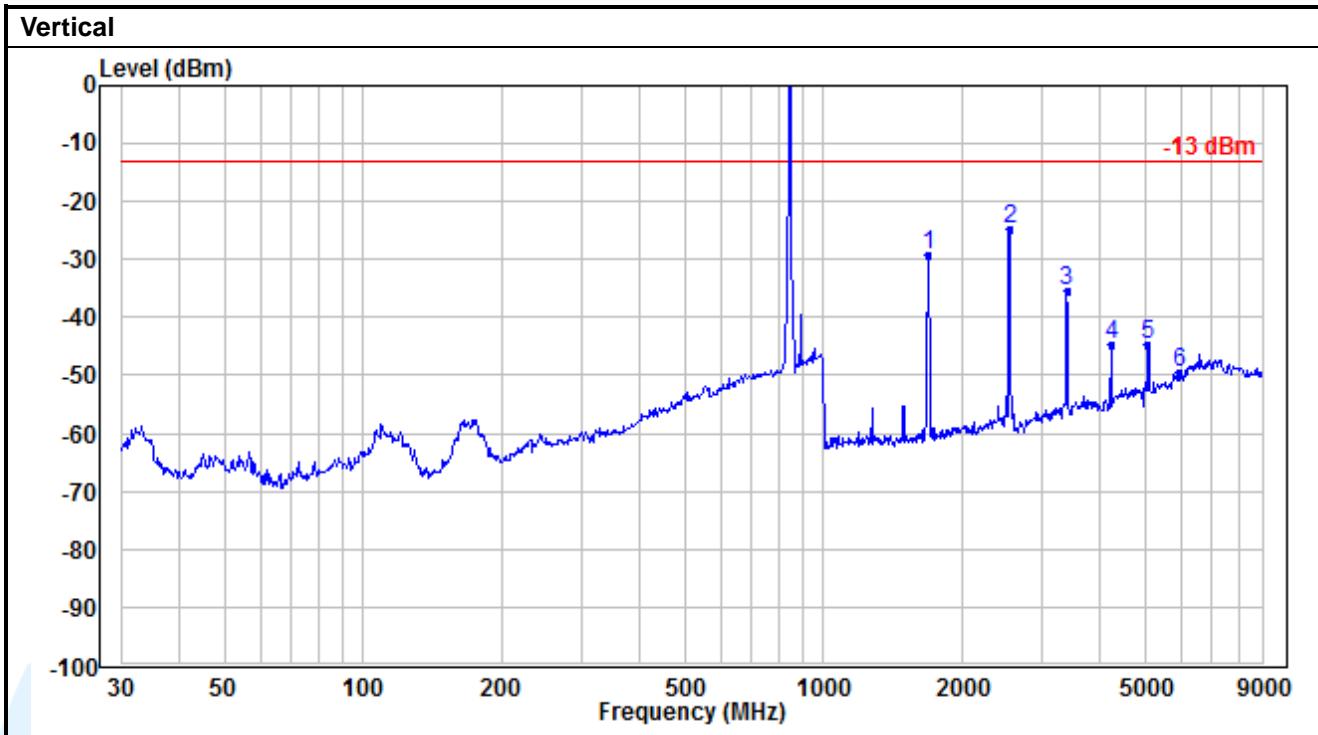

Radiated Emission Test Data

WCDMA RMC 12.2Kbps_Lowest Channel


Horizontal


No.	Frequency (MHz)	Reading (dBm)	Correction factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
1	1652.800	-29.96	3.64	-26.32	-13.00	-13.32	Peak
2	2479.200	-34.68	11.18	-23.50	-13.00	-10.50	Peak
3	3305.600	-46.19	12.84	-33.35	-13.00	-20.35	Peak
4	4132.000	-57.35	13.47	-43.88	-13.00	-30.88	Peak
5	4958.400	-59.19	14.41	-44.78	-13.00	-31.78	Peak
6	5784.800	-62.29	16.88	-45.41	-13.00	-32.41	Peak


No.	Frequency (MHz)	Reading (dBm)	Correction factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
1	1652.800	-36.01	3.64	-32.37	-13.00	-19.37	Peak
2	2479.200	-38.14	11.18	-26.96	-13.00	-13.96	Peak
3	3305.600	-50.82	12.84	-37.98	-13.00	-24.98	Peak
4	4132.000	-58.60	13.47	-45.13	-13.00	-32.13	Peak
5	4958.400	-61.56	14.41	-47.15	-13.00	-34.15	Peak
6	5784.800	-66.46	16.88	-49.58	-13.00	-36.58	Peak


WCDMA RMC 12.2Kbps_Middle Channel
Horizontal

No.	Frequency (MHz)	Reading (dBm)	Correction factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
1	1672.800	-31.94	3.88	-28.06	-13.00	-15.06	Peak
2	2509.200	-35.82	11.16	-24.66	-13.00	-11.66	Peak
3	3345.600	-47.30	12.97	-34.33	-13.00	-21.33	Peak
4	4182.000	-56.41	13.66	-42.75	-13.00	-29.75	Peak
5	5018.400	-56.91	14.44	-42.47	-13.00	-29.47	Peak
6	5854.800	-62.89	17.12	-45.77	-13.00	-32.77	Peak

No.	Frequency (MHz)	Reading (dBm)	Correction factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
1	1672.800	-34.32	3.88	-30.44	-13.00	-17.44	Peak
2	2509.200	-36.97	11.16	-25.81	-13.00	-12.81	Peak
3	3345.600	-48.17	12.97	-35.20	-13.00	-22.20	Peak
4	4182.000	-56.43	13.66	-42.77	-13.00	-29.77	Peak
5	5018.400	-58.46	14.44	-44.02	-13.00	-31.02	Peak
6	5854.800	-65.65	17.12	-48.53	-13.00	-35.53	Peak

No.	Frequency (MHz)	Reading (dBm)	Correction factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
1	1693.200	-33.38	4.11	-29.27	-13.00	-16.27	Peak
2	2539.800	-35.77	11.14	-24.63	-13.00	-11.63	Peak
3	3386.400	-48.42	13.08	-35.34	-13.00	-22.34	Peak
4	4233.000	-58.55	13.85	-44.70	-13.00	-31.70	Peak
5	5079.600	-59.45	14.73	-44.72	-13.00	-31.72	Peak
6	5926.200	-66.92	17.31	-49.61	-13.00	-36.61	Peak

Remark:

1) All the above radiation data, the fundamental frequency is not marked, it may exceed the limit, please ignore it.

5.9 FREQUENCY STABILITY

Test Requirement: FCC 47 CFR Part 2.1055 & FCC 47 CFR Part 22.355

Test Method: ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02

Limits: The carrier frequency shall not depart from the reference frequency in excess of ± 2.5 ppm for mobile stations.

Test Setup: Refer to section 4.2.2 for details.

Test Procedures:

1) Use CMW 500 or CMU 200 with Frequency Error measurement capability.

a) Temp. = -30° to $+50^{\circ}\text{C}$

b) Voltage = low voltage, 3.3 Vdc, Normal, 3.6 Vdc and High voltage, 4.1 Vdc.

2) Frequency Stability vs Temperature:

The EUT is placed inside a temperature chamber. The temperature is set to 20°C and allowed to stabilize.

After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, and then the measurement is repeated. This is repeated until $+50^{\circ}\text{C}$ is reached.

3) Frequency Stability vs Voltage:

The peak frequency error is recorded (worst-case).

Equipment Used: Refer to section 3 for details.

Test Result: Pass

AC Mode

Modulation	Channel/ Frequency	Voltage	Temperature	Deviation	Deviation	Limit	Pass/ Fail
	(MHz)	(Vdc)	($^{\circ}\text{C}$)	(Hz)	(ppm)	(ppm)	
WCDMA RMC 12.2Kbps							
BPSK	4182 / 836.4	VL	TN	-13	-0.0155	± 2.5	Pass
				-18	-0.0215	± 2.5	Pass
				-15	-0.0179	± 2.5	Pass
		VN	50	-18	-0.0215	± 2.5	Pass
			40	-15	-0.0179	± 2.5	Pass
			30	-14	-0.0167	± 2.5	Pass
			20	-17	-0.0203	± 2.5	Pass
			10	-14	-0.0167	± 2.5	Pass
			0	-15	-0.0179	± 2.5	Pass
			-10	-16	-0.0191	± 2.5	Pass
			-20	-17	-0.0203	± 2.5	Pass
			-30	-19	-0.0227	± 2.5	Pass

Battery Mode

Modulation	Channel/ Frequency	Voltage	Temperature	Deviation	Deviation	Limit	Pass/ Fail	
	(MHz)	(Vdc)	(°C)	(Hz)	(ppm)	(ppm)		
WCDMA RMC 12.2Kbps								
BPSK	4182 / 836.4	VN	VL	TN	-24	-0.0287	± 2.5	Pass
			VN		-25	-0.0299	± 2.5	Pass
			VH		-24	-0.0287	± 2.5	Pass
			50	28	-0.0335	± 2.5	Pass	
			40	23	-0.0275	± 2.5	Pass	
			30	24	-0.0287	± 2.5	Pass	
			20	25	-0.0299	± 2.5	Pass	
			10	29	-0.0347	± 2.5	Pass	
			0	24	-0.0287	± 2.5	Pass	
			-10	23	-0.0275	± 2.5	Pass	
			-20	27	-0.0323	± 2.5	Pass	
			-30	28	-0.0335	± 2.5	Pass	

APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.
