

Test report

REP008103-2R1TRFWL

Date of issue: April 10, 2023

Applicant:

Nalu Medical Inc

Product:

Charging System for Wearable Medical Device

Model:

43012

Variant(s):

None

FCC ID:

2AMB3-BSC

IC ID:

Not provided

Specifications:

- ◆ FCC 47 CFR Part 18: Industrial, scientific, and medical equipment
- ◆ RSS-216 Issue 2: 2016 + Amendment 1: 2020: Wireless Power Transfer Devices
- ◆ ICES-001 Issue 5: 2020: Industrial, scientific, and medical (ISM) equipment

www.nemko.com

FCC 47 CFR Part 18 & RSS-216 Issue 2 + ICES-001 Issue 5.dotm, Version V1.0

Nemko USA Inc., a testing laboratory, is accredited by ANAB. The tests included in this report are within the scope of this accreditation.

Lab and test locations

Company name	Nemko USA Inc.
Address	2210 Faraday Ave, Suite 150
City	Carlsbad
State	California
Postal code	92008
Country	USA
Telephone	+1 760 444 3500
Website	www.nemko.com
FCC Site Number	Test Firm Registration Number: 392943; Designation Number: US5058
ISED Test Site	2040B-3
Tested by	Chenhai Ma, Wireless Test Technician
Reviewed by	James Cunningham, EMC/MIL/WL Supervisor
Review date	April 10, 2023
Reviewer signature	

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko USA's ISO/IEC 17025 accreditation.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko USA Inc.

Table of Contents

Table of Contents	3
Section 1 Report summary	4
1.1 Test specifications	4
1.2 Test methods	4
1.3 Exclusions	4
1.4 Statement of compliance	4
1.5 Test report revision history	4
Section 2 Summary of test results	5
2.1 Sample information	5
2.2 Testing period	5
2.3 Emissions test results	5
Section 3 Equipment under test (EUT) details	6
3.1 Disclaimer	6
3.2 Applicant	6
3.3 Manufacturer	6
3.4 EUT information	6
3.5 EUT exercise and monitoring details	7
3.6 EUT setup details	8
Section 4 Engineering considerations	9
4.1 Modifications incorporated in the EUT	9
4.2 Technical judgement	9
4.3 Deviations from laboratory test procedures	9
Section 5 Test conditions	10
5.1 Atmospheric conditions	10
5.2 Power supply range	10
Section 6 Measurement uncertainty	11
6.1 Uncertainty of measurement	11
Section 7 Test equipment	12
7.1 Test equipment list	12
Section 8 Testing data	13
8.1 Radiated emissions	13
8.2 Conducted emissions	20
Section 9 EUT photos	23
9.1 External photos	23

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 18	Industrial, scientific, and medical equipment
RSS-216 Issue 2: 2016 + Amendment 1: 2020	Wireless Power Transfer Devices
ICES-001 Issue 5: 2020	Industrial, scientific, and medical (ISM) equipment

1.2 Test methods

FCC MP-5	FCC Methods of Measurements of Radio Noise Emissions from Industrial, Scientific, and Medical equipment
CSA CISPR 11:19	Industrial, scientific, and medical equipment – Radio-frequency disturbance characteristics – Limits and methods of measurement (IEC CISPR 11:2015+A1:2016, MOD)

1.3 Exclusions

None.

1.4 Statement of compliance

Testing was performed against all relevant requirements of the test standard(s).

Results obtained indicate that the product under test complies in full with the tested requirements.

The test results relate only to the item(s) tested.

See "Section 2 Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Issue Date	Details of changes made to test report
REP008103-2TRFEMC	March 29, 2023	Original report issued
REP008103-2R1TRFWL	April 10, 2023	Updated following TCB review comments

Section 2 Summary of test results

2.1 Sample information

Receipt date	08-Mar-23
Nemko sample ID number	REP008103

2.2 Testing period

Test start date	09-Mar-23
Test end date	10-Mar-23

2.3 Emissions test results

Table 2.3-1: FCC 47 CFR Part 18 and RSS-216 Issue 2 / ICES-001 Issue 5 results

Standard	Clause	Test description	Verdict
FCC 47 CFR Part 18	§18.305	Field strength limits	Pass
FCC 47 CFR Part 18	§18.307	Conduction limits	Pass ¹
RSS-216 Issue 2 / ICES-001 Issue 5	3.1	Radiated emissions	Pass
RSS-216 Issue 2 / ICES-001 Issue 5	3.1	Conducted emissions	Pass ²

Notes: ¹ The EUT is AC powered

Section 3 Equipment under test (EUT) details

3.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

3.2 Applicant

Company name	Nalu Medical Inc
Address	2320 Faraday Ave. Ste.100
City	Carlsbad
State	CA
Postal/Zip code	92008
Country	United States

3.3 Manufacturer

Company name	Nalu Medical Inc
Address	2320 Faraday Ave. Ste.100
City	Carlsbad
State	CA
Postal/Zip code	92008
Country	United States

3.4 EUT information

Product name	Charging System for Wearable Medical Device
Model	43012
Variant(s)	None
Serial number	None
Part number	None
Power requirements	120 VAC
Description/theory of operation	Qi: Inductive wireless power transfer. NFC: Data transfer via near field load modulation.(This report covers Qi mode)
Operational frequencies	Qi: 150 kHz; NFC: 13.56 MHz (This report covers Qi mode)
Software details	None

EUT operating on ISM frequency:

- 6.78 MHz (± 15.0 kHz)
- 13.56 MHz (± 7.0 kHz)
- 27.12 MHz (± 163.0 kHz)
- 40.68 MHz (± 20.0 kHz)
- 915 MHz (± 13.0 MHz)
- 2450 MHz (± 50.0 MHz)
- 5800 MHz (± 75.0 MHz)
- 24.125 GHz (± 125.0 MHz)

EUT not operating on ISM frequency:
Operating frequency: 150 kHz

3.5 EUT exercise and monitoring details

EUT description of the methods used to exercise the EUT and all relevant ports:

- The Qi system was configured to charge a battery at the maximum charge current. This represents the maximum transmitted power of the system.
- The NFC system was configured to continuously transmit data at the maximum power level and at the maximum data rate.

EUT setup/configuration rationale:

- The EUT setup in a configuration that was expected to produce the highest amplitude emissions relative to the limit and that satisfy normal operation/installation practice by the end user.
- The type and construction of cables used in the measurement set-up were consistent with normal or typical use. Cables with mitigation features (for example, screening, tighter/more twists per length, ferrite beads) have been noted below:
 - None
- The EUT was setup in a manner that was consistent with its typical arrangement and use. The measurement arrangement of the EUT, local ancillary equipment and associated cabling was representative of normal practice. Any deviations from typical arrangements have been noted below:
 - None

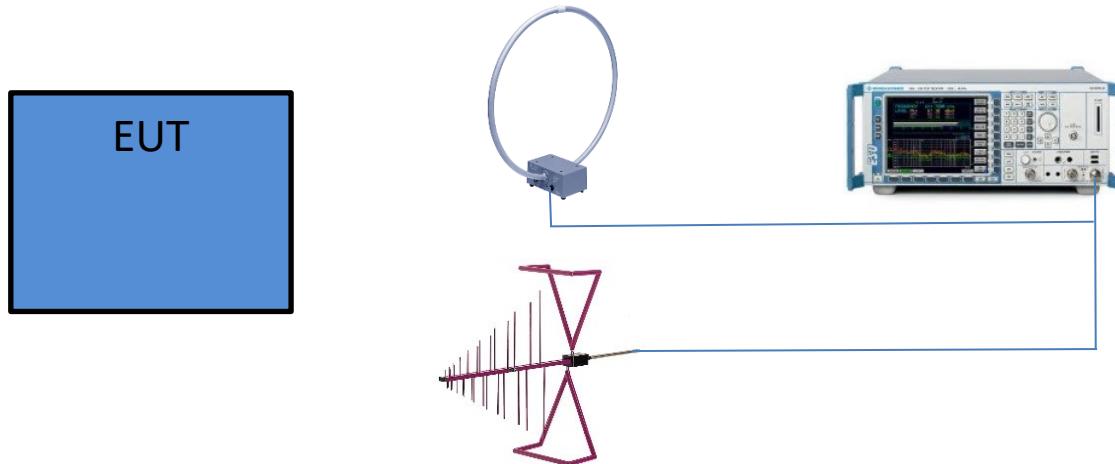
3.6 EUT setup details

Table 3.6-1: EUT sub assemblies

Description	Brand name	Model/Part number	Serial number	Rev.
None	None	None	None	None

Table 3.6-2: EUT interface ports

Description	Qty.
None	None


Table 3.6-3: Support equipment

Description	Brand name	Model/Part number	Serial number	Rev.
Therapy Disc Gen 2	Nalu Medical	34014-001	N/A	N/A

Table 3.6-4: Inter-connection cables

Cable description	From	To	Length (m)
USB C (power only)	Wall Adapter	Charging System	1

Figure 3.6-1: Test setup diagram

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

None.

4.2 Technical judgement

None.

4.3 Deviations from laboratory test procedures

None.

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages $\pm 5\%$, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Nemko USA Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4-2 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics, and limit modelling – Measurement instrumentation uncertainty. The expression of Uncertainty in EMC testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Table 6.1-1: Measurement uncertainty calculations

Measurement		U_{cisp} dB	U_{lab} dB
Conducted disturbance at AC mains and other port power using a V-AMN	9 kHz to 150 kHz	3.8	2.9
	150 kHz to 30 MHz	3.4	2.3
Conducted disturbance at telecommunication port using AAN	150 kHz to 30 MHz	5.0	4.3
Conducted disturbance at telecommunication port using CVP	150 kHz to 30 MHz	3.9	2.9
Conducted disturbance at telecommunication port using CP	150 kHz to 30 MHz	2.9	1.4
Conducted disturbance at telecommunication port using CP and CVP	150 kHz to 30 MHz	4.0	3.1
Radiated disturbance (electric field strength in a SAC)	30 MHz to 1 GHz	6.3	5.5
Radiated disturbance (electric field strength in a FAR)	1 GHz to 6 GHz	5.2	4.7
Radiated disturbance (electric field strength in a FAR)	6 GHz to 18 GHz	5.5	5.0

Notes: Compliance assessment:

If U_{lab} is less than or equal to U_{cisp} then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit

If U_{lab} is greater than U_{cisp} then:

- compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} - U_{cisp})$, exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level, increased by $(U_{lab} - U_{cisp})$, exceeds the disturbance limit

V-AMN: V type artificial mains network
 AAN: Asymmetric artificial network
 CP: Current probe
 CVP: Capacitive voltage probe
 SAC: Semi-anechoic chamber
 FAR: Fully anechoic room

Section 7 Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver	Rohde & Schwarz	ESU40		03-14-2022	03-14-2024
System controller	Sunol Sciences	SC104V	E1191	NCR	NCR
Active Loop Antenna (9kHz-30MHz)	EMCO	6507	1733	06-17-2022	06-17-2023
Bilog Antenna (30-1000MHz)	Schaffner-Chase	CBL 6111D	1763	04-01-2022	04-01-2024
EMI Test Receiver	Rohde & Schwarz	ESCI 7	E1026	03-22-2023	03-22-2024
Two Line V-Network	Rohde & Schwarz	ENV216	E1019	09-30-2022	09-30-2023

Notes: N/A – not applicable
NCR – no calibration required
VOU – verify on use

Table 7.1-2: Test Software

Manufacturer of Software	Details
Rohde & Schwarz	EMC32 V10.35.10
Rohde & Schwarz	EMC 32 V10.20.01

Notes: None

Section 8 Testing data

8.1 Radiated emissions

8.1.1 References and limits

- 47 CFR Part 18 §18.305
- ICES-001: §3.2.2 (referencing CSA CISPR 11:19 §6.2 and §6.3)

47 CFR Part 18 §18.305:

- (a) ISM equipment operating on a frequency specified in §18.301 is permitted unlimited radiated energy in the band specified for that frequency.
- (b) The field strength levels of emissions which lie outside the bands specified in §18.301, unless otherwise indicated, shall not exceed the following

Equipment	Operating frequency	RF power generated by equipment (Watts)	Field strength limit (μ V/m)	Distance (meters)
Any type unless otherwise specified	Any ISM frequency	Below 500 500 or more	25 25 x SQRT(power/500)	300 300 ¹
	Any non-ISM frequency	Below 500 500 or more	15 15 x SQRT(power/500)	300 300 ¹
Industrial heaters and RF stabilized arc welders	On or below 5,725 MHZ	Any	10	1,600
	Above 5.725 MHz	Any	Note 2	Note 2
Medical diathermy	Any ISM frequency	Any	25	300
	Any non-ISM frequency	Any	15	300
Ultrasonic	Below 490 kHz	Below 500 500 or more	2,400/F(kHz) 2,400/F(kHz) x SQRT(power/500)	300 300 ³
	490 kHz to 1,600 kHz	Any	24,000/F(kHz)	30
	Above 1,600 kHz	Any	15	30
	Below 90 kHz	Any	1,500	30 ⁴
Induction cooking ranges	On or above 90 kHz	Any	30	30 ⁴

Notes: ¹ Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment operating below 1000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 watts.

² Reduced to the greatest possible extent.

³ Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment is not permitted the increase in field strength otherwise permitted here for power over 500 watts.

⁴ Induction cooking ranges manufactured prior to February 1, 1980, shall be subject to the field strength limits for miscellaneous ISM equipment.

- (c) The field strength limits for RF lighting devices shall be the following:

Frequency (MHz)	Field strength limit at 30 meters (μ V/m)
Non-consumer equipment:	
30 – 88	30
88 – 216	50
216 – 1000	70
Consumer equipment:	
30 – 88	10
88 – 216	15
216 – 1000	20

Notes: 1. The tighter limit shall apply at the boundary between two frequency ranges

2. Testing for compliance with these limits may be made at closer distances, provided a sufficient number of measurements are taken to plot the radiation pattern, to determine the major lobes of radiation, and to determine the expected field strength level at 30, 300 or 1600 meters.

Alternatively, if measurements are made at only one closer fixed distance, then the permissible field strength limits shall be adjusted using $1/d$ as an attenuation factor.

ICES-001: §3.1:

Equipment subject to this standard shall comply with all applicable requirements set forth in CSA CISPR 11:19, except if otherwise stated in this standard, and with the additional requirements specified herein.

8.1.2 Test summary

Verdict	Pass		
Test date	March 9, 2023	Temperature	19.87 °C
Test engineer	Chenhao Ma, Wireless Test Technician	Air pressure	1004.6 mbar
Test location	<input checked="" type="checkbox"/> 10m semi anechoic chamber <input type="checkbox"/> 3m semi anechoic chamber <input type="checkbox"/> Other:	Relative humidity	49.8 %

8.1.3 Notes

The spectral plots within this section have been corrected with all relevant transducer factors.

8.1.4 Setup details

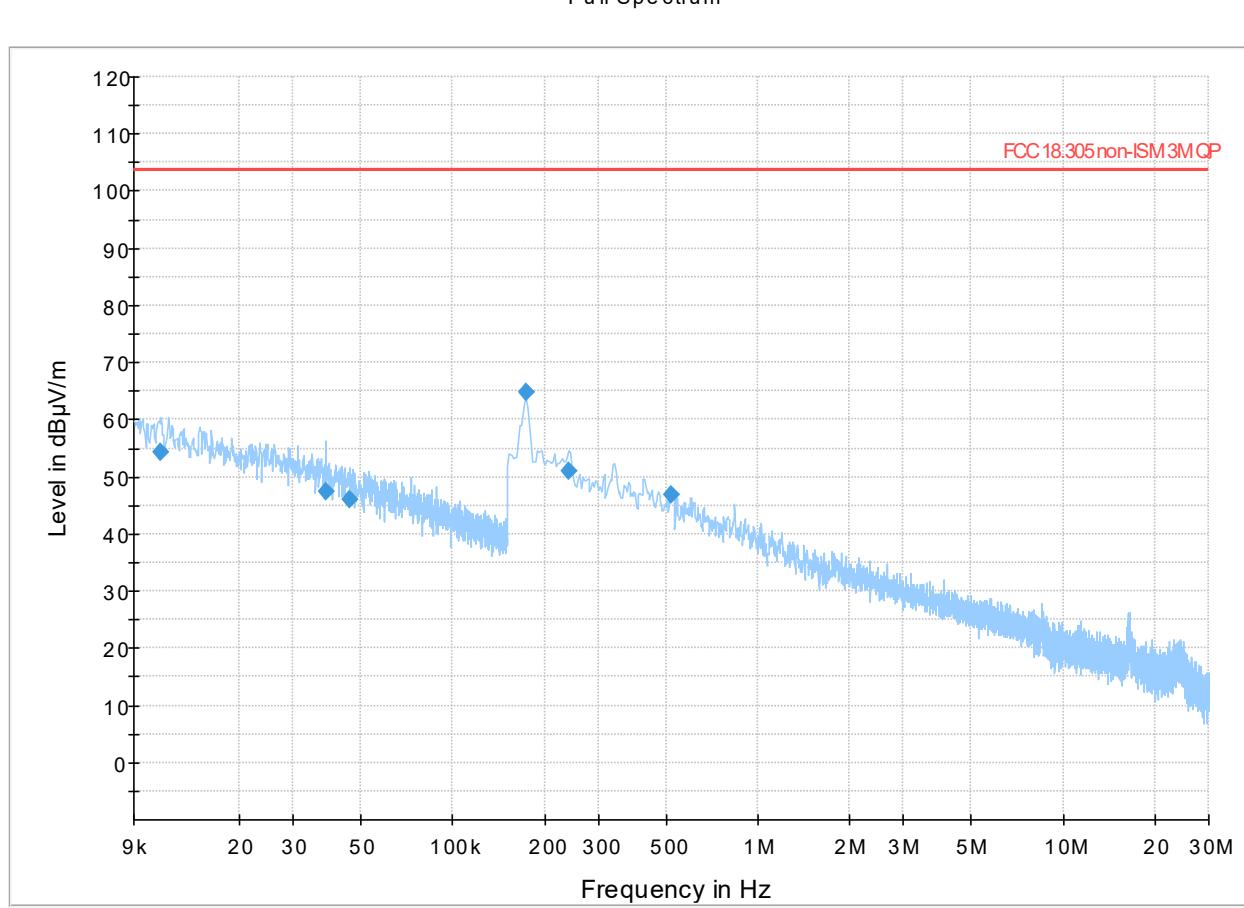
Port under test	Enclosure port
EUT power input during test	120 VAC
EUT setup configuration	<input checked="" type="checkbox"/> Table-top <input type="checkbox"/> Floor standing <input type="checkbox"/> Other:
Measuring distance	<input type="checkbox"/> 10m <input checked="" type="checkbox"/> 3m <input type="checkbox"/> Other:
Antenna height variation	1 – 4 m
Turn table position	0 – 360°
Measurement details	Preview measurements were performed with the receiver in continuous scan or sweep mode. Emissions detected within 6 dB or above limit (minimum of 6 frequencies) were maximized by rotating the EUT and adjusting the antenna height and polarization. At the position of maximum emission, the signal was measured with the appropriate detector against the corresponding limit and recorded as the final measurement.

Spectrum analyzer settings 9 kHz to 150 kHz:

Resolution bandwidth	200 Hz
Video bandwidth	600 Hz
Detector mode	<ul style="list-style-type: none"> – Peak (Preview measurement) – Quasi-peak (Final measurement)
Trace mode	Max Hold
Measurement time	<ul style="list-style-type: none"> – 100 ms (Peak preview measurement) – 15000 ms (Quasi-peak final measurement)

Spectrum analyzer settings 150 kHz to 30 MHz:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	<ul style="list-style-type: none"> – Peak (Preview measurement) – Quasi-peak (Final measurement)
Trace mode	Max Hold
Measurement time	<ul style="list-style-type: none"> – 100 ms (Peak preview measurement) – 15000 ms (Quasi-peak final measurement)


Receiver/spectrum analyzer settings for frequencies below 1 GHz:

Resolution bandwidth	120 kHz
Detector mode	<ul style="list-style-type: none"> – Peak (Preview measurement) – Quasi-peak (Final measurement)
Trace mode	Max Hold
Measurement time	<ul style="list-style-type: none"> – 100 ms (Peak preview measurement) – 5000 ms (Quasi-peak final measurement)

Receiver/spectrum analyzer settings for frequencies above 1 GHz:

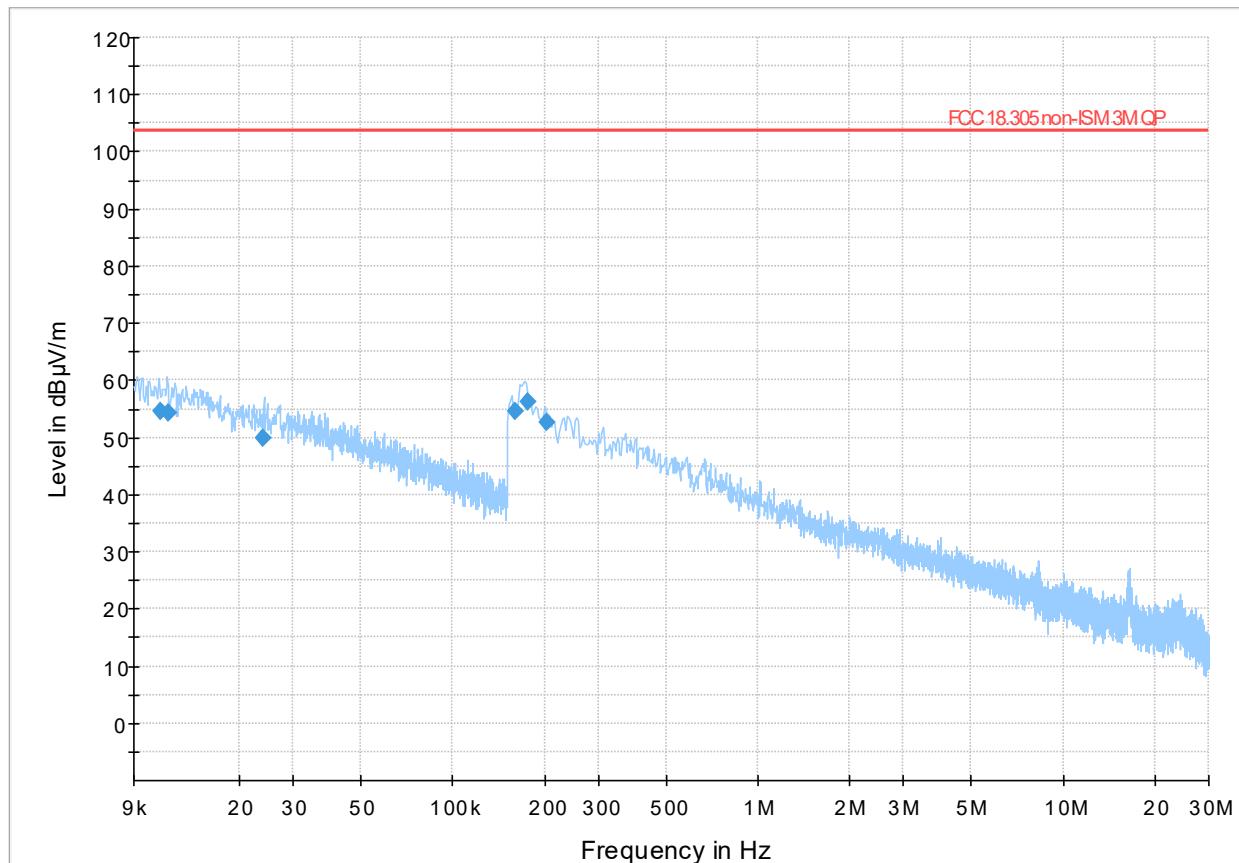
Resolution bandwidth	1 MHz
Detector mode	<ul style="list-style-type: none"> – Peak (Preview measurement) – Peak and Average (Final measurement)
Trace mode	Max Hold
Measurement time	<ul style="list-style-type: none"> – 100 ms (Peak preview measurement) – 5000 ms (Peak and Average final measurement)

8.1.5 Test data

Figure 8.1-1: Radiated emissions spectral plot (9 kHz - 30 MHz) 0 degree

Table 8.1-1: Radiated emissions results

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azimuth (deg)	Corr. (dB/m)
0.011024	54.30	103.60	49.30	15000.0	0.200	H	36.0	18.1
0.038388	47.35	103.60	56.25	15000.0	0.200	H	283.0	12.6
0.045972	46.01	103.60	57.59	15000.0	0.200	H	349.0	11.8
0.173380	64.81	103.60	38.79	15000.0	9.000	H	32.0	10.3
0.239050	50.99	103.60	52.61	15000.0	9.000	H	182.0	10.2
0.521610	46.79	103.60	56.81	15000.0	9.000	H	86.0	10.4


Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

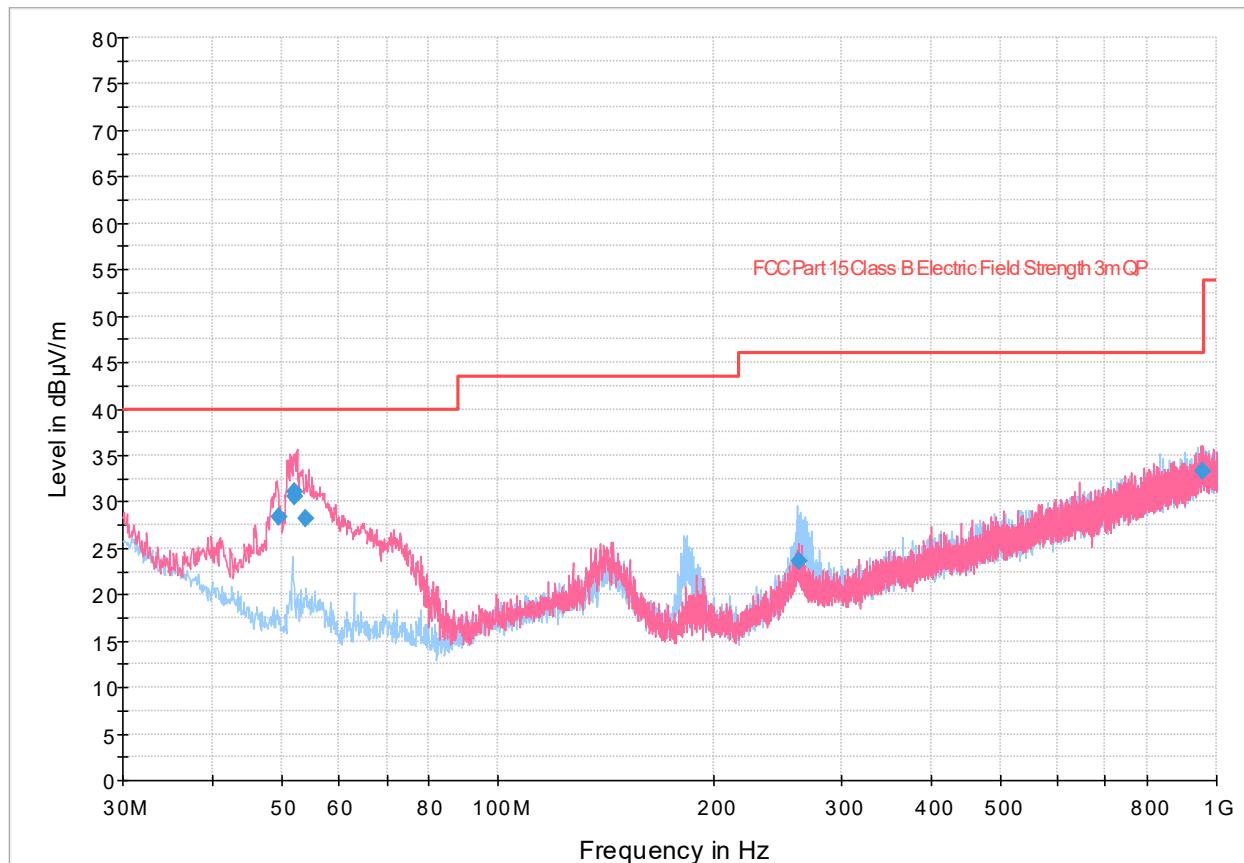
³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Full Spectrum

Figure 8.1-2: Radiated emissions spectral plot (9 kHz - 30 MHz) 90 degrees

Table 8.1-2: Radiated emissions results

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azimuth (deg)	Corr. (dB/m)
0.011004	54.53	103.60	49.07	15000.0	0.200	H	158.0	18.1
0.011708	54.25	103.60	49.35	15000.0	0.200	H	100.0	17.8
0.023996	49.89	103.60	53.71	15000.0	0.200	H	212.0	13.9
0.159470	54.57	103.60	49.03	15000.0	9.000	H	134.0	10.3
0.175395	56.14	103.60	47.46	15000.0	9.000	H	127.0	10.3
0.202245	52.63	103.60	50.97	15000.0	9.000	H	7.0	10.3


Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

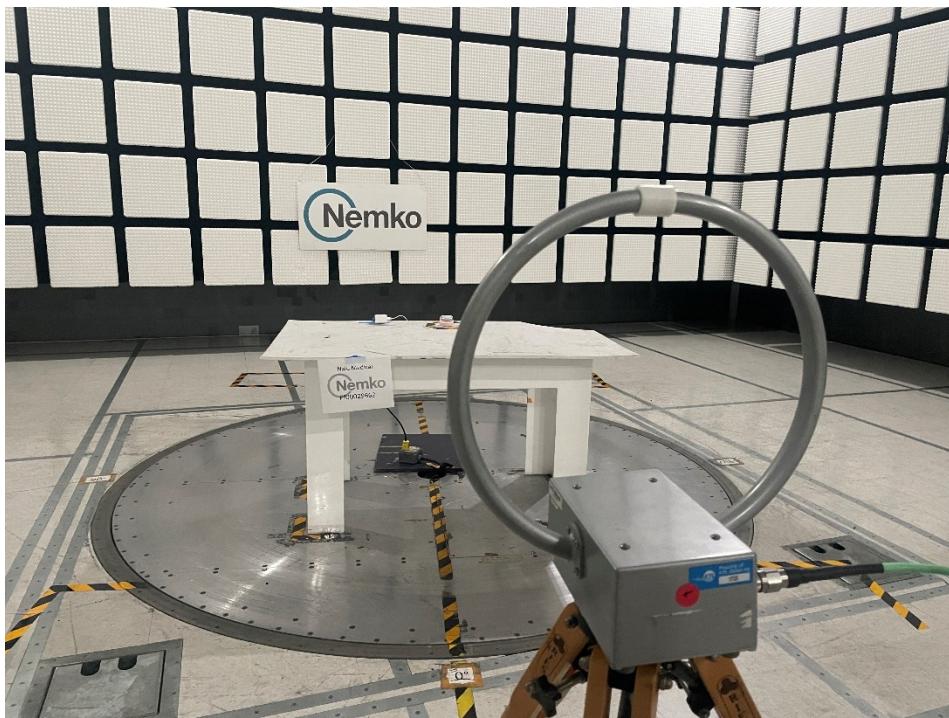
³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Full Spectrum

Figure 8.1-3: Radiated emissions spectral plot (30 MHz - 1 GHz)

Table 8.1-3: Radiated emissions results

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
49.592000	28.38	40.00	11.62	5000.0	120.000	128.0	V	272.0	16.0
51.964000	30.57	40.00	9.43	5000.0	120.000	121.0	V	68.0	15.0
52.160000	31.11	40.00	8.89	5000.0	120.000	112.0	V	11.0	14.9
53.984000	28.21	40.00	11.79	5000.0	120.000	128.0	V	185.0	14.1
261.588000	23.55	46.00	22.45	5000.0	120.000	102.0	H	162.0	21.8
956.775000	33.35	46.00	12.65	5000.0	120.000	256.0	V	276.0	34.3


Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

8.1.6 Setup photos


Figure 8.1-4: Radiated emissions setup photo, front – below 30 MHz

Figure 8.1-5: Radiated emissions setup photo, back – below 30 MHz

Figure 8.1-6: Radiated emissions setup photo, front – above 30 MHz

Figure 8.1-7: Radiated emissions setup photo, back – above 30 MHz

8.2 Conducted emissions

8.2.1 References and limits

- FCC 47 CFR Part 15, Subpart B: §15.107
- ICES-003: §3.2.1
- Test method: ANSI C63.4-2014

Table 8.2-1: Requirements for conducted emissions from the AC mains power ports for Class A

Frequency range [MHz]	Coupling device	Measurement	Limits [dB μ V]
		Detector type/ bandwidth	
0.15–0.5			79.0
0.5–30	AMN	Quasi peak/9 kHz	73.0
0.15–0.5			66.0
0.5–30	AMN	Average/9 kHz	60.0

Table 8.2-2: Requirements for conducted emissions from the AC mains power ports for Class B

Frequency range [MHz]	Coupling device	Measurement	Limits [dB μ V]
		Detector type/ bandwidth	
0.15–0.5			66.0–56.0
0.5–5	AMN	Quasi peak/9 kHz	56.0
5–30			60.0
0.15–0.5			56.0–46.0
0.5–5	AMN	Average/9 kHz	46.0
5–30			50.0

Notes: The lower limit shall apply at the transition frequency.

8.2.2 Test summary

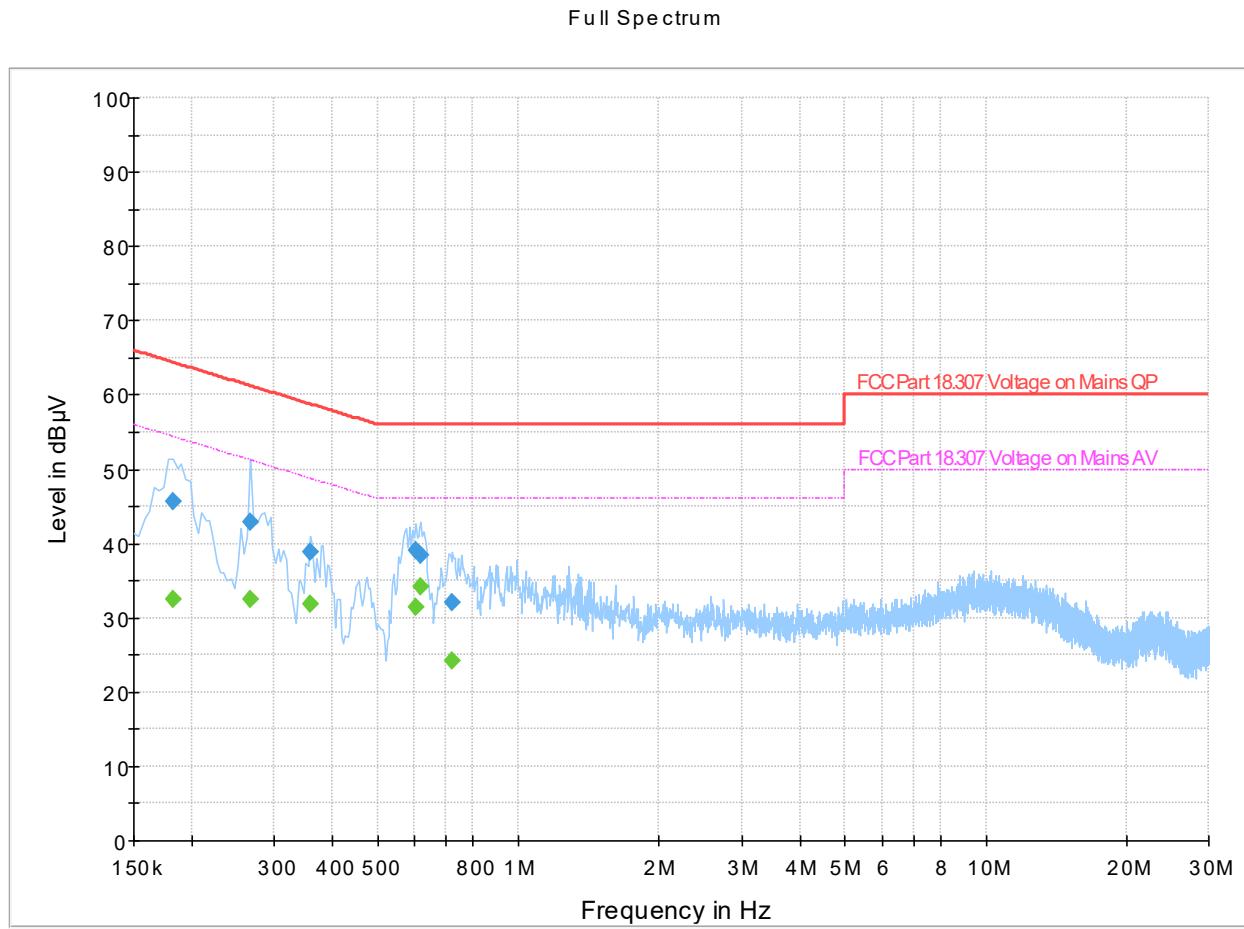
Verdict	Pass		
Test date	March 9, 2023	Temperature	19.87 °C
Test engineer	Chenho Ma, Wireless Test Technician	Air pressure	1004.6 mbar
Test location	<input checked="" type="checkbox"/> Ground plane <input type="checkbox"/> Other:	Relative humidity	49.8 %

8.2.3 Notes

The spectral plots within this section have been corrected with all relevant transducer factors.

Equipment with a DC power port powered by a dedicated AC/DC power converter is considered to be AC mains powered equipment and tested with a power converter. Where the manufacturer provided the power converter, the supplied converter was used.

Phase and neutral measurements are combined into a single worst-case plot.


8.2.4 Setup details

Port under test – Coupling device	AC input – Artificial Mains Network (AMN)
EUT power input during test	120 VAC
EUT setup configuration	<input checked="" type="checkbox"/> Table-top <input type="checkbox"/> Floor standing <input type="checkbox"/> Other:
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Selected emissions were re-measured with the appropriate detector(s) against the correlating limit(s) and recorded as the final measurement.

Receiver settings:

Resolution bandwidth	9 kHz
Detector mode	– Peak and Average (Preview measurement) – Quasi-peak and Average (Final measurement)
Trace mode	Max Hold
Measurement time	– 100 ms (Peak and Average preview measurement) – 5000 ms (Quasi-peak and Average final measurement)

8.2.5 Test data

Figure 8.2-1: Conducted emissions at mains port spectral plot (150 kHz - 30 MHz)

Table 8.2-3: Conducted emissions at mains port results

Frequency (MHz)	QuasiPeak (dBμV)	CAverage (dBμV)	Limit (dBμV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.182000	---	32.45	54.39	21.94	5000.0	9.000	L1	ON	19.5
0.182000	45.70	---	64.39	18.69	5000.0	9.000	L1	ON	19.5
0.266000	42.99	---	61.24	18.25	5000.0	9.000	N	ON	19.5
0.266000	---	32.48	51.24	18.76	5000.0	9.000	N	ON	19.5
0.358000	38.85	---	58.78	19.92	5000.0	9.000	N	ON	19.4
0.358000	---	31.76	48.78	17.01	5000.0	9.000	N	ON	19.4
0.602000	39.03	---	56.00	16.97	5000.0	9.000	N	ON	19.4
0.602000	---	31.50	46.00	14.50	5000.0	9.000	N	ON	19.4
0.618000	38.42	---	56.00	17.58	5000.0	9.000	N	ON	19.4
0.618000	---	34.10	46.00	11.90	5000.0	9.000	N	ON	19.4
0.722000	---	24.25	46.00	21.75	5000.0	9.000	L1	ON	19.4
0.722000	32.12	---	56.00	23.88	5000.0	9.000	L1	ON	19.4

Notes:

¹ Result (dBμV) = receiver analyzer value (dBμV) + correction factor (dB).

² Correction factors = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

8.2.6 Setup photos

Figure 8.2-2: Conducted emissions from AC mains power ports setup photo

Figure 8.2-3: Conducted emissions – from AC mains power ports setup photo

Section 9 EUT photos

9.1 External photos

Figure 9.1-1: Front view photo

Figure 9.1-2: Rear view photo

Figure 9.1-3: Side view photo

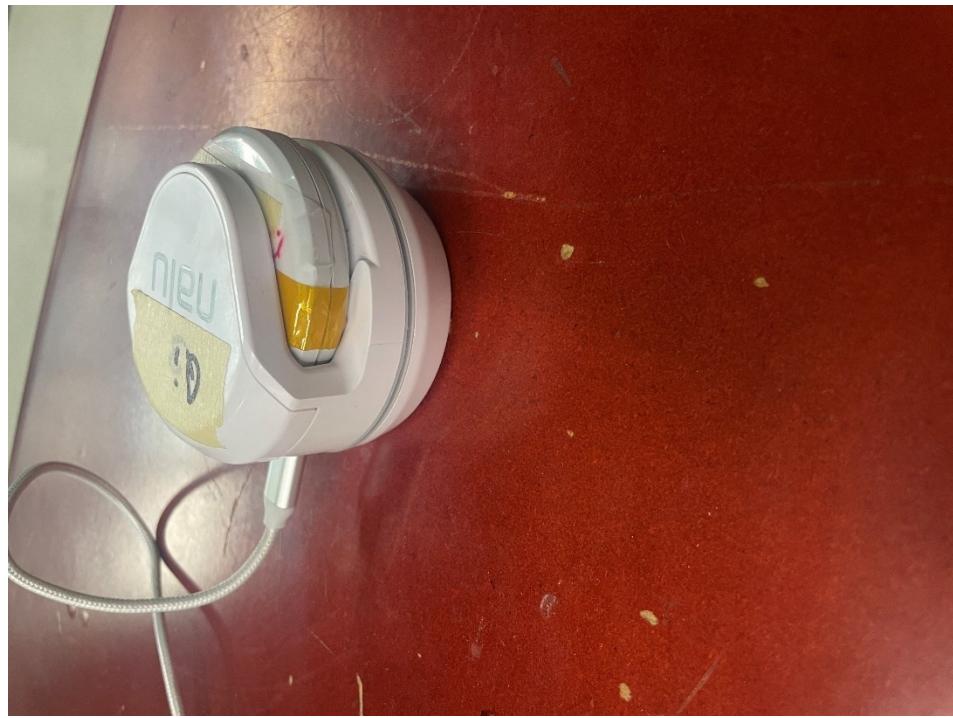


Figure 9.1-4: Side view photo

Figure 9.1-5: Top view photo

Figure 9.1-6: Bottom view photo

End of test report