

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC155670 1 of 30 Page:

FCC Radio Test Report

FCC ID: 2AM7IFS-52423

TB-FCC155670 Report No.

Applicant : Lovehoney Ltd.

Equipment Under Test (EUT)

: Fifty Shades of Grey "Relentless Vibrations" Remote Control Egg **EUT Name**

: FS-52423 Model No.

Serial Model No. N/A

Brand Name FSOG

Receipt Date 2017-06-19

Test Date 2017-06-20 to 2017-07-05

Issue Date 2017-07-06

: FCC Part 15, Subpart C (15.231(a):2016) **Standards**

ANSI C63.10:2013 **Test Method**

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Approved& Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Page: 2 of 30

Contents

COL	N1EN15	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	6
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	
2.	TEST SUMMARY	8
3.	TEST EQUIPMENT	9
4.	CONDUCTED EMISSION TEST	10
	4.1 Test Standard and Limit	10
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 Test Data	
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	17
	5.5 Test Data	17
6.	BANDWIDTH	23
	6.1 Test Standard and Limit	23
	6.2 Test Setup	
	6.3 Test Procedure	23
	6.4 EUT Operating Condition	23
	6.5 Test Condition	
	6.6 Test Data	24
7.	RELEASE TIME MEASUREMENT	25
	7.1 Test Standard and Limit	
	7.2 Test Setup	25
	7.3 Test Procedure	25
	7.4 EUT Operating Condition	
	7.5 Test Condition	
	7.6 Test Data	26
8.	DUTY CYCLE	27
	8.1 Test Standard and Limit	27

Page: 3 of 30

	8.2 Test Setup	27
	8.3 Test Procedure	
	8.4 EUT Operating Condition	27
	8.5 Test Condition	27
	8.6 Test Data	28
9.	ANTENNA REQUIREMENT	30
	9.1 Standard Requirement	30
	9.2 Antenna Connected Construction	

Page: 4 of 30

1. General Information about EUT

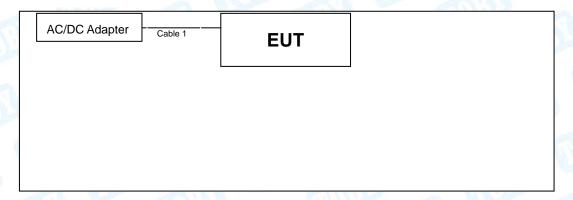
1.1 Client Information

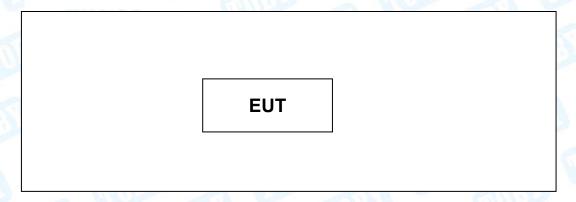
Applicant	:	Lovehoney Ltd.
Address	:	100 Locksbrook Road, Bath, BA1 3EN, UK
Manufacturer		Odeco Ltd.
Address		2F, Block 7th, YuSheng Industrial Zone, Xixiang, Baoan District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	3	Fifty Shades of Grey "Relentless Vibrations" Remote Control Egg					
Models No.		FS-52423	FS-52423				
Model Difference	:	N/A					
mill's		Operation Frequency:	433.92 MHz				
Product Description		Out Power: 76.34 dBuV/m (PK Max.) 73.12 dBuV/m (AV Max.)					
		Antenna Gain:	Printed Antenna(0 dBi)				
	₹	Modulation Type:	ASK				
Power Supply	*	DC power from Li-ion Ba DC power from USB.	ttery.				
Power Rating		DC 3.7V by 160mAh Li-io	on Battery or DC 5.0V by USB.				
Connecting I/O Port(S)	•	Please refer to the User's	Please refer to the User's Manual				

Note:


(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.


Page: 5 of 30

1.3 Block Diagram Showing the Configuration of System Tested

Charging Mode

TX Mode

1.4 Description of Support Units

Equipment Information							
Name Model FCC ID/DOC Manufacturer Used "√"							
AC/DC Adapter	TEKA012	7773	TEKA	1			
	Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note			
Cable 1	NO	NO	1.5M	Accessorise			

Page: 6 of 30

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Test Items	Note
Conducted Emission	Charging Mode
Radiated Emission	Continuously transmitting
Bandwidth	Continuously transmitting
Duty Cycle	Continuously transmitting
Release Time	Normal Mode

Note:

- (1) During the testing procedure, the continuously transmitting mode was programmed by the customer.
- (2) The EUT is considered a portable unit, and it was pre-tested on the positioned of each 3 axis: X axis, Y axis and Z axis. The worst case was found positioned on Z-plane. There for only the test data of this Z-plane were used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of transmitting mode.

RF Power Setting in Test SW: DEF

Page: 7 of 30

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dadiated Emission	Level Accuracy:	. 4 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 db
Padiated Emission	Level Accuracy:	.4.20 dB
Radiated Emission	Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 8 of 30

2. Test Summary

FCC Part 15 Subpart (15.231(a))					
Standard Section	-		.		
FCC	Test Item	Judgment	Remark		
15.203	Antenna Requirement	PASS	N/A		
15.207	Conducted Emission	PASS	N/A		
	Release Time	PASS	N/A		
45 004	Radiation Emission	PASS	N/A		
15.231	20 dB Bandwidth	PASS	N/A		
	Duty Cycle	PASS	N/A		

Page: 9 of 30

3. Test Equipment

Conducted	d Emission Te	st			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 22, 2016	Jul. 21, 2017
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 22, 2016	Jul. 21, 2017
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 22, 2016	Jul. 21, 2017
LISN	Rohde & Schwarz	ENV216	101131	Jul. 22, 2016	Jul. 21, 2017
Radiation	Emission Tes	t			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 22, 2016	Jul. 21, 2017
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 25, 2017	Mar. 24, 201
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 25, 2017	Mar. 24, 201
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 24, 2017	Mar. 23, 201
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 24, 2017	Mar. 23, 201
Loop Antenna	Laplace instrument	RF300	0701	Mar. 25, 2017	Mar. 24, 201
Pre-amplifier	Sonoma	310N	185903	Mar. 24, 2017	Mar. 23, 201
Pre-amplifier	HP	8449B	3008A00849	Mar. 29, 2017	Mar. 28, 201
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 29, 2017	Mar. 28, 201
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna C	onducted Em	ission			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 22, 2016	Jul. 21, 2017
Power Meter	Anritsu	ML2495A	25406005	Jul. 22, 2016	Jul. 21, 2017
Power Sensor	Anritsu	ML2411B	25406005	Jul. 22, 2016	Jul. 21, 2017

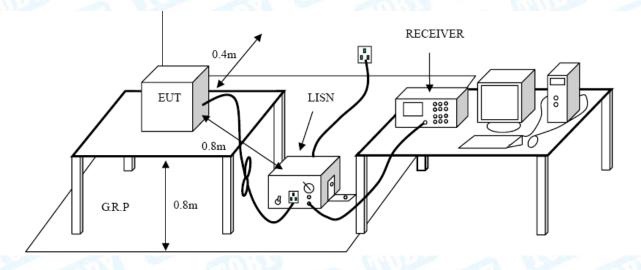
Page: 10 of 30

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC 15.207

4.1.2 Test Limit


Conducted Emission Test Limit

	Maximum RF Lin	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

Page: 11 of 30

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 Test Data

Please see the next page.

Page: 12 of 30

EUT:		Shades of Gations" Remo	4 1	Mode	el Name :		FS-52423	
Temperature	: 25 °C	C		Relat	tive Humi	dity:	55%	
Test Voltage:	: AC 120V/60Hz							
Terminal:	Line			de	3	ā 1	MILL	
Test Mode:	Char	ging Mode		U				
Remark:		worse case	is reported		DAM			
90.0 dBuV							* 1 * *	
40	**************************************	Willy Mally	Anlungung og	\\\\\	Mandada da	QP: AVG:	pea AVI	
-10								
0.150	0.5		(MHz)	5			30.000	
		Reading	Correct	Measure-				
No. Mk.	Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	
1	0.2300	16.20	10.02	26.22		-36.23		
2	0.2300	3.72	10.02	13.74		-38.71	AVG	
3	0.3460	16.79	10.02	26.81	59.06			
	0.3460	4.06	10.02	14.08	49.06			
5 *	0.5140	18.40	10.03	28.43	56.00			
	O E440		10 03	14.30	46.00	-31./0		
6	0.5140	4.27			EG 00	24 04		
7	0.6940	14.07	10.12	24.19	56.00		QP	
7	0.6940 0.6940	14.07 2.60	10.12 10.12	24.19 12.72	46.00	-33.28	AVG	
7 8 9	0.6940 0.6940 0.8820	14.07 2.60 12.50	10.12 10.12 10.08	24.19 12.72 22.58	46.00 56.00	-33.28 -33.42	AVG QP	
7 8 9 10	0.6940 0.6940 0.8820 0.8820	14.07 2.60 12.50 -0.67	10.12 10.12 10.08 10.08	24.19 12.72 22.58 9.41	46.00 56.00 46.00	-33.28 -33.42 -36.59	AVG QP AVG	
7 8 9 10	0.6940 0.6940 0.8820 0.8820 1.3940	14.07 2.60 12.50 -0.67 12.55	10.12 10.12 10.08 10.08 10.06	24.19 12.72 22.58 9.41 22.61	46.00 56.00 46.00 56.00	-33.28 -33.42 -36.59 -33.39	AVG QP AVG QP	
7 8 9 10	0.6940 0.6940 0.8820 0.8820	14.07 2.60 12.50 -0.67	10.12 10.12 10.08 10.08	24.19 12.72 22.58 9.41	46.00 56.00 46.00	-33.28 -33.42 -36.59 -33.39	AVG QP AVG QP	

Page: 13 of 30

EUT:				ey "Relentless e Control Egg	Mode	I Name :	1	FS-52423	
Temper	ature:	25 ℃	Ann		Relative Humidity:				
Test Vo	Itage:	AC 120)V/60Hz	CHILL		I W			
Termina	al:	Neutra				3	13	ALL .	
Test Mo	ode:	Chargi	ng Mode		67	100	8	- (
Remark	(:	Only w	orse case is	reported		ABILL			
90.0 dB	u∀								
							QP: AVG:	_	
							ATU.		
-									
		×							
40	٨,	www/Mx	× × ×						
W	~	ען עריייייי ע	A Marsal Mark	Mr. M. M. M. M.	<u> </u>	Sauct			
	Ů	0.0	, 1	ללא או הוא אויי.	, A n A n n n h	MMMMM	Wendport of a		
	~ /	Something Now	Masur. A	A				pea	
	V		1 r h.	(MANNA)	$\wedge \wedge $	MMMMMM	Wordstand Street and	AV(
-10		0.5		(111-)				20,000	
0.150		0.5		(MHz)	5			30.000	
No.	Mk.	Freq.	Reading Level	Correct N Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∨	dBu∀	dB	Detector	
1		0.4980	24.43	10.02	34.45	56.03 -2		QP	
2		0.4980	8.45	10.02	18.47		27.56	AVG	
3		0.5260	24.35	10.02	34.37		21.63	QP	
4		0.5260	9.16	10.02	19.18	46.00 -2		AVG	
5		0.5899	21.36	10.02			24.62		
6		0.5899	6.49	10.02	16.51	46.00 -2		AVG	
7		0.6980	18.91	10.02	28.93	56.00 -2		QP	
8		0.6980	4.52	10.02	14.54	46.00 -		AVG	
9		0.8700	18.20	10.10	28.30	56.00 -2		QP	
10	(0.8700	2.67	10.10	12.77	46.00 -		AVG	
					07.00	.68 56.00 -28.3		QP	
11		1.0140	17.52	10.16	27.68	56.00 -2	20.32	QF	

*:Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

Page: 14 of 30

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC 15.231

5.1.2 Test Limit

According to FCC 15.231(a) requirement:

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m	Field Strength of Spurious Emissions (microvolt/meter) at 3m
40.66~40.70	2250	225
70~130	1250	125
130~174	1250 to 3750(**)	125 to 375(**)
174~260	3750	375
260~470	3750 to 12500(**)	375 to 1250(**)
Above 470	12500	1250

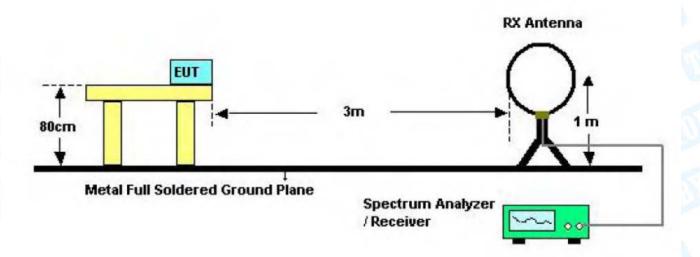
^{**} Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- (1) for the band 130~174 MHz, uV/m at 3 meters= 56.81818(F)-6136.3636;
- (2) for the band 260~470 MHz, uV/m at 3 meter= 41.6667(F)-7083.3333.
- (3) The maximum permitted unwanted emissions level is 20 dB below the maximum permitted fundamental level. In addition field strength of any emissions which appear inside of the restriction band shall not exceed the general radiated emissions limits in RSS Gen 8.9.

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	0/F(KHz) 300		
0.490~1.705	2400/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		

Page: 15 of 30

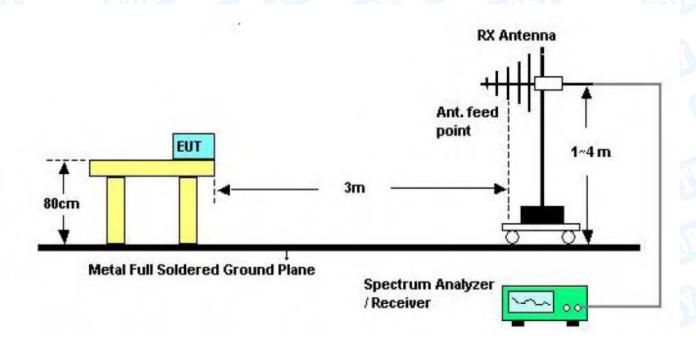
216~960	200	3
Above 960	500	3

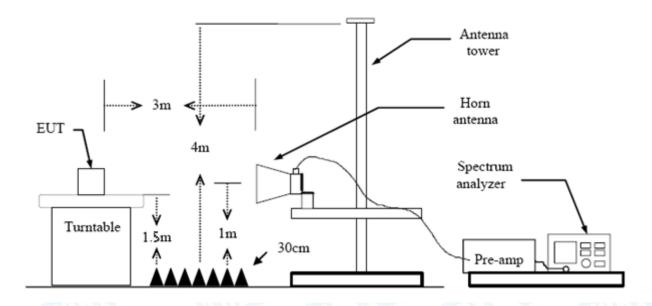

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

So the field strength of emission limits have been calculated in below table.

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m		
433.92 MHz	80.82 (Average)		
433.92 MHz	100.82 (Peak)		


5.2 Test Setup


Bellow 30MHz Test Setup

Page: 16 of 30

Bellow 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by

Report No.: TB-FCC155670 Page: 17 of 30

3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

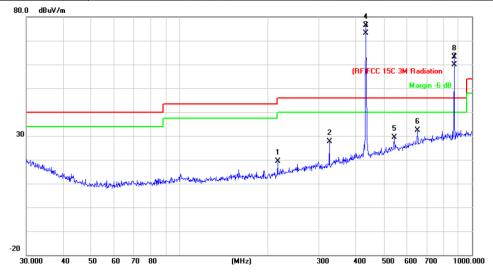
5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Test data please refer the following pages.

Page: 18 of 30


9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Fundamental and Harmonics emissions (30MHz-1GHz)

EUT:	Fifty Shades of Grey "Relentless Vibrations" Remote Control Egg	Model Name : FS-5				
Temperature:	25 ℃	Relative Humidity: 55%				
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	Standby Mode					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

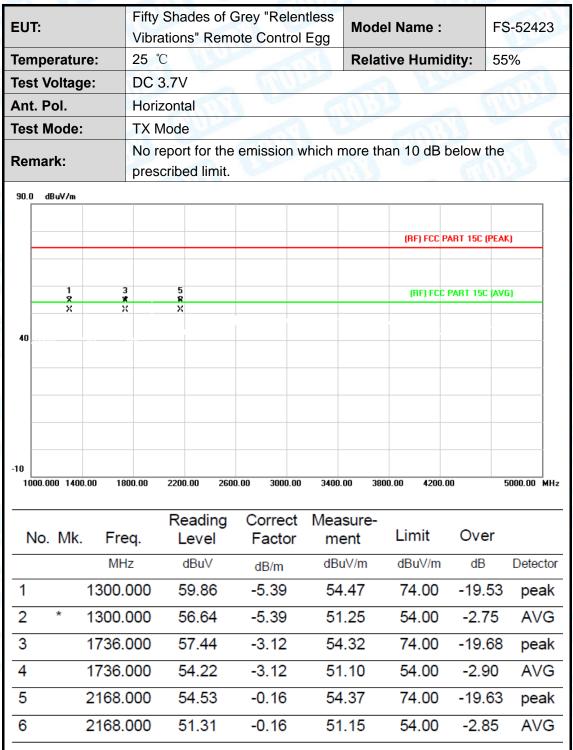
No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		216.7828	38.51	-19.01	19.50	46.00	-26.50	peak
2		325.5958	42.90	-15.31	27.59	46.00	-18.41	peak
3	Χ	434.0650	85.07	-11.95	73.12	80.82	-7.70	AVG
4	*	434.0651	88.29	-11.95	76.34	100.82	-24.48	peak
5		543.2742	38.54	-9.27	29.27	46.00	-16.73	peak
6		651.9417	40.11	-7.66	32.45	46.00	-13.55	peak
7	Χ	869.1301	64.77	-4.93	59.84	60.82	-0.98	AVG
8	X	869.1302	67.99	-4.93	63.06	80.82	-17.76	peak

Average Value=Peak Value-3.22

Emission Level= Read Level+ Correct Factor

Page: 19 of 30

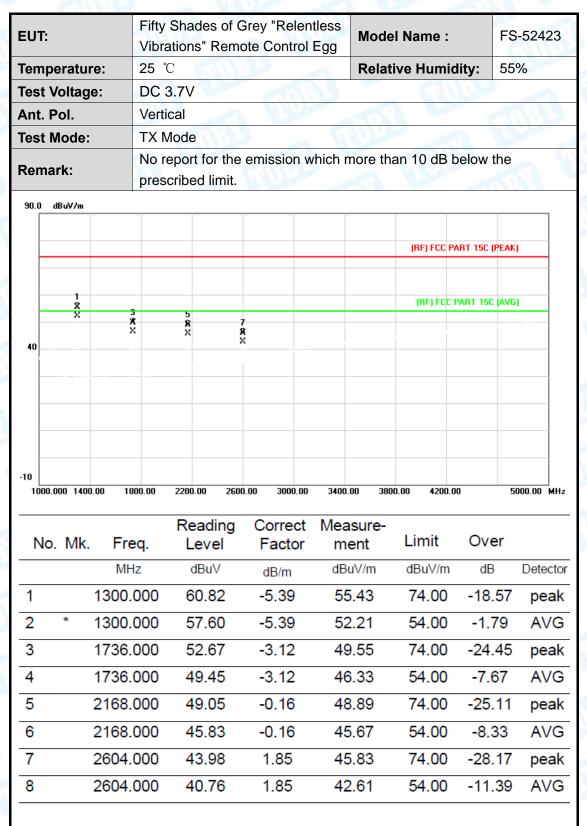
EUT:							rey "Relen		Mode	l Nam	е:		FS-	52423
Temperature:				Vibrations" Remote Control Egg 25 ℃				Relati	ive Hu	mid	itv:	55%	6	
est Vo				3.7	V		7.11		113141	8			/	
nt. Po				rtical	-		- UKG			V X			ar.	
est Mo					/ Mo	de		6				√ €		1
Test Wode.			Standby Mode No report for the emission which more than 10 dB below the											
Remark:				scrib										
80.0	0 dBu/	//m												1
										4 8				
										×				
										(RF)FCC 1			7 8 [
					Ţ							Margin -6 dB	X	
					_								Ш	
30										2	5 "Хум	colonial de consequences de la consequencia della consequencia della consequencia della consequencia della consequencia della c	WWW	
	Maker							1 X	how the property of the state o	by property	Marco o			
		bend who wash	MANAGE AND	- درول دور پاکلیار	AND THE PROPERTY AND ADDRESS OF	open handy week	dapat, philiphia fiyala, marin marin makiya palika singa par-	Water Warm	W111					
-20														
	0.000	40	50 6	0 70	80		(MHz)		300	400 5	00 60	00 700	1000.	000 000
No	Mk	F	req.	F	Read Lev	ding	Correct Factor		sure- ent	Limit	ŀ	Over		
	IVIK) oto oto
			ИНZ		dBu		dB/m		uV/m	dBuV		dB		Detector
1		256	.521	1	35.	56	-17.25	18	3.31	46.0	00	-27.6	9	peak
2		392	.095	1	35.	99	-12.53	23	3.46	46.0	00	-22.5	4	peak
3	Χ	434	.065	0	77.	75	-11.95	65.80		80.82		-15.02		AVG
4	*	434	.065	1	80.	97	-11.95	69.02		100.82		-31.80		peak
5		543	.274	2	36.	44	-9.27	27	7.17	46.0	00	-18.8	3	peak
6	X	869	.130	1	53.	00	-4.93	48	3.07	60.8	32	-12.7	'5	AVG
7	Χ	869	.130	2	56.	22	-4.93	51	1.29	80.8	32	-29.	53	peak
Averaç	-						2 ect Factor							


Note:

- (1) All Readings are Peak Value.
- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss
- (3) The QP measurement was not performed when the peak measured data under the limit of QP detection.

Page: 20 of 30

Above 1G



Emission Level= Read Level+ Correct Factor

Average Value=Peak Value-3.22

Page: 21 of 30

Emission Level= Read Level+ Correct Factor

Average Value=Peak Value-3.22

Page: 22 of 30

Other harmonics emissions are lower than 20dB below the allowable limit.

Note:

(1) All Readings are Peak Value and AV. And AV is calculated by the following: Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.

Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values.

Average Values=Peak Values+20log (Duty Cycle)

- (2) Emission Level= Reading Level + Probe Factor +Cable Loss
- (3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Pulse Desensitization Correction Factor

Note:

(1)The Smallest Pulse Width (PW)= 0.55ms

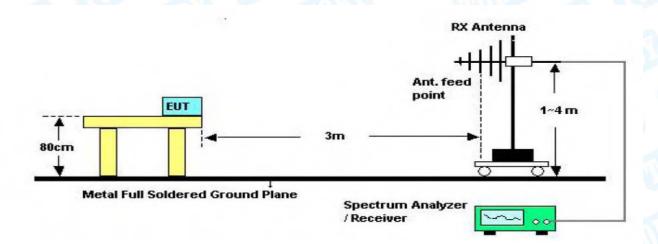
(2) 2/PW=2/0.55 (ms)= 3.636 kHz<100 kHz

Because 2/PW<RBW, so the PDCF is not needed.

Page: 23 of 30

6. Bandwidth

6.1 Test Standard and Limit


6.1.1 Test Standard FCC 15.231

6.1.2 Test Limit

The 99%bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. So the emission bandwidth limits have been calculated in below table.

Fundamental Frequency	20 dB Bandwidth Limits (MHz)			
433.92 MHz	1.0847			

6.2 Test Setup

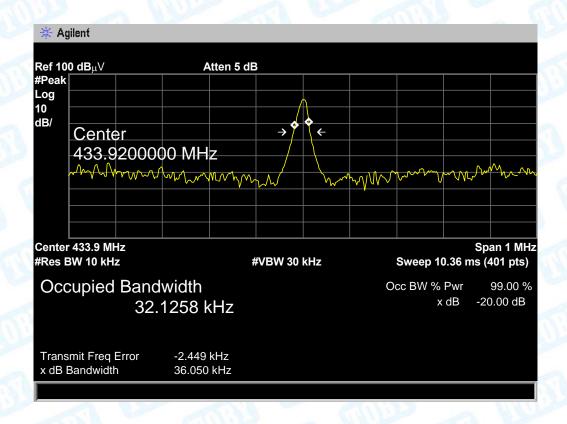
6.3 Test Procedure

- (1) Set Spectrum Analyzer Center Frequency= Fundamental Frequency, RBW=10 kHz, VBW= 30 kHz, Span= 1 MHz.
- (2) Measured the spectrum width with power higher than 20 dB below carrier.

6.4 EUT Operating Condition

The Equipment Under Test was Programmed to be in continuously transmitting mode.

6.5 Test Condition


Temperature		25 ℃
Relative Humidity	The same	65 %
Pressure	CIII 13	1010 hPa
Test Power		DC 3.7V

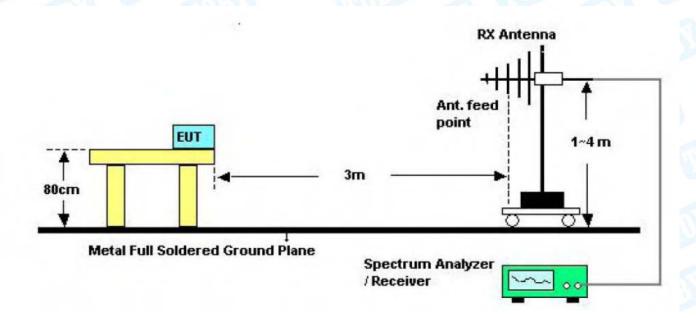
Page: 24 of 30

6.6 Test Data

Frequency (MHz)	20 dBc Bandwidth (kHz)	99% OBW (kHz)	Result
433.92	36.050	32.1258	PASS

Page: 25 of 30

7. Release Time Measurement


7.1 Test Standard and Limit

7.1.1 Test Standard FCC 15.231

7.1.2 Test Limit

According to FCC 15.231a, A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

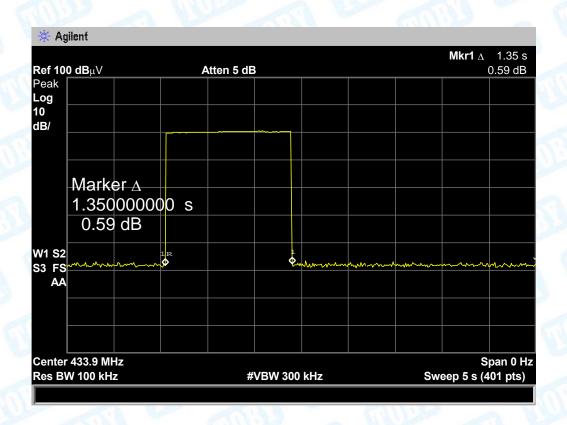
7.2 Test Setup

7.3 Test Procedure

- (1) Setup the EUT as show in the block diagram above.
- (2) Set Spectrum Analyzer Centre Frequency= Fundamental Frequency, RBW=100 kHz, VBW= 300 kHz, Span= 0 Hz. Sweep Time= 5 Seconds.
- (3) Setup the EUT as normal operation and press Transmitter button.
- (4) Set Spectrum Analyzer View, Delta Mark time.

7.4 EUT Operating Condition

The EUT was set to work in transmitting mode.

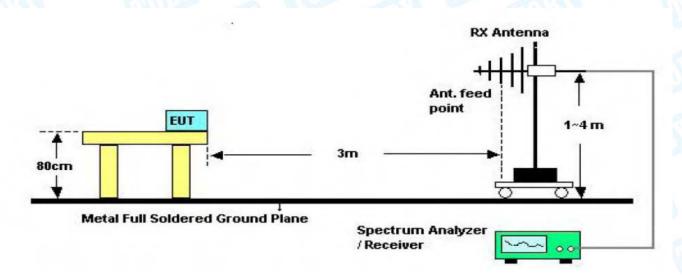

Page: 26 of 30

7.5 Test Condition

Temperature		25 ℃
Relative Humidity	-	65 %
Pressure	:/	1010 hPa
Test Power	:	DC 3.7V

7.6 Test Data

Release Time (s)	Limit (s)	Result
1.35	5	PASS


Page: 27 of 30

8. Duty Cycle

8.1 Test Standard and Limit

5.1.1 Test Standard FCC 15.231

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was placed on a turntable which is 0.8m above ground plane.
- (2) Set EUT operating in continuous transmitting mode.
- (3) Set the Spectrum Analyzer to the transmitter carrier frequency, and set the spectrum analyzer resolution bandwidth (RBW) to 100 kHz and video bandwidth (VBW) to 300 kHz, Span was set to 0 Hz.
- (4) The Duty Cycle was measured and recorded.

8.4 EUT Operating Condition

The EUT was programmed to be in transmitting mode.

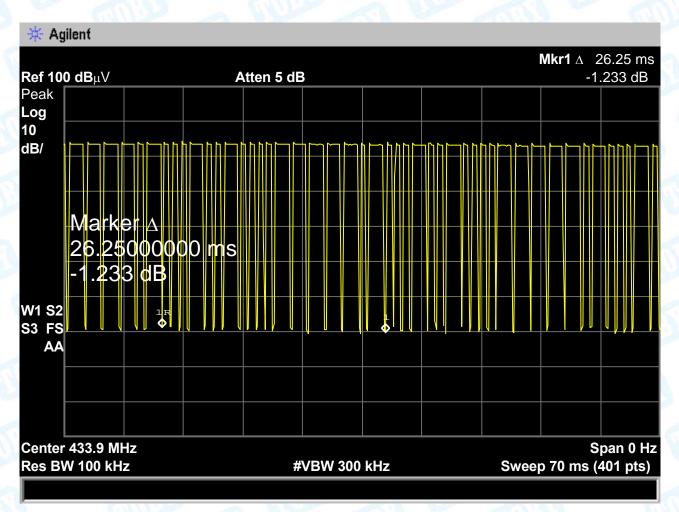
8.5 Test Condition

Temperature	25 ℃
Relative Humidity	65 %
Pressure	 1010 hPa
Test Power	DC 3.7V

Page: 28 of 30

8.6 Test Data

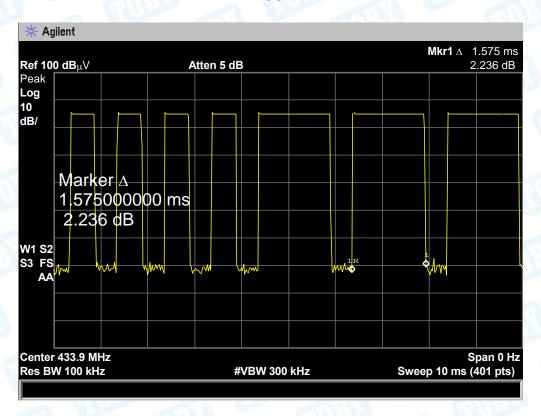
Please refer the following pages:

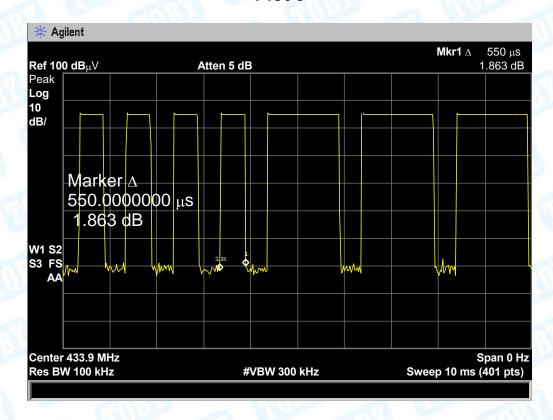

Plot 1/Plot 2: transmit once in 70ms, and each cycle is 26.25 ms there are three kinds of pulse in each cycle, the large pulses total 8, the small pulses total 10.

Plot 3: one large pulse in a time period of 1.575ms

Plot 4: one middle pulse in a time period of 0.55 ms

Duty Cycle=ON/Total=(8*1.575+10*0.55)/26.25=18.1/26.25=68.95% 20 log(Duty Cycle)=-3.22 Average=Peak Value+20log(Duty Cycle), AV=PK-3.22


Plot 1



Page: 29 of 30

Plot 2

Plot 3

Page: 30 of 30

9. Antenna Requirement

9.1 Standard Requirement

9.1.1 Standard FCC Part 15.203

9.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is an Printed Antenna. It complies with the standard requirement.

Antenna Type		
11000	▶ Permanent attached antenna	
B.	□ Unique connector antenna	
110	☐ Professional installation antenna	