

RF Exposure / MPE Calculation

Customer	AlphaTheta Corporation
Description of EUT	DJ Mixer
Model Number of EUT	DJM-V5
FCC ID	2AM73-0005
Issue Date	August 20, 2025
Approver	 Shunsaku Yumi Engineer

AlphaTheta Corporation declares that Model: DJM-V5 complies with FC radiation exposure requirement specified in the FCC Rule 2.1091 (for mobile).

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided with the "DJM-V5" as calculated from (B) Limits for General Population / Uncontrolled Exposure of TABLE 1- LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE) of §1.1310 Radiofrequency radiation exposure limits.

[RFID Part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 0.97mW/cm² (180/f²) uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

$$\begin{aligned} P_G &= 0.000000754 \text{ mW (Maximum average output power)} \\ r &= 20 \text{ cm (Separation distance)} \end{aligned}$$

$$\text{Power Density Result } S = 0.00000000015 \text{ mW/cm}^2$$

[2.4 GHz Part]

*A 2.4 GHz evaluates simultaneous transmission with installed certified modules (FCC ID: 2BHC6RTX1290)

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

$$\begin{aligned} P &= 4.57 \text{ mW (Maximum average output power)} \\ G &= 1.914 \text{ Numerical Antenna gain; equal to 2.82 dBi} \\ r &= 20 \text{ cm (Separation distance)} \end{aligned}$$

$$\text{Power Density Result } S = 0.00174 \text{ mW/cm}^2$$

Therefore, if RFID and 2.4 GHz transmit simultaneously,

$$0.00000000015 / 0.97 + 0.00174 / 1 = 0.00174000015 < 1$$