

TEST REPORT

Report No.: BCTC2406808499E

Applicant: Shenzhen HighGreat Innovation Technology

Development Co., Ltd.

Product Name: EMO Intelligent Flight Equipment

Test Model: HG-B03-US

Tested Date: 2024-05-31 to 2024-06-19

Issued Date: 2024-07-15

Shenzhen BCTC Testing Co., Ltd.

No.: BCTC/RF-EMC-005 Page: 1 of 62 Edition: B.2

FCC ID:2ALYRHG-B03-US

Product Name: EMO Intelligent Flight Equipment

Trademark: N/A

Model/Type Ref.: HG-B03-US

Prepared For: Shenzhen HighGreat Innovation Technology Development Co., Ltd.

Address: 2/F, Building 6, Yuanlingzi Industrial Zone, Hengping Road, Yuanshan Street,

Longgang District, Shenzhen, China

Manufacturer: Shenzhen HighGreat Innovation Technology Development Co., Ltd.

Address: 2/F, Building 6, Yuanlingzi Industrial Zone, Hengping Road, Yuanshan Street,

Longgang District, Shenzhen, China

Prepared By: Shenzhen BCTC Testing Co., Ltd.

Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei,

Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Sample Received Date: 2024-05-31

Sample tested Date: 2024-05-31 to 2024-06-19

Report No.: BCTC2406808499E

FCC Part15 15.407

Test Standards: ANSI C63.10-2013

KDB 662911 D01 v02r01

KDB 789033 D02 v02r01

Test Results: PASS

Tested by:

Brave 2emg

Brave Zeng/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

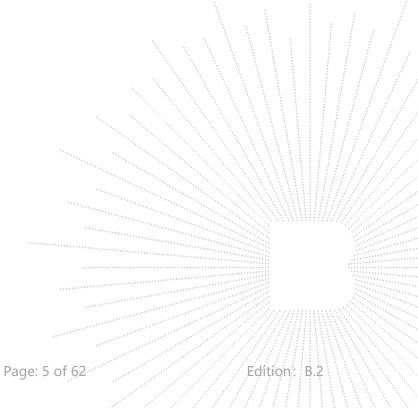
No.: BCTC/RF-EMC-005 Page: 2 of 62

Table of Content

7	est Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information and Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	8
4.3	Support Equipment	
4.4	Channel List	9
4.5	Test Mode	10
4.6	Table Of Parameters Of Text Software Setting	10
4.7	Antenna	
5.	Test Facility And Test Instrument Used	12
5.1	Test Facility	
5.2	Test Instrument Used	
6.	Conducted Emissions	14
6.1	Block Diagram Of Test Setup	14
6.2	Limit	14
6.3	Test Procedure	14
6.4	EUT Operating Conditions	15
6.5	Test Result	
7.	Radiated Emissions	18
7.1	Block Diagram Of Test Setup	18
7.2	Limit	
7.3	Test Procedure	
7.4	EUT Operating Conditions	
7.5	Test Result	21
8.	Power Spectral Density Test	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test Procedure	
8.4	EUT Operating Conditions	
8.5	Test Result	
9.	26dB & 6dB & 99% Emission Bandwidth	
9.1	Block Diagram Of Test Setup	.\.\
9.2	Limit	
9.3	Test Procedure	35
9.4	EUT Operating Conditions	35
9.5	Block Diagram Of Test Setup	36
10.	Maximum Conducted Output Power	43
10.1	Block Diagram Of Test Setup	43
10.2	Limit	43
10.4	EUT Operating Conditions	45
10.5	Test Result	46

No.: BCTC/RF-EMC-005

Report No.: BCTC2406808499E


11.	Out Of Band Emissions	47
11.1	Block Diagram Of Test Setup	.47
11.2	Limit	.47
11.3	Test Procedure	.47
11.4	EUT Operating Conditions	.47
11.5	Test Result	.47
12.	Spurious RF Conducted Emissions	.50
12.1	Block Diagram Of Test Setup	.50
12.2	Limit	.50
12.3	Test Procedure	.50
12.4		
13.	Frequency Stability Measurement	.54
13.1	Block Diagram Of Test Setup	.54
13.2	Limit	.54
13.3	Test Procedure	.54
13.4	Test Result	.55
14.	Duty Cycle Of Test Signal	.58
14.1	Standard Requirement	.58
14.2	Formula	.58
14.3	Test Procedure	.58
14.4	Test Result	.58
15.	Antenna Requirement	.59
15.1	Limit	.59
15.2	Test Result	.59
16.	EUT Test Setup Photographs	.60

Version 1.

Report No. Issue Date		Description	Approved
BCTC2406808499E	2024-07-15	Original	Valid

No.: BCTC/RF-EMC-005

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Spurious Radiated Emissions	15.209(a), 15.407 (b)	PASS
2	Conducted Emission	15.207	PASS
3	26 dB and 99% Emission Bandwidth	15.407 (a)	PASS
4	Minimum 6 dB bandwidth	15.407(e)	PASS
5	Maximum Conducted Output Power	15.407 (a)	PASS
6	Band Edge	15.407(b)	PASS
7	Power Spectral Density	15.407 (a)	PASS
8	Spurious Emissions at Antenna Terminals	15.407(b)	PASS
9	Antenna Requirement	15.203	PASS

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(9kHz-30MHz)	U=3.7dB
2	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission(150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

No.: BCTC/RF-EMC-005 Page: 7 of 62 Edition: B.2

Product Information and Test Setup

Product Information 4.1

Model/Type Ref.: HG-B03-US	
Model differences:	N/A
Hardware Version:	N/A
Software Version:	N/A
IEEE 802.11 WLAN Mode Supported	⊠802.11a ⊠802.11n(20MHz channel bandwidth)
Operation Frequency:	5745-5825MHz for 802.11a/n/ac(HT20)
Data Rate	⊠802.11a:54/48/36/24/18/12/9/6Mbps ⊠802.11n:up to 300 Mbps
Type of Modulation:	⊠OFDM with BPSK/QPSK/16QAM/64QAM for 802.11a/n
Number Of Channel	5 channels for 802.11a/n20 in the 5745-5825MHz band ;
Antenna installation:	Internal antenna*2
Antenna Gain:	Antenna A : 6.75dBi Antenna B:2dBi
Remark:	The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information.
Power supply:	DC 14.54V from battery
Battery:	DC 14.54V,3350mAh



4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	EMO Intelligent Flight Equipment	N/A	HG-B03-US	N/A	EUT
E-2	Adapter	N/A	N/A	N/A	Auxiliary

Item	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	N/A	N/A

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

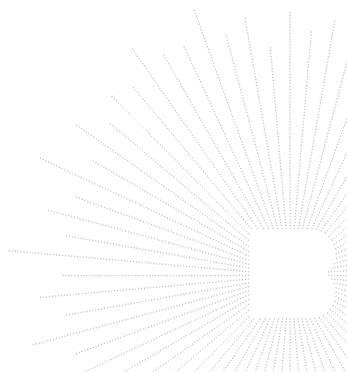
4.4 Channel List

Frequency and Channel list for (5745-5825MHz):

802.11a/n(20 MHz) Carrier Frequency Channel							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	-	-		2-4		

No.: BCTC/RF-EMC-005 Page: 9 of 62 Edition: B.2

4.5 Test Mode


To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	802.11a /n/ ac 20 CH149/CH165
Mode 2	Transmitting (Radiated emission)
Mode 3	Charging(Conducted Emissions)

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	CMD		
Parameters	DEF	DEF	DEF

No.: BCTC/RF-EMC-005 Page: 10 of 62 // / Edition: B.2

4.7 Antenna

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For power measurements on IEEE 802.11 devices,

Directional gain = GANT + Array Gain, where Array Gain is as follows:

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4 .

GANT is set equal to the gain of the antenna having the highest gain.

For PSD measurements, the directional gain calculation follows F)2)f)ii) of KDB 662911 D01 v02r01.

$$\bullet \quad Directional Gain = 10 \cdot \log \left[\frac{\sum\limits_{j=1}^{N_{SS}} \left\{ \sum\limits_{k=1}^{N_{ANT}} \mathcal{Z}_{j,k} \right\}^2}{N_{ANT}} \right]$$

where

Each antennais driven by no more than one spatial stream;

 N_{XX} = the number of independent spatial streams of data;

 N_{ANT} = the total number of antennas

 $g_{jk} = 10^{G_k/20}$ if the kth antenna is being fed by spatial stream j, or zero if it is not, G_k is the gain in dBi of the kth antenna.

As minimum NSS=1 is supported by EUT, the formula can be simplified as:

Directional gain = $10*\log[(10^{G1/20} + 10^{G2/20} + \cdots + 10^{GN/20})^2/N_{ANT}] dBi$

Where G1, G2···.GN denotes single antenna gain.

If a device has two antenna, GANTA= 6.75dBi; GANTB=2dBi;

Directional gain of power measurement = max (6.75, 2,) + 0 = 6.75 dBi

Directional gain of PSD measurement = $10 * log [(10^{6.75/20} + 10^{2/20})^2 / 2] = 7.71 dBi$

	Antenna A (dBi)	Antenna B (dBi)	Directional gain for Power (dBi)	Directional gain for PSD (dBi)
5745-5825MHz	6.75	2	6.75	7.71

No.: BCTC/RF-EMC-005 Page: 11 of 62 // / Edition: B.2

5. **Test Facility And Test Instrument Used**

5.1 **Test Facility**

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing C o., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuha i Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212 ISED Registered No.: 23583

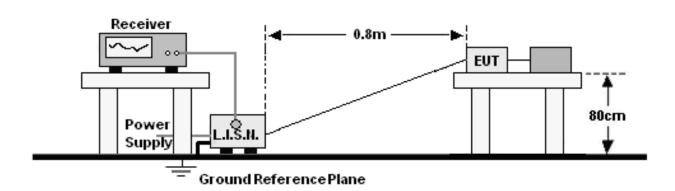
ISED CAB identifier: CN0017

5.2 Test Instrument Used

	Conducted Emissions Test							
Equipment	Manufacturer	anufacturer Model# Serial# Last Cal. Ne						
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025			
LISN	R&S	ENV216	101375	May 16, 2024	May 15, 2025			
Software	Frad	EZ-EMC	EMC-CON 3A1	\	\			
Pulse limiter	Schwarzbeck	VTSD 9561-F	01323	May 16, 2024	May 15, 2025			

	RF Conducted Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Power meter	Keysight	E4419	\	May 16, 2024	May 15, 2025		
Power Sensor (AV)	Keysight	E9300A	\	May 16, 2024	May 15, 2025		
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 16, 2024	May 15, 2025		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025		

No.: BCTC/RF-EMC-005 Page: 12 of 62 Edition: B.2


	Rad	iated Emission	s Test (966 Chan	nber)	
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	May 16, 2024	May 15, 2025
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025
Receiver	R&S	ESRP	101154	May 16, 2024	May 15, 2025
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 16, 2024	May 15, 2025
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 21, 2024	May 20, 2025
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 21, 2024	May 20, 2025
Amplifier	SKET	LAPA_01G1 8G-45dB	SK202104090 1	May 16, 2024	May 15, 2025
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 21, 2024	May 20, 2025
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 16, 2024	May 15, 2025
Horn Antenn(18GH z-40GHz)	Schwarzbeck	BBHA9170	00822	May 21, 2024	May 20, 2025
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025
Software	Frad	EZ-EMC	FA-03A2 RE	\	\

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

Fraguency (MH=)	Limit (dBuV)		
Frequency (MHz)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

- 1. *Decreasing linearly with logarithm of frequency.
- 2. The lower limit shall apply at the transition frequencies.

6.3 Test Procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

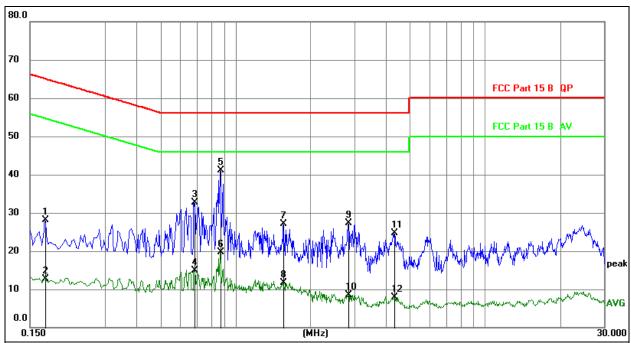
c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

No.: BCTC/RF-EMC-005 Page: 14 of 62 Edition: B.2

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

6.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

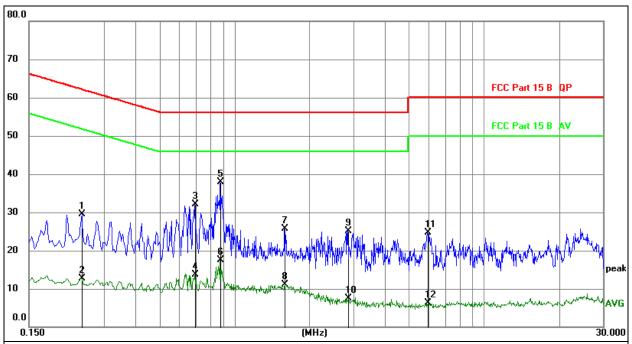

Page: 15 of 62 Edition: B.2

No.: BCTC/RF-EMC-005

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120/60Hz
Test Mode:	Mode 3	Polarization :	L

Remark:


- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.
- 3. Measurement=Reading Level+ Correct Factor
- 4. Over= Measurement-Limit

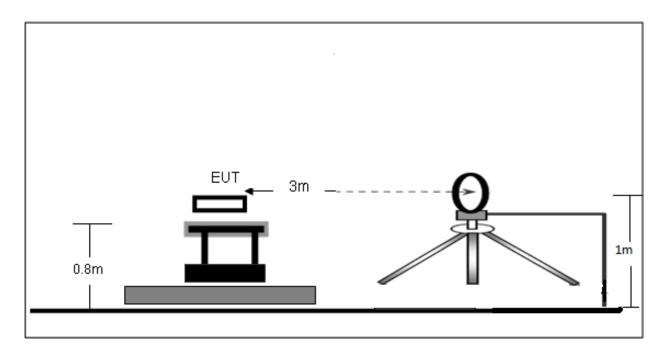
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz		dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1725	17.93	10.18	28.11	64.84	-36.73	QP		
2	0.1725	2.59	10.18	12.77	54.84	-42.07	AVG		
3	0.6855	22.54	10.19	32.73	56.00	-23.27	QP		
4	0.6855	4.69	10.19	14.88	46.00	-31.12	AVG		
5 *	0.8700	30.88	10.21	41.09	56.00	-14.91	QP		
6	0.8700	9.43	10.21	19.64	46.00	-26.36	AVG		
7	1.5585	17.06	10.14	27.20	56.00	-28.80	QP		
8	1.5585	1.53	10.14	11.67	46.00	-34.33	AVG		
9	2.8275	17.07	10.15	27.22	56.00	-28.78	QP		
10	2.8275	-1.57	10.15	8.58	46.00	-37.42	AVG		
11	4.3260	14.38	10.27	24.65	56.00	-31.35	QP		
12	4.3260	-2.37	10.27	7.90	46.00	-38.10	AVG		

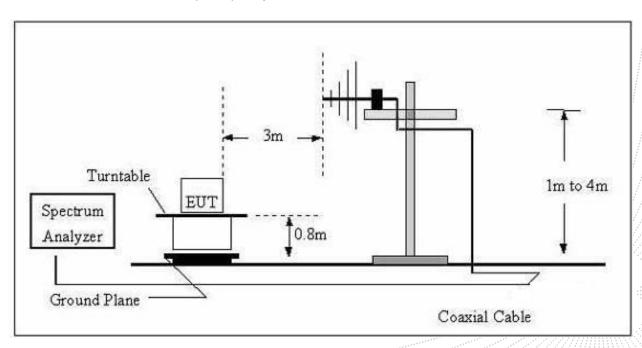
No.: BCTC/RF-EMC-005 Page: 16 of 62 Edition: B.2

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz
Test Mode:	Mode 3	Polarization :	N

Remark:

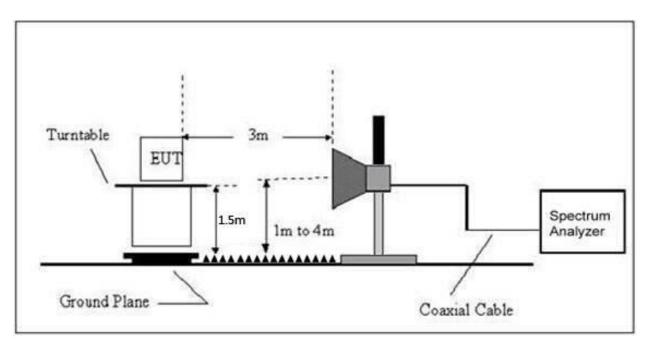
- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.
- 3. Measurement=Reading Level+ Correct Factor
- 4. Over= Measurement-Limit


lo. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz		dB	dBuV	dBuV	dB	Detector	Comment
1	0.2445	19.41	10.19	29.60	61.94	-32.34	QP	
2	0.2445	2.53	10.19	12.72	51.94	-39.22	AVG	
3	0.6945	21.86	10.19	32.05	56.00	-23.95	QP	
4	0.6945	3.61	10.19	13.80	46.00	-32.20	AVG	
5 *	0.8790	27.78	10.21	37.99	56.00	-18.01	QP	
6	0.8790	7.27	10.21	17.48	46.00	-28.52	AVG	
7	1.5900	15.57	10.14	25.71	56.00	-30.29	QP	
8	1.5900	1.04	10.14	11.18	46.00	-34.82	AVG	
9	2.8500	15.01	10.16	25.17	56.00	-30.83	QP	
10	2.8500	-2.56	10.16	7.60	46.00	-38.40	AVG	
11	5.9325	14.44	10.32	24.76	60.00	-35.24	QP	
12	5.9325	-4.04	10.32	6.28	50.00	-43.72	AVG	


7. Radiated Emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz


(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

No.: BCTC/RF-EMC-005 Page: 18 of 62 / Edition: B.2

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

No.: BCTC/RF-EMC-005 Page: 19 of 62 Edition: B.2

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)			
Frequency (Miriz)	Peak	Average		
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

7.3 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205.

It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

No.: BCTC/RF-EMC-005 Page: 20 of 62 // /Edition B.2

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the

narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

Below 30MHz

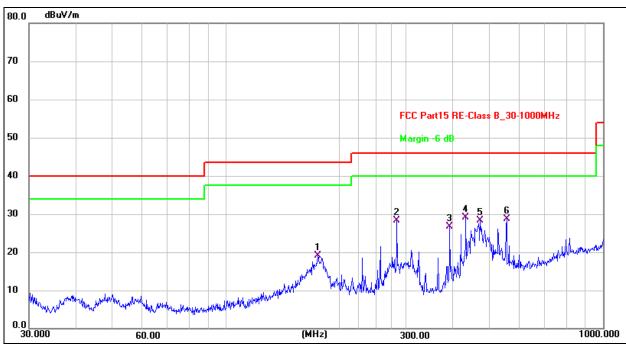
Temperature:	26 ℃	Relative Humidity:	24%
Pressure:	101 kPa	Test Voltage:	DC 14.54V
Test Mode:	Mode 2	Polarization:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
		-		PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

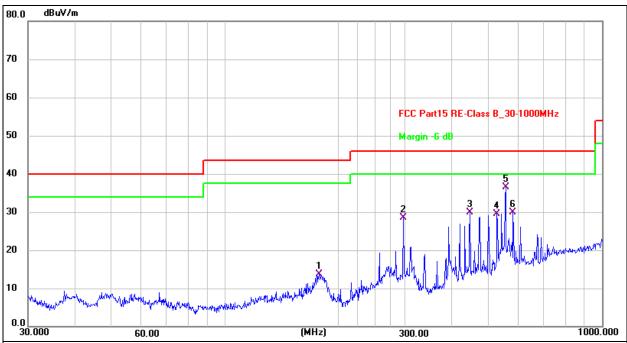

Limit line = specific limits(dBuv) + distance extrapolation factor.

No.: BCTC/RF-EMC-005 Page: 21 of 62 // / Edition: B.2

Between 30MHz - 1GHz

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage:	DC 14.54V
Test Mode:	Mode 2	Polarization :	Horizontal

Remark:


- 1.Factor = Antenna Factor + Cable Loss Pre-amplifier.
- 2. Measurement=Reading Level+ Correct Factor
- 3. Over= Measurement-Limit

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	175.0368	36.96	-17.87	19.09	43.50	-24.41	QP
2	283.9791	45.69	-17.44	28.25	46.00	-17.75	QP
3	392.0951	40.98	-14.22	26.76	46.00	-19.24	QP
4 *	432.5457	42.33	-13.22	29.11	46.00	-16.89	QP
5	472.1760	40.24	-12.03	28.21	46.00	-17.79	QP
6	554.8254	38.79	-10.10	28.69	46.00	-17.31	QP

No.: BCTC/RF-EMC-005 Page: 22 of 62 Edition: B.2

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage:	DC 14.54V
Test Mode:	Mode 2	Polarization :	Vertical

Remark:

- 1.Factor = Antenna Factor + Cable Loss Pre-amplifier.
 2. Measurement=Reading Level+ Correct Factor
 3. Over= Measurement-Limit

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	177.5092	31.88	-18.09	13.79	43.50	-29.71	QP
2	297.2241	45.50	-16.99	28.51	46.00	-17.49	QP
3	446.4141	42.60	-12.77	29.83	46.00	-16.17	QP
4	526.3967	40.41	-10.91	29.50	46.00	-16.50	QP
5 *	554.8254	46.56	-10.10	36.46	46.00	-9.54	QP
6	580.7026	39.27	-9.28	29.99	46.00	-16.01	QP

No.: BCTC/RF-EMC-005 Page: 23 of 62 Edition: B.2

Test Mode: TX(5.8G) - 802.11a

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector Type
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
		Low C	hannel (5745	5 MHz)-Above	: 1G		
Vertical	4679.125	59.13	-20.24	38.89	54	-15.11	Pk
Vertical	11490.025	64.23	-8.79	55.44	68.2	-12.76	AV
Vertical	11490.025	49.42	-8.79	40.63	54	-13.37	Pk
Vertical	17235.084	56.30	-3.18	53.12	68.2	-15.08	AV
Vertical	17235.084	44.01	-3.18	40.83	54	-13.17	Pk
Vertical	4679.121	70.14	-20.73	49.41	74	-24.59	AV
Horizontal	4679.121	59.75	-20.73	39.02	54	-14.98	Pk
Horizontal	11490.156	64.26	-8.79	55.47	68.2	-12.73	AV
Horizontal	11490.156	49.64	-8.79	40.85	54	-13.15	Pk
Horizontal	17235.071	59.61	-3.18	56.43	68.2	-11.77	AV
Horizontal	17235.071	44.16	-3.18	40.98	54	-13.02	Pk
Horizontal	4679.125	59.13	-20.24	38.89	54	-15.11	AV
		middle	Channel (578	35 MHz)-Abov	e 1G		
Vertical	4592.075	74.05	-20.42	53.63	74	-20.37	Pk
Vertical	4592.075	59.31	-20.42	38.89	54	-15.11	AV
Vertical	11570.042	62.02	-8.86	53.16	68.2	-15.04	Pk
Vertical	11570.042	49.48	-8.86	40.62	54	-13.38	AV
Vertical	17355.083	58.16	-2.52	55.64	68.2	-12.56	Pk
Vertical	17355.083	44.07	-2.52	41.55	54	-12.45	AV
Horizontal	4592.166	71.86	-20.42	51.44	74	-22.56	Pk
Horizontal	4592.166	59.89	-20.42	39.47	54	-14.53	AV
Horizontal	11570.001	60.22	-8.86	51.36	68.2	-16.84	Pk
Horizontal	11570.001	49.79	-8.86	40.93	54	-13.07	AV
Horizontal	17355.022	57.04	-2.52	54.52	68.2	₁ -13.68	Pk
Horizontal	17355.022	44.15	-2.52	41.63	54	-12.37	AV
		High C	Channel (582	5 MHz)-Above	1G ,		
Vertical	6039.058	72.53	-18.93	53.60	68.2	-14.60	Pk
Vertical	6039.058	59.10	-18.93	40.17	54	-13.83	AV
Vertical	11650.041	60.04	-8.92	51.12	74	-22.88	Pk
Vertical	11650.041	49.16	-8.92	40.24	54	-13.76	AV
Vertical	17475.138	59.24	-1.86	57.38	68.2	-10.82	Pk
Vertical	17475.138	44.12	-1.86	42.26	54	-11.74	AV
Horizontal	6039.175	74.03	-18.93	55.10	68.2	-13.10	Pk
Horizontal	6039.175	59.23	-18.93	40.30	54	-13.70	AV
Horizontal	11650.096	64.60	-8.92	55.68	74	-18.32	Pk
Horizontal	11650.096	49.60	-8.92	40.68	54	-13.32	AV
Horizontal	17475.100	56.17	-1.86	54.31	68.2	-13.89	Pk
Horizontal	17475.100	44.06	-1.86	42.20	54	-11.80	AV

Note: PK value is lower than the Average value limit, So average didn't record.

The 26.5-40G amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level. The worst case is Antenna A.

No.: BCTC/RF-EMC-005 Page: 24 of 62 / Edition: B.2

Test Mode: TX(5.8G) - 802.11n-HT20

Test Mode:	TX(5.8G) -	802.11n-HT20)				
Polar	Frequency	Reading	Correct	Measure-	Limits	Over	Detector
(H/V)	(MHz)	Level (dBuV/m)	Factor (dB)	ment (dBuV/m)	(dBuV/m)	(dB)	Туре
(11/7)	(1011-12)		. ,	5 MHz)-Above		(ub)	
Vertical	4679.000	74.13	-20.24	53.89	74	-20.11	Pk
Vertical	4679.000	59.23	-20.24	38.99	54	-15.01	AV
Vertical	11490.158	64.27	-8.79	55.48	68.2	-12.72	Pk
Vertical	11490.158	49.71	-8.79	40.92	54	-13.08	AV
Vertical	17235.070	59.31	-3.18	56.13	68.2	-12.07	Pk
Vertical	17235.070	44.23	-3.18	41.05	54	-12.95	AV
Horizontal	4679.168	71.05	-20.24	50.81	74	-23.19	Pk
Horizontal	4679.168	59.10	-20.24	38.86	54	-15.14	AV
Horizontal	11490.160	63.83	-8.79	55.04	68.2	-13.16	Pk
Horizontal	11490.160	49.79	-8.79	41.00	54	-13.00	AV
Horizontal	17235.085	56.62	-3.18	53.44	68.2	-14.76	Pk
Horizontal	17235.085	44.30	-3.18	41.12	54	-12.88	AV
	middle Channel (5785 MHz)-Above 1G						
Vertical	4592.033	74.14	-20.42	53.72	74	-20.28	Pk
Vertical	4592.033	59.62	-20.42	39.21	54	-14.79	AV
Vertical	11570.199	61.71	-8.86	52.85	68.2	-15.35	Pk
Vertical	11570.199	49.86	-8.86	41.00	54	-13.00	AV
Vertical	17355.065	57.44	-2.52	54.92	68.2	-13.28	Pk
Vertical	17355.065	44.10	-2.52	41.58	54	-12.42	AV
Horizontal	4592.193	72.52	-20.42	52.11	74	-21.89	Pk
Horizontal	4592.193	59.01	-20.42	38.59	54	-15.41	AV
Horizontal	11570.039	62.59	-8.86	53.73	68.2	-14.47	Pk
Horizontal	11570.039	49.01	-8.86	40.15	54	-13.85	AV
Horizontal	17355.102	59.18	-2.52	56.66	68.2	-11.54	Pk
Horizontal	17355.102	44.41	-2.52	41.89	54	-12.11	, AV
		High (Channel (582	5 MHz)-Above	1G		
Vertical	6039.141	73.98	-18.93	55.04	68.2	-13.16	Pk
Vertical	6039.141	59.62	-18.93	40.69	54	-13.31	AV
Vertical	11650.178	60.22	-8.92	51.30	74	-22.70	Pk
Vertical	11650.178	49.08	-8.92	40.16	54	-13.84	AV
Vertical	17475.026	57.98	-1.86	56.12	68.2	-12.08	Pk
Vertical	17475.026	44.60	-1.86	42.74	54	-11.26	AV
Horizontal	6039.104	73.04	-18.93	54.10	68.2	-14.10	Pk
Horizontal	6039.104	59.21	-18.93	40.28	54	-13.72	AV
•	•	•	i .	11.	• 10 Th. 10		

Report No.: BCTC2406808499E

Note: PK value is lower than the Average value limit, So average didn't record.

63.35

49.46

59.45

44.19

The 26.5-40G amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

-8.92

-8.92

-1.86

-1.86

54.43

40.54

57.59

42.33

74

54

68.2

54

-19.57

-13.46

-10.61

-11.67

Pk

ΑV

Pk

ΑV

Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Test Mode is MIMO(antenna A+ antenna B) Mode.

11650.196

11650.196

17475.107

17475.107

Horizontal

Horizontal

Horizontal

Horizontal

No.: BCTC/RF-EMC-005 Page: 25 of 62 // Edition: B.2

8. Power Spectral Density Test

8.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

8.2 Limit

For the band 5.15-5.25 GHz,

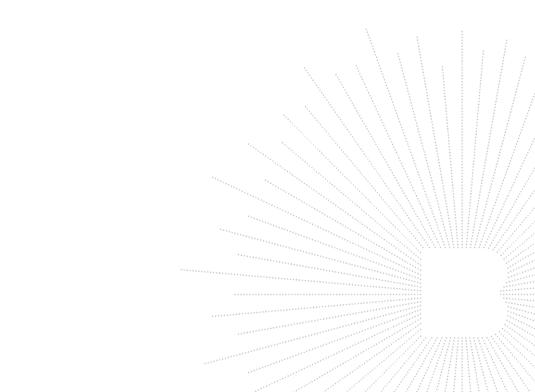
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz

(3)For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

No.: BCTC/RF-EMC-005 Page: 26 of 62 // / Edition: B.2

8.3 Test Procedure


For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

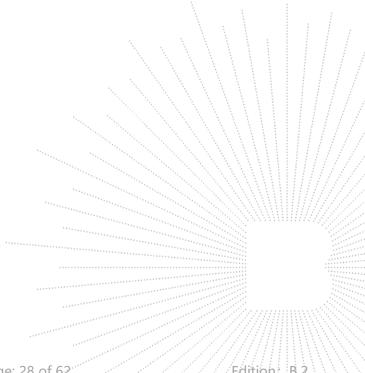
- a) Set RBW ≥ 1/T, where T is defined in section II.B.l.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

8.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

No.: BCTC/RF-EMC-005 Page: 27 of 62 / / Edition: B.2



8.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%		
Pressure:	101KPa	Test Voltage:	DC 14.54V		
Test Mode:	(5745-5825MHz)				

Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/500KHz)		Total (dBm/500KH)	Limit (dBm/500KHz)	Verdict
		(1711-12)	Ant A	Ant B	(ubiii/300Kiii)	(ubili/300KHZ)	
NVNT	а	5745	-1.76	-1.62	/	30	Pass
NVNT	а	5785	-1.03	-1.47	/	30	Pass
NVNT	а	5825	-1.51	-1.5	/	30	Pass
NVNT	n20	5745	-2.35	-2.83	0.43	28.29	Pass
NVNT	n20	5785	-2.27	-2.54	0.61	28.29	Pass
NVNT	n20	5825	-2.43	-2.6	0.50	28.29	Pass

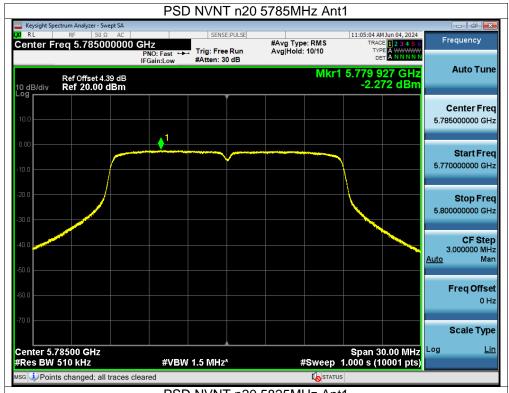
Total: antenna A+ antenna B



No.: BCTC/RF-EMC-005 Page: 28 of 62 Edition: B.2

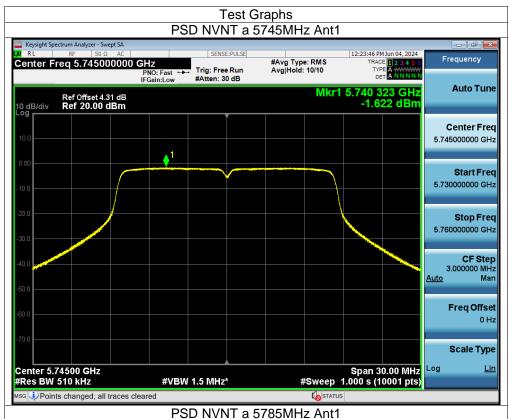
Ant A:

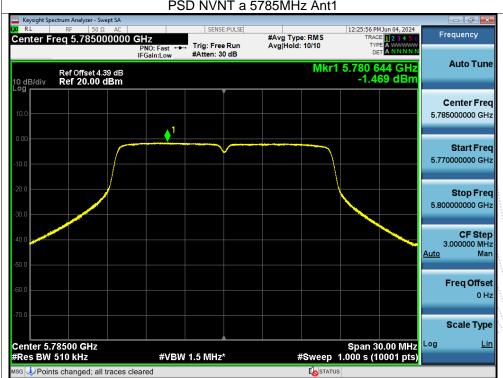
No.: BCTC/RF-EMC-005 Page: 29 of 62 / Edition: B.2





No.: BCTC/RF-EMC-005 Page: 30 of 62 Edition: B.2



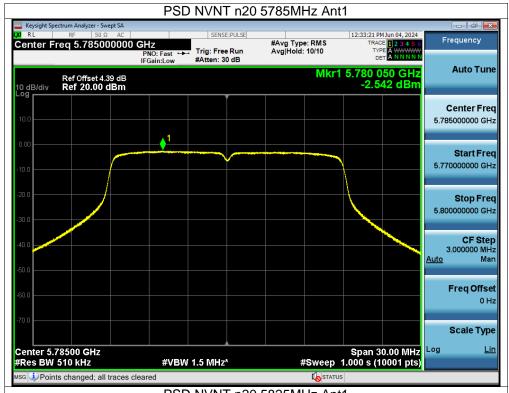


No.: BCTC/RF-EMC-005 Page: 31 of 62 Edition: B.2

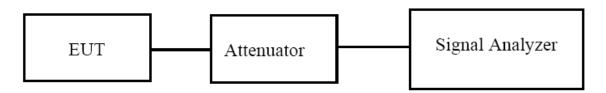
Ant B:



No.: BCTC/RF-EMC-005 Page: 32 of 62 Edition: B.2



No.: BCTC/RF-EMC-005 Page: 33 of 62 Edition: B.2



No.: BCTC/RF-EMC-005 Page: 34 of 62 Edition: B.2

9. 26dB & 6dB & 99% Emission Bandwidth

9.1 Block Diagram Of Test Setup

9.2 Limit

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

9.3 Test Procedure

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

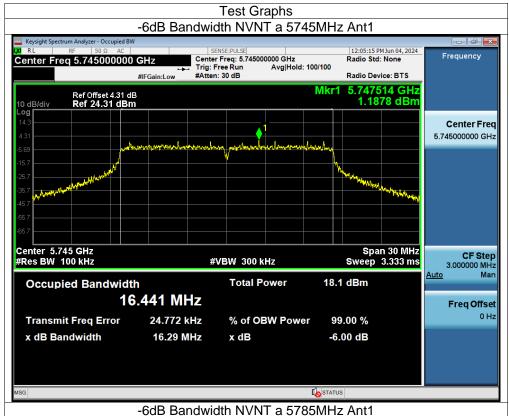
9.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

No.: BCTC/RF-EMC-005 Page: 35 of 62 // / Edition: B.2

9.5 Test Result

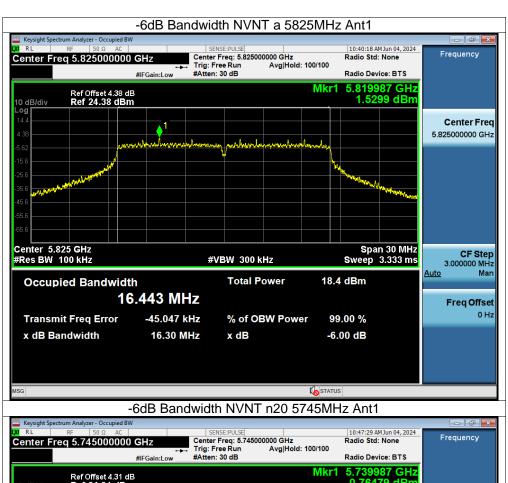
Note: (A)(B) Represent the value of antenna A and B , The worst data is Antenna A, only shown Antenna A Plot.


Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	DC 14.54V
Test Mode:	(5745-5825MHz)		

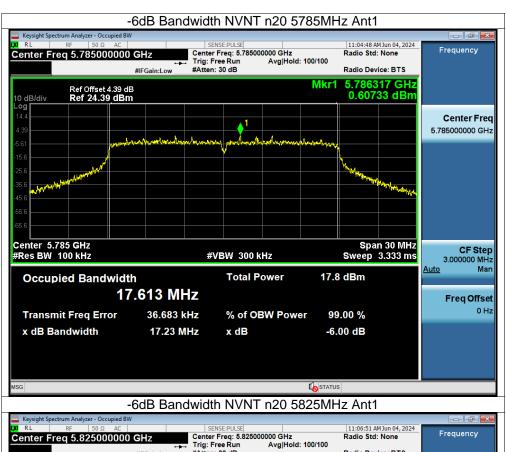
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	а	5745	16.293	0.5	Pass
NVNT	а	5785	16.381	0.5	Pass
NVNT	а	5825	16.303	0.5	Pass
NVNT	n20	5745	16.898	0.5	Pass
NVNT	n20	5785	17.231	0.5	Pass
NVNT	n20	5825	17.000	0.5	Pass

Condition	Mode	Frequency (MHz)	99% OBW (MHz)
NVNT	а	5745	16.573
NVNT	а	5785	16.572
NVNT	а	5825	16.555
NVNT	n20	5745	17.698
NVNT	n20	5785	17.68
NVNT	n20	5825	17.678

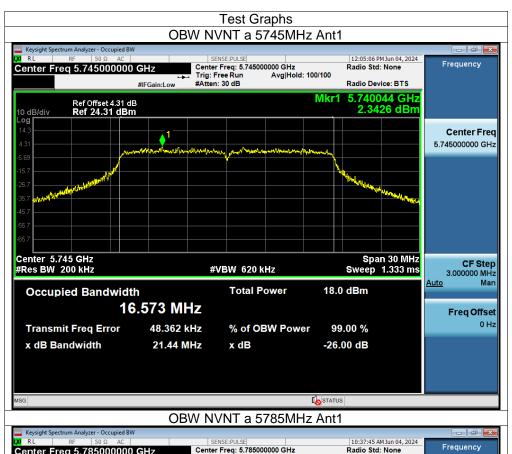
No.: BCTC/RF-EMC-005 Page: 36 of 62 / Edition: B.2

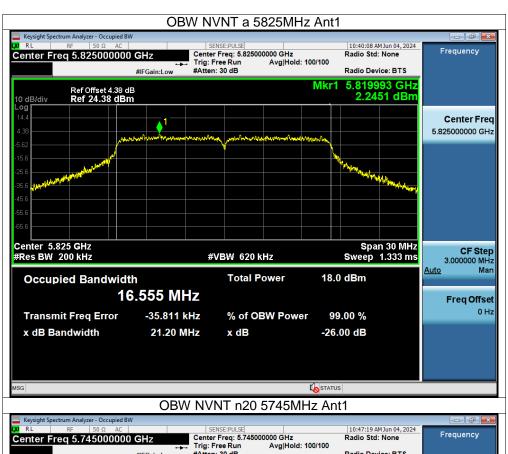


No.: BCTC/RF-EMC-005 Page: 37 of 62 Edition: B.2



No.: BCTC/RF-EMC-005 Page: 38 of 62 / Edition: B.2




No.: BCTC/RF-EMC-005 Page: 39 of 62 Edition: B.2

10. Maximum Conducted Output Power

10.1 Block Diagram Of Test Setup

POWER METER	EUT	POWER	METER

10.2 Limit

According to FCC §15.407

- For the band 5.15-5.25 GHz,
- (a) (1) (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (a) (1) (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (a) (1) (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (a) (1) (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- For the 5.25-5.35 GHz and 5.47-5.725 GHz bands
- (a) (2) The maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition,

No.: BCTC/RF-EMC-005 Page: 43 of 62 // /Edition B.2

the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

■ For the band 5.725-5.85 GHz

(a) (3) for the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations

10.3 Test Procedure

Maximum conducted output power may be measured using a spectrum analyzer/EMI receiver or an RF power meter.

1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

- a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.
- b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.
- 2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

- a) The test method shall be selected as follows: (i) Method SA-1 or SA-1 Alternative (averaging with the EUT transmitting at full power throughout each sweep) shall be applied if either of the following conditions can be satisfied:
 - The EUT transmits continuously (or with a duty cycle ≥ 98 percent).
- Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.

No.: BCTC/RF-EMC-005 Page: 44 of 62 Edition: B.2

- (ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered to be constant if variations are less than ± 2 percent.
- (iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.
- b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.
 - (ii) Set RBW = 1 MHz.
 - (iii) Set VBW ≥ 3 MHz.
- (iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
 - (v) Sweep time = auto.
 - (vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- (vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
 - (viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- (ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

10.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

No.: BCTC/RF-EMC-005 Page: 45 of 62 / Edition: B.2

10.5 Test Result

Temperature:	26 °C	Relative Humidity:	54%			
Pressure:	101KPa	Test Voltage:	DC 14.54V			
Test Mode:	5745-5825MHz					

Condition	Modo	Mode Frequency (MHz) Conducted Power (dBm)				Verdict
Condition	Frequency (WITIZ)	Ant A	Ant B	(dBm)	verdict	
NVNT	а	5745	12.36	12.33	30	Pass
NVNT	а	5785	12.82	12.67	30	Pass
NVNT	а	5825	12.23	12.34	30	Pass
NVNT	n20	5745	11.98	11.65	30	Pass
NVNT	n20	5785	11.77	11.72	30	Pass
NVNT	n20	5825	11.77	11.3	30	Pass

For MIMO

Operating mode	Channel Freq. (MHz)	Conducted Output Power(dBm)	Limit (dBm)	Verdict
n20	5745	14.83	29.25	Pass
n20	5785	14.76	29.25	Pass
n20	5825	14.55	29.25	Pass

No.: BCTC/RF-EMC-005 Page: 46 of 62 Edition: B.2

11. Out Of Band Emissions

11.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

11.2 Limit

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

11.3 Test Procedure

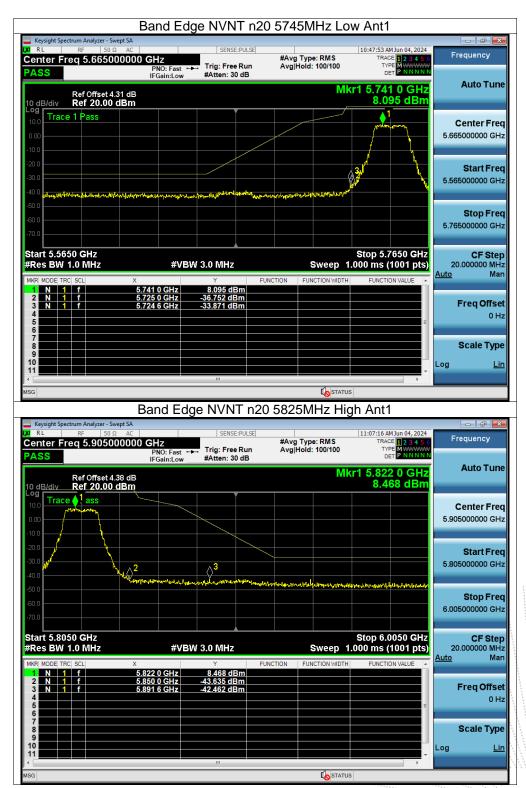
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

11.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data

11.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Test Voltage:	DC 14.54V


No.: BCTC/RF-EMC-005 Page: 47 of 62 // /Edition B.2

Note: (A)(B)Represent the value of antenna A and B , The worst data is Antenna A, only shown Antenna A. Antenna A: 5745-5825MHz

12. Spurious RF Conducted Emissions

12.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

12.2 Limit

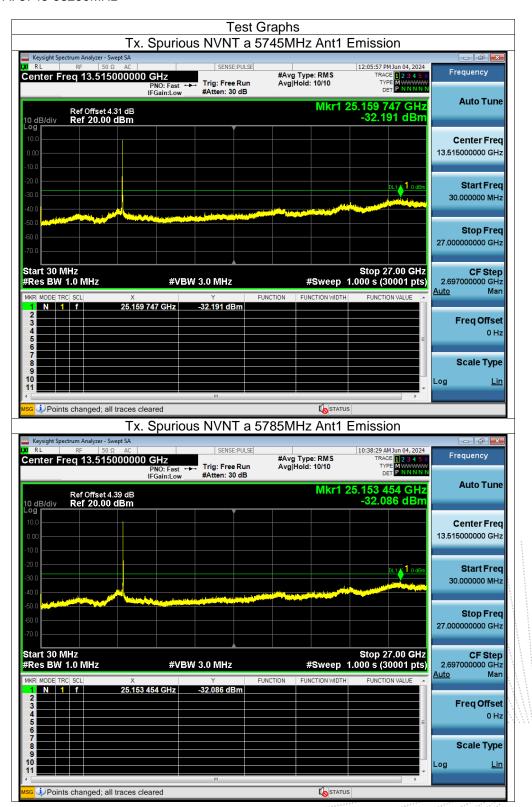
Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: (1)For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2)For transmitters operating in the 5.725-5.85 GHz band(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

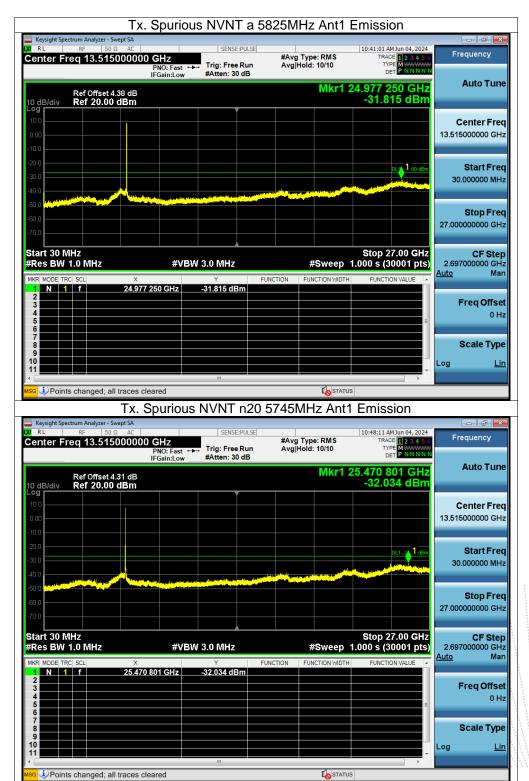
12.3 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

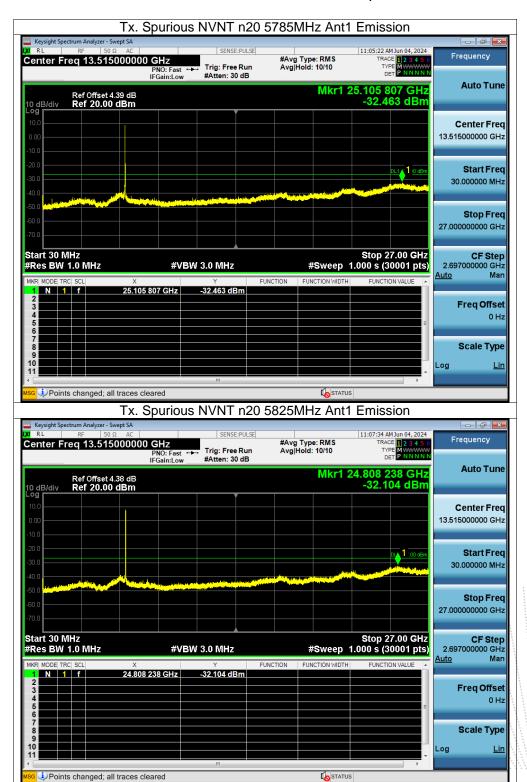
12.4 Test Result


Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

About:26.5GHz-40GHz, The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


No.: BCTC/RF-EMC-005 Page: 50 of 62 // /Edition B.2

Note: A(B) Represent the value of antenna A and B , The worst data is Antenna A, only shown Antenna A. Antenna A: 5745-58250MHz



No.: BCTC/RF-EMC-005 Page: 52 of 62 // Edition: B.2

No.: BCTC/RF-EMC-005 Page: 53 of 62 // Edition: B.2

13. Frequency Stability Measurement

13.1 Block Diagram Of Test Setup

13.2 Limit

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification)..

13.3 Test Procedure

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 106$ ppm and he limit is less than ± 20 ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is -20°C~70°C.

No.: BCTC/RF-EMC-005 Page: 54 of 62 Edition: B.2

13.4 Test Result

Temperature:	26 ℃	Relative Humidity:	54%		
Pressure:	101KPa	Test Voltage:	DC 14.54V		
Test Mode:	TX (5.8G) Mode Frequency U-NII-3 (5745-5825MHz)				

Note: (A)(B) Represent the value of antenna A and B, The worst data is Antenna A, only shown Antenna A.

Voltage vs. Frequency Stability

J	'	dericy Clability		Reference Frequency: 5745MHz				
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)		
T		V nom (V)	14.54	5745.01043	5745	0.01043	1.8158	
T nom (°C)	20	V max (V)	16.72	5745.00067	5745	0.00067	0.1165	
(0)			V min (V)	12.36	5745.00275	5745	0.00275	0.4782
	Limits			5725-5850 MHz				
Result			Complies					

Temperature vs. Frequency Stability

				Refe	rence Frequ	iency:5745Mh	Hz
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
		T (°C)	-20	5745.00116	5745	0.00116	0.2014
		T (°C)	-10	5745.01196	5745	0.01196	2.0820
		T (°C)	0	5745.00832	5745	0.00832	1.4486
	14.54	T (°C)	10	5745.00443	5745	0.00443	0.7714
V nom (V)		T (°C)	20	5745.00602	5745	0.00602	1.0475
V HOIH (V)		T (°C)	30	5745.00369	5745	0.00369	0.6416
		T (°C)	40	5745.00571	5745	0.00571	0.9934
		T (°C)	50	5745.00688	5745	0.00688	1.1969
		T (°C)	60	5745.00891	5745	0.00891	1.5512
		T (°C)	70	5745.00578	5745	0.00578	1.0058
	Limits			14.	5725-58	50 MHz	
Result			***************************************	Com	plies		

No.: BCTC/RF-EMC-005 Page: 55 of 62 Edition: B.2

Voltage vs. Frequency Stability

			Reference Frequency: 5785MHz				
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
_	V nom (V)	14.54	5785.00203	5785	0.00203	0.3513	
T nom (°C)	20	V max (V)	16.72	5785.00641	5785	0.00641	1.1076
(0)		V min (V)	12.36	5785.00116	5785	0.00116	0.1999
	Limits			5725-5850 MHz			
Result			Complies				

Temperature vs. Frequency Stability

Temperature vs. Frequency Stability								
				Re	eference Fre	equency:5785MF	łz	
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)		
		T (°C)	-20	5785.00150	5785	0.00150	0.2598	
		T (°C)	-10	5785.00058	5785	0.00058	0.1008	
		T (°C)	0	5785.00041	5785	0.00041	0.0702	
		T (°C)	10	5785.00257	5785	0.00257	0.4442	
V nom (V)	14.54	T (°C)	20	5785.00530	5785	0.00530	0.9156	
V HOIH (V)		T (°C)	30	5785.01155	5785	0.01155	1.9974	
		T (°C)	40	5785.00883	5785	0.00883	1.5260	
		T (°C)	50	5785.00436	5785	0.00436	0.7542	
		T (°C)	60	5785.00732	5785	0.00732	1.2648	
		T (°C)	70	5785.00249	5785	0.00249	0.4309	
Limits			5725-5850 MHz					
Result				Co	omplies			

No.: BCTC/RF-EMC-005 Page: 56 of 62 Edition: B.2

Voltage vs. Frequency Stability

TEST CONDITIONS				Reference Frequency: 5825MHz			
				f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
T nom (°C)	20	V nom (V)	14.54	5825.00184	5825	0.00184	0.3151
		V max (V)	16.72	5825.00387	5825	0.00387	0.6639
		V min (V)	12.36	5825.00801	5825	0.00801	1.3758
Limits				5725-5850 MHz			
Result				Complies			

Temperature vs. Frequency Stability

Temperature vs. Frequency Stability								
TEST CONDITIONS				Reference Frequency: 5825MHz				
				f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
V nom (V)	14.54	T (°C)	-20	5825.00250	5825	0.00250	0.4299	
		T (°C)	-10	5825.00876	5825	0.00876	1.5033	
		T (°C)	0	5825.00537	5825	0.00537	0.9225	
		T (°C)	10	5825.00821	5825	0.00821	1.4094	
		T (°C)	20	5825.00251	5825	0.00251	0.4318	
		T (°C)	30	5825.00117	5825	0.00117	0.2016	
		T (°C)	40	5825.00450	5825	0.00450	0.7727	
		T (°C)	50	5825.00222	5825	0.00222	0.3803	
		T (°C)	60	5825.00251	5825	0.00251	0.4302	
		T (°C)	70	5825.01236	5825	0.01236	2.1216	
Limits				5725-5850 MHz				
Result				Complies				

No.: BCTC/RF-EMC-005 Page: 57 of 62 Edition: B.2

14. Duty Cycle Of Test Signal

14.1 Standard Requirement

Pre-analysis Check: While conducting average power measurement, duty cycle of each mode shall be checked to ensure its duty cycle in order to compensate for the loss due to insufficient ratio of duty cycle. All duty cycle is pre-scanned, and result as obtained below shows only the most representative ones where duty cycle is conducted as the given transmission with given virtual operation that expresses the percentage.

14.2 Formula

Duty Cycle = Ton / (Ton+Toff)

14.3 Test Procedure

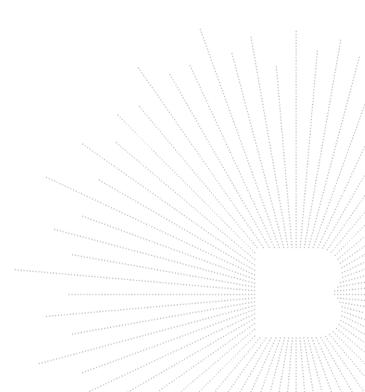
- 1.Set span = Zero
- 2. RBW = 8MHz
- 3. VBW = 8MHz,
- 4. Detector = Peak

14.4 Test Result

Condition	Mode	Frequency	Antenna	Duty Cycle	Correction Factor	1/T
		(MHz)		(%)	(dB)	(kHz)
NVNT	а	5745	AntA	100	0	0
NVNT	а	5785	AntA	100	0	0
NVNT	а	5825	AntA	100	0	0
NVNT	n20	5745	AntA	100	0	0
NVNT	n20	5785	AntA	100	0	0
NVNT	n20	5825	AntA	100	0	0

No.: BCTC/RF-EMC-005 Page: 58 of 62 Edition: B.2

15. Antenna Requirement


15.1 Limit

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217,§15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

15.2 Test Result

The EUT antenna is Internal antenna not using a standard antenna jack or electrical connector for antenna replacement, fulfill the requirement of this section.

No.: BCTC/RF-EMC-005 Page: 59 of 62 // /Edition B.2

16. EUT Test Setup Photographs

Conducted emissions

Radiated Measurement Photos

No.: BCTC/RF-EMC-005 Page: 61 of 62 Edition: B.2

STATEMENT

- 1. The equipment lists are traceable to the national reference standards.
- 2. The test report can not be partially copied unless prior written approval is issued from our lab.
- 3. The test report is invalid without the "special seal for inspection and testing".
- 4. The test report is invalid without the signature of the approver.
- 5. The test process and test result is only related to the Unit Under Test.
- 6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.
- 7. The quality system of our laboratory is in accordance with ISO/IEC17025.
- 8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

Consultation E-mail: bctc@bctc-lab.com.cn

Complaint/Advice E-mail: advice@bctc-lab.com.cn

**** END ****

No.: BCTC/RF-EMC-005 Page: 62 of 62 // Edition: B.2