FCC & IC REPORT

Applicant: Solaborate LLC

Address of Applicant: 8300 Utica Ave #283, Rancho Cucamonga, CA 91730

Equipment Under Test (EUT)

Product Name: HELLO 2

Model No.: HELLO2

FCC ID: 2ALUI-HELLO2

IC ID 24458-HELLO2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.225

RSS-210 Annex B Section B.6

Date of sample receipt: 26 Oct., 2018

Date of Test: 26 Oct., to 21 Dec., 2018

Date of report issue: 23 Dec., 2018

Test Result: PASS*

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	23 Dec., 2018	Original

Tested by: Date: 23 Dec., 2018

Test Engineer

Reviewed by: Date: 23 Dec., 2018

Project Engineer

3 Contents

			Page
1	CC	OVER PAGE	1
2	VE	ERSION	2
3	CC	ONTENTS	3
4	TE	ST SUMMARY	4
5	GE	ENERAL INFORMATION	5
5	5.1	CLIENT INFORMATION	
5	5.2	GENERAL DESCRIPTION OF E.U.T	
5	5.3	TEST MODE	6
5	5.4	DESCRIPTION OF SUPPORT UNITS	
5	5.5	LABORATORY FACILITY	
_	5.6	LABORATORY LOCATION	
5	5.7	TEST INSTRUMENTSLIST	
6	TE	EST RESULTS ANDMEASUREMENT DATA	8
6	5.1	ANTENNA REQUIREMENT	8
6	5.2	RADIATED EMISSION	9
6	5.3	20dB Bandwidth	16
_	5.4	FREQUENCY TOLERANCE	
6	5.5	CONDUCTED EMISSION	20
7	TE	EST SETUP PHOTOS	23
8	EU	JT CONSTRUCTIONAL PHOTOS	24

4 Test Summary

Test Item	Section in	Result	
restitem	FCC	IC	Result
Antenna requirement	15.203	1	Pass
Field strength of the fundamental signal	15.225 (a)	RSS-210 Annex B Section B.6 (a)	Pass
Spurious emissions	15.225(d)& 15.209	RSS-210 RSS-GEN Section 8.8	Pass
20dB Bandwidth 99% Bandwidth	15.215(c)	RSS-210 RSS-GEN Section 6.6	Pass
Frequency tolerance	15.225 (e)	RSS-210 Annex B Section B.6	Pass
Conducted Emission	15.207	RSS-210 RSS-GEN Section 8.8	Pass

Remarks:

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Solaborate LLC
Address:	8300 Utica Ave #283, Rancho Cucamonga, CA 91730
Manufacturer:	Shenzhen YITOA Digital Appliance CO.,LTD
Address:	5/F, Yitoa Building, Keji South Road 5th, Hi-tech Industrial Park, Nanshan District, Shenzhen

5.2 General Description of E.U.T.

Product Name:	HELLO 2
Model No.:	HELLO2
Operation Frequency:	13.56MHz
Channel numbers:	1
Modulation type:	ASK
Antenna Type:	PCB Antenna
Antenna gain:	0dBi
AC adapter:	Model: EA1019AVRS-050 Input: AC100-240V, 50/60Hz, 0.8A Output: DC 5.0V, 3A
Remarks:	EUT has camera cable from two different manufacturers. Their manufacturers and models are: Unison is HELLO2-274-V8.0, and Seasons is HELLO2-274-V8.0.1. They have the same lens, but the Camera cable is different.
Test Sample Condition:	The applicant provided engineering samples for staying in continuously transmitting for testing.

5.3 Test mode

Transmitting mode:	Keep the EUT in tran	Keep the EUT in transmitting mode with modulation							
Pre-Test Mode:									
	CCIS has verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:								
Axis	Axis X Y Z								
Field Strength(dBuV/m)	58.60	58.36 55.14							

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup": Y axis (see the test setup photo).

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen ZhongjianNanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

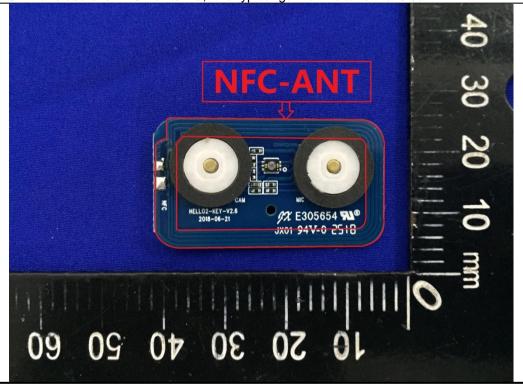
5.7 Test Instrumentslist

Radiated Emission:						
Test Equipment	t Manufacturer Model No.		Serial No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019	
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2017	11-20-2018	
Hom Antenna	SCHWARZBECK	BBHA 9170	BBI 1A9 17 0302	11-21-2018	11-20-2019	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	00044	03-16-2018	03-15-2019	
EMI Test Software	AUDIX	E3	V	ersion: 6.110919b		
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018	
Spectrum analyzer	Ronde & Schwarz	F3F40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-07-2018	03-06-2019	
Signal Generator	R&S	SMR20	1008100050	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	

Conducted Emission:										
Test Equipment	Manufacturer	Manufacturer Model No.		Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	07-22-2017	07-21-2020					
EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-07-2018	03-06-2019					
LISN	CHASE	MN2050D	CCIS0074	03-19-2018	03-18-2019					
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019					
Coaxial Cable	CCIS	N/A	CCIS0086	03-07-2018	03-06-2019					
EMI Test Software	AUDIX	E3	Version: 6.110919b							

6 Test results and Measurement Data

6.1 Antenna requirement


Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT make use of an PCB antenna, The typical gain of the antenna is 0dBi.



6.2 Radiated Emission

0.2 Radiated Lillission	-									
Test Requirement:	FCC Part15 C Section 15.225(a) and 15.209 RSS-210 Annex B Section A.6 and RSS-GEN Section 8.8									
Test Method:	ANSI C63.10: 2013									
TestFrequencyRange:	9 kHz to 1000MHz									
Test site:	Measurement Distance: 3m(Semi-Anechoic Chamber)									
		· ·	_		1		T			
Receiver setup:	Frequency 9kHz-150kHz	Detector		RBW	VBW		Remark			
	150kHz-30MHz	Quasi-pea Quasi-pea		200Hz 9kHz	600Hz 30kHz		Quasi-peak Value Quasi-peak Value			
	30MHz-1GHz	Quasi-pea Quasi-pea		120kHz	300KH		Quasi-peak Value			
	Above 1GHz	Peak		1MHz	3MHz		Peak Value			
Limit:	FCC:									
(Field strength of the	Frequen	су	Lin	nit (uV/m (@30m)	Li	imit (dBuV/m @3m)			
fundamental signal)	13.553MHz-13	.567MHz		15848			124.0			
	13.410MHz-13.5 13.567MHz-13			334			90.5			
	13.110MHz-13.4 13.710MHz-14	.010MHz		106			80.5			
	distancethan spec distanceby either r one radial to deter inverse linear dista	Remark: Per FCC part 15.31, when performingmeasurements at a closer distancethan specified, the results shallbe extrapolated to the specified distanceby either making measurementsat a minimum of two distances on atleast one radial to determine the properextrapolation factor or by using thesquare of an inverse linear distance extrapolationfactor (40 dB/decade). IC:								
	`	· · · · · ·	1			113	3.553-13.567 MHz			
Limit:	Frequency (Limit (uV/m @3m) 2400/F(kHz)			Distance (m)			
(Spurious Emissions)		0.009-0.490 0.490-1.705					300 30			
	1.705-3			24000/F(kHz) 30			30			
	30-88			100			3			
	88-216		150				3			
	216-960)	200				3			
			500				3			
Test Procedure:	a. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatabletable was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-									

Measurement Data:

roduct Na	me:	HELL	O 2			Produ	ct Model	: HI	HELLO 2 NFC Tx mode		
est By:		Carey	,			Test n	node:	NI			
est Voltag	je:	AC 12	20/60Hz			Enviro	onment:	Te	emp: 24 ℃	Huni: 57%	
(%)	111D 11										
140	evel (dBuV	m)									
110						1					
							1,51		area a source		
90								15	.225 POWER	LIMIT	
70					1	1					
50			40		man	man.	-				
30	The same of the same	and the second	many man	- Marie	A TOTAL	- WW		- Marine and a second	Marian Marian	rear	
10											
-10					-						
-30					-						
-50 <mark>13</mark>	3.11 13.	2			13.5					14.01	
1.).11 13.	2			Frequenc	y (MHz)				14.01	
	Freq	Read/ Level	Intenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB			
1	13.562	32.93	-26.47	0.64	0.00	58.60	124.00	-65.40			

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Test frequency range: 9 kHz- 30 MHz

Product Na	me:	HELLO 2			Pro	oduct mode	el:	HELLO 2					
Test By:		Carey			Te	st mode:	NFC Tx mode						
Test Freque	ency:	9 kHz ~ 3	9 kHz ~ 30 MHz Polarization: Vertical			Vertical							
Test Voltag	e:	AC 120/6	0Hz		En	vironmen	t:	Temp: 24℃ Huni:			: 57%		
Level	(dBuV/m)	ay and a state of the state of				/		200			1400		
130													
110													
100				-	-								
90							Fund	lamental sig	nal	-201111	7		
70								FIL	15.209	<30MH	_		
50					4								
30	Market Ma		2		Marin	ν.		5	6				
		and the same	and the same	And the Property of	"Transfer	Anthre of	mandered the land	appropriate plans	بالسيبال	remember a light	and a		
10													
-10													
-30											-		
-50									Ш				
.009	.02	.05	.1	.2 Fre	.5 quency (M	1 Hz)	2	5	10	20	30		
		Read	Ant enna				Limit	Over					
	Freq		Factor			Level			Rema	ark			
_	MHz	dBu₹	dB/m			dBuV/m	dBuV/m	<u>d</u> B			_		
1	0.009	16.34	-25.62	0.02	0.00	42.24	128.93	-86.69	QP				
1 2 3	0.159	6.66	-26.17	0.28	0.00	32.27	103.86	-71.59	QP				
3 4	0.201 0.564		-26.20 -26.30	0.33 0.50	0.00			-71.72 -33.78					
	4 423		-26.50	0.00	0.00			-44 03					

Remark:

5

4.423

9.559

2.94 -26.59

3.55 -26.41

0.62

0.50

0.00

0.00

28.47

29.14

72.50 -44.03 QP

71.29 -42.15 QP

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of 9 kHz~150 kHz are background noise and very lower than the limit, not show in test report.

oduct Name:	HELLO 2 Product model: HELLO 2								
est By:	Carey Test mode: NFC Tx mode						NFC Tx mode		
est Frequency:	9 kHz ~ 3	30 MHz		Ро	larization	:	Horizontal		
est Voltage:	AC 120/6	60Hz		En	vironmen	t:	Temp: 24	°C Huni: 57%	
Lavel (dDeltha)				= = == =			_		
140 Level (dBuV/m)					11				
130									
110									
90									
						Funda	amental-sion	92209 <30MHZ	
70			1				1	3.209 \JUMHZ	
50									
Mala		2	3	my fram			5		
30	Mary Commerce of the Special Street	manual	morning	www.	with the marriagement	nds. Maring. As of	House amore say	Mayour marrage water water	
10								2	
-10									
-30									
-50,009 ,02	.05	.1	,2	.5	1	2	5	10 20 30	
			Fre	quency (MH	łz)				
	Read	Antenna	Cable	Preamp		Limit	Over		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
MHz	dBu∀	<u>d</u> B/m		<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1 0.009	16 60	-25.62	0.02	0.00	42 E0	128 03	-86.34	OP	
1 0.009 2 0.156 3 0.201 4 0.647 5 4.423 6 9.559		-26.16	0.02				-74.34		
3 0.201	4.03	-26.20	0.33	0.00	29.66	101.80	-72.14	QP	
4 0.647		-26.30	0.54				-32.96		
5 4.423 6 9.559		-26.59 -26.41	0.62 0.50		26.11 29.67		-46.39 -41.62		
0.005	4.00	20.41	0.00	0.00	20.01	11.20	11.02	4.	

Remark

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of 9 kHz~150 kHz are background noise and very lower than the limit, not show in test report.

Spurious Emissions:

Test frequency range: 30MHz-1000MHz

	Product Name:				Prod	Product Model: HELL			ELLO 2	
Test By:		Carey		Test	Test mode:		NFC Tx mode			
est Fre	equency:	30 MHz ~ 1 GHz			Pola	rization:	Ve	ertical		
est Vol	Itage:	AC 120/6	0Hz		Envi	ironment:	Te	emp: 24℃	Huni: 57%	
70 60	l (dBuV/m)							FCC PART	Γ15 CLASS Β	
40				Ž.		4		5. 6		
20	morning .	MANA	M	V >	Van 3	m	WANT	A Control of the Party of the P	the officer was in the	
	50	Maria	100	Frequ	200 sency (MHz	m l		500	Hydrone was him	
10	50 Freq		100 Antenna Factor	Cable			Limit Line	Over	100 Remark	
10			Antenna Factor	Cable	ency (MHz) Preamp Factor		Line	Over Limit		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

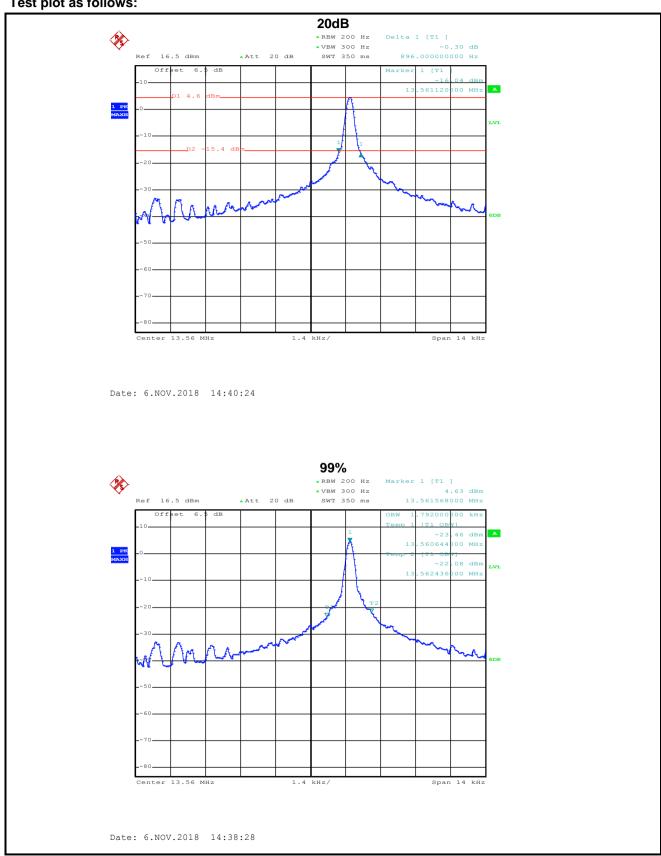
Product Name:	HELLO 2	Product Mode	HELLO 2
Test By:	Carey	Test mode:	NFC Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%
80 Level (dBuV/m) 70 60 50 40 30 20 10	404 Mayner May		FCC PART15 CLASS B
030 50	100	200	500 1000
		Frequency (MHz)	
Freq		able Preamp Loss Factor Level	Limit Over Line Limit Remark
MHz	dBuVdB/m	dBdB dBuV/m	$\frac{1}{dBuV/m} - \frac{1}{dB}$
1 113.714 2 139.361 3 159.784 4 300.367 5 437.120 6 601.427	48.05 9.09 52.26 13.61	2.10 29.43 26.54 2.39 29.28 33.57 2.59 29.13 30.60 2.94 28.45 40.36 3.17 28.85 34.17 3.94 28.93 33.38	43.50 -16.96 QP 43.50 -9.93 QP 43.50 -12.90 QP 46.00 -5.64 QP 46.00 -11.83 QP 46.00 -12.62 QP

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.3 20dB Bandwidth


Test Requirement:	FCC Part15 C Section 15.215 (c)					
Test Method:	ANSI C63.4:2014					
Receiver setup:	RBW=200Hz, VBW=300Hz, detector: Peak					
Limit:	The fundamental emission be kept within atleast the central 80% of the permitted band					
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth. 					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

20dB bandwidth (kHz)	Limit (kHz)	Results					
0.896	11.2	Passed					
99% bandwidth (kHz)	Limit (kHz)	Results					
1.792	N/A	Passed					
Note: For 13.56MHz, permitted Band is 14 kHz, so the Limit is 11.2 kHz.							

Test plot as follows:

6.4 Frequency Tolerance

Test Requirement:	FCC Part15 C Section 15.225 (e)					
rest requirement.	RSS-210 Annex A Section B.6					
Test Method:	ANSI C63.10: 2013					
Receiver setup:	RBW=200Hz, VBW=300Hz, span=14kHz, detector: Peak					
Limit:	±0.01% of the operating frequency					
Test mode:	Transmitting mode					
Test Procedure:	Frequency stability V.S. Temperature measurement					
	The equipment under test was powered by a fresh battery.					
	RF output was connected to spectrum analyzer via feed through attenuators.					
	3. The EUT was placed inside the temperature chamber.					
	4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency.					
	5. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.					
	6. Repeat step measure with 10°C increased per stage until the highest					
	temperature of +50°C reached					
	Frequency stability V.S. Voltage measurement					
	1. Set chamber temperature to 25°C. Use a variable DC power source					
	to power the EUT and set the voltage to rated voltage. 2. Set the spectrum analyzer RBW low enough to obtain the desired					
	frequency resolution and recorded the frequency.					
	Reduce the input voltage to specify extreme voltage variation (+/-15%) and endpoint, record the maximum frequency change.					
Test setup:	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

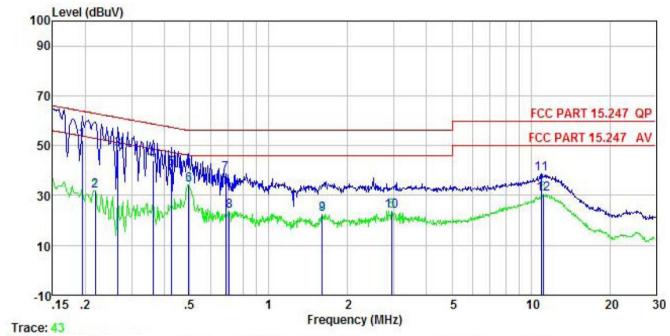
a) Frequency stability V.S. Temperature measurement

	Temperature (°C)	Frequency Tolerance (MHz)	Frequency Error (%)	Limit (%)	Results
	-20	13.561068	0.008	0.01	Pass
	-10	13.561067	0.008	0.01	Pass
	0	13.561067	0.008	0.01	Pass
120	+10	13.561065	0.008	0.01	Pass
120	+20	13.561066	0.008	0.01	Pass
	+30	13.561067	0.008	0.01	Pass
	+40	13.561065	0.008	0.01	Pass
	+50	13.561064	0.008	0.01	Pass

b) Frequency stability V.S. Voltage measurement

Temperature (°C)	Voltage (Vdc)	Frequency Tolerance (MHz)	Frequency Error (%)	Limit (%)	Results
	102	13.561065	0.008	0.01	Pass
25	120	13.561067	0.008	0.01	Pass
	138	13.561068	0.008	0.01	Pass

6.5 Conducted Emission


Test Requirement:	FCC Part15 B Section 15.207 RSS-GEN Section 8.8						
Test Method:	ANSI C63.4:2014						
TestFrequencyRange:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	- 441)	Limit (c	dΒμV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	0.5-30	60	50				
Test setup:	* Decreases with the logarith						
Test procedure	AUX Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN. Line Impedence Stabilization Net Test table height=0.8m	EMI Receiver					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 						
Measurement Record:	Uncertainty: 3.28dB						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for deta						
Test results:	Pass						

Measurement Data:

Product name:	HELLO 2	Product model:	HELLO 2
Test by:	Carey	Test mode:	NFC Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%
Level (dBuV)			

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
<u>-</u>	MHz	dBu∇	₫B	₫B	dBu∀	dBu∜	<u>d</u> B	
1	0.194 0.219	41.38	0.15 0.15	10.76 10.76	52.29 31.95		-11.55 -20.93	QP Average
3	0.266 0.361	37.58 32.95	0. 14 0. 12	10.75	48.47 43.80	61.25	-12.78 -14.89	QP
2 3 4 5 6 7 8 9	0.426 0.497	29.97	0.12	10.73	40.82	57.33	-16.51	W. C 100
7	0.686 0.708	27.96 12.74	0.13	10.77	38.86 23.64	56.00	-17.14	
9 10	1.602 2.946	11.32	0.14	10.93	22.39	46.00	-23.61	Average Average
11 12	10.963 11.139	27.56 19.38	0.32 0.32	10.93 10.93	38.81	60.00	-21.19	[[[] [[] [[] [] [] [] [] [] [] [] [] []

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	HELLO 2			Product model: HELLO 2			
Test by:	Carey			Test mode: NFC Tx mode		•	
Test frequency:	150 kHz ~ 30 MHz			Phase:		Neutral	
Test voltage:	AC 120 V/60	Hz		Environmen	ıt:	Temp: 22.5°C	Huni: 55%
Level (dBuV)							
100 Level (dBuv)							
90							
70						1 030	
MAMILIA		1 0 00					PART 15.247 QP
50						FCC F	PART 15.247 AV
THE WIND	WIND WALL	Hadelan					11
30		19 10	The solve to contain	harman harman	Mada Maria	partition of the surfaction	
ALLA MANAYA	MARKET VINA	Hally of the same	A working	Manufacture policies in the same	- water of the second	Maria de Caración	Mary Morres
10	W 12						
10							
-10							
-10.15 .2	.5	1	2 Fragues	cy (MHz)	5	10	20 30
Trace: 41	ъ	TTCN			T		
Fre	Read	LISN Factor	Cable Loss		Limi Lir		Remark
	,q 10001		1000			to Limit	ROMAIR
MI	Iz dBuV	dВ	dB	dBu∀	dBu	ıV dB	
1 0.15	8 44.06	0.98	10.77	55.81	65 F	56 -9.75	ΩP
		0.94	10.77		64.4		
2 0.18 3 0.18		0.94	10.77			12 -18.95	
4 0.21	9 21.31	0.93	10.76			38 -19.88	
5 0.24	12 38.57	0.94	10.75	50.26		04 -11.78	
6 0.31		0.97	10.74			75 -14.01	
7 0.44		0.97	10.74			02 -12.19	
5 0.24 6 0.31 7 0.44 8 0.50 9 0.78		0.97	10.76			00 -12.61	
		0.97	10.80			00 –19.89	
10 1.07		0.97	10.88			00 -20.07	
11 13.55		0.93	10.91			00 -24.09	
12 13.62	23 12.10	0.93	10.91	23.94	50.0	00 -26.06	Average
Notes:							

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.