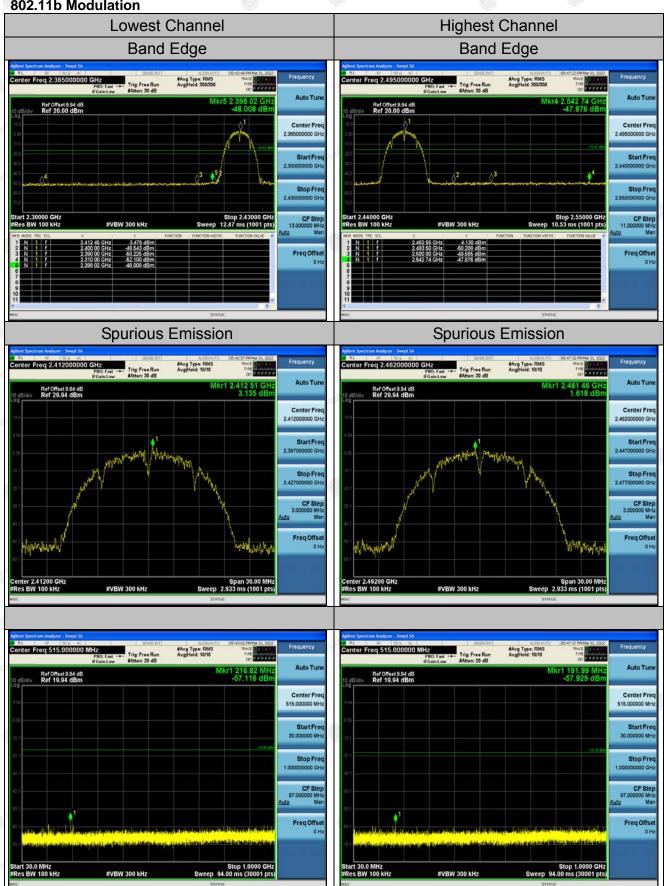


4.5. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT

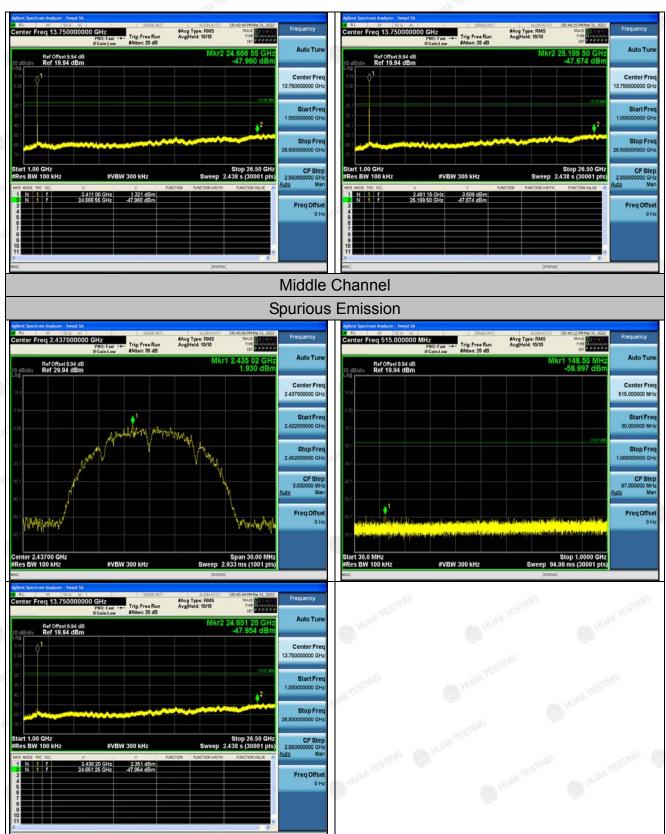
4.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

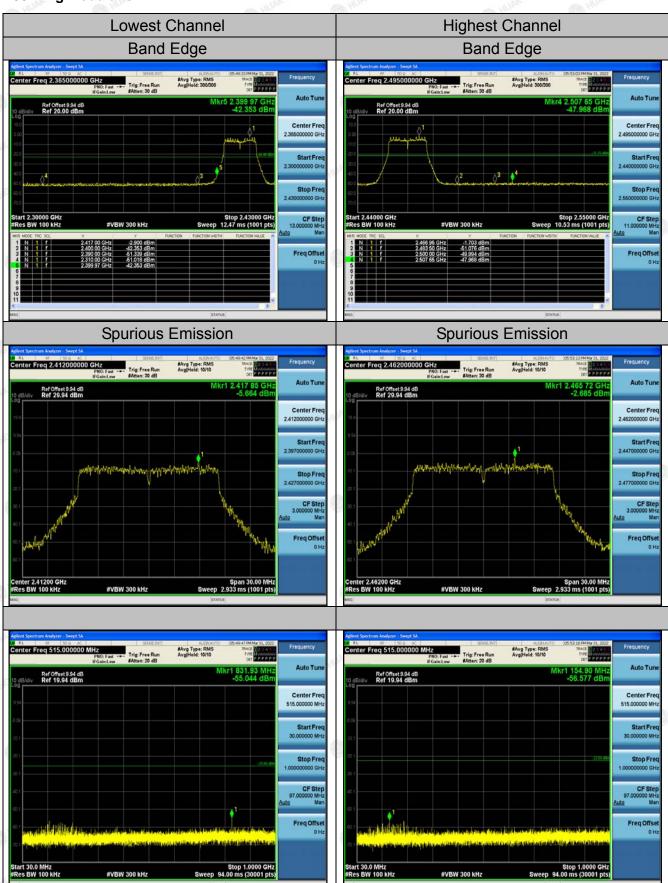
4.5.2. Test Instruments

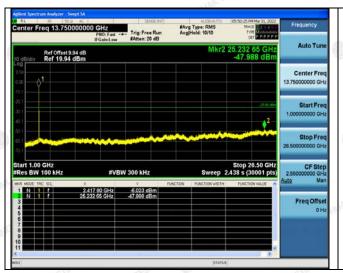

(3) (2) (4)	Alle YV	130,5507	Allia, YV	DECEMA							
	RF Test Room										
Equipment	Manufacturer	Model	Serial Number	Calibration Due							
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023							
Signal generator	Agilent	N5183A	HKE-071	Feb. 17, 2023							
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 17, 2023							
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023							

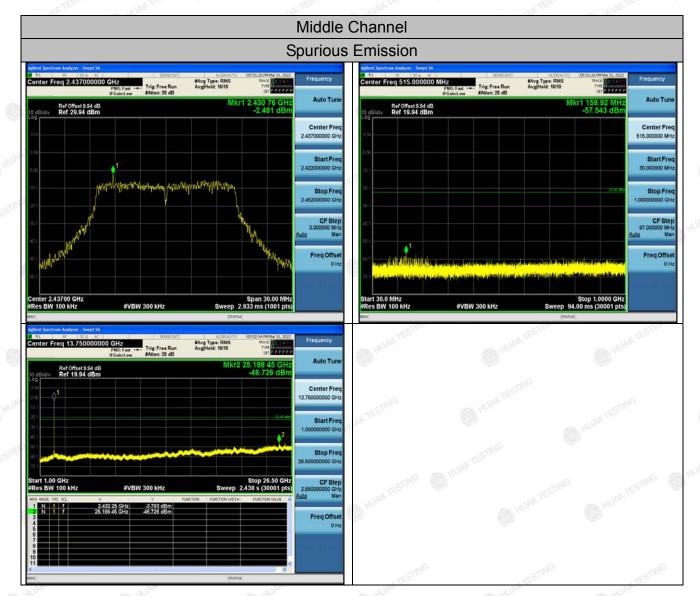
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

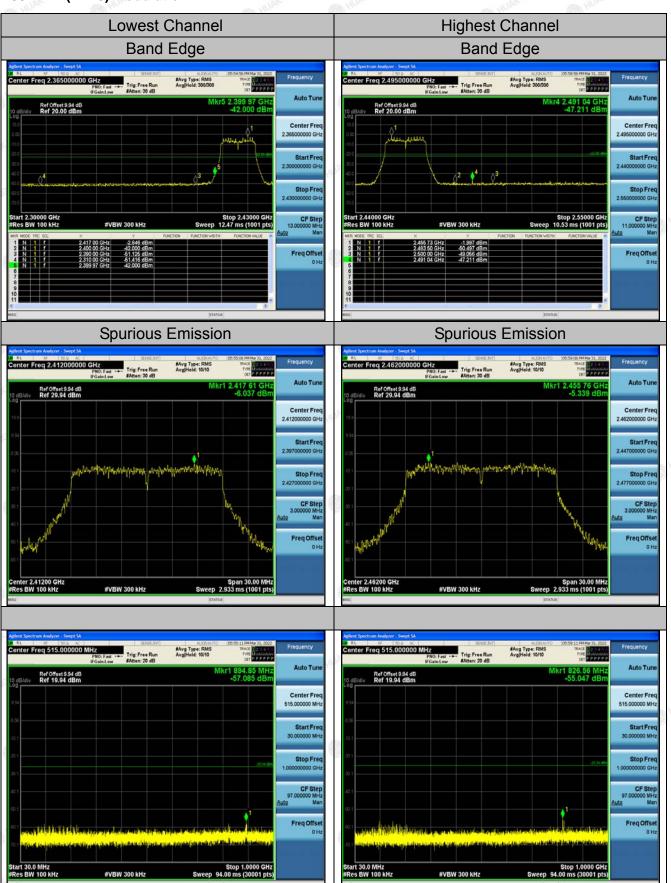
JAY ESTING

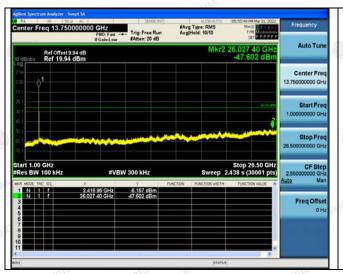

4.5.3. Test Data Chain 1 802.11b Modulation

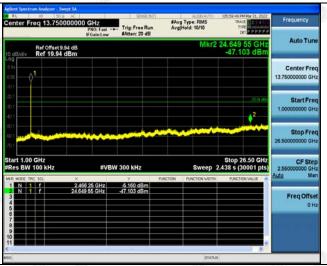




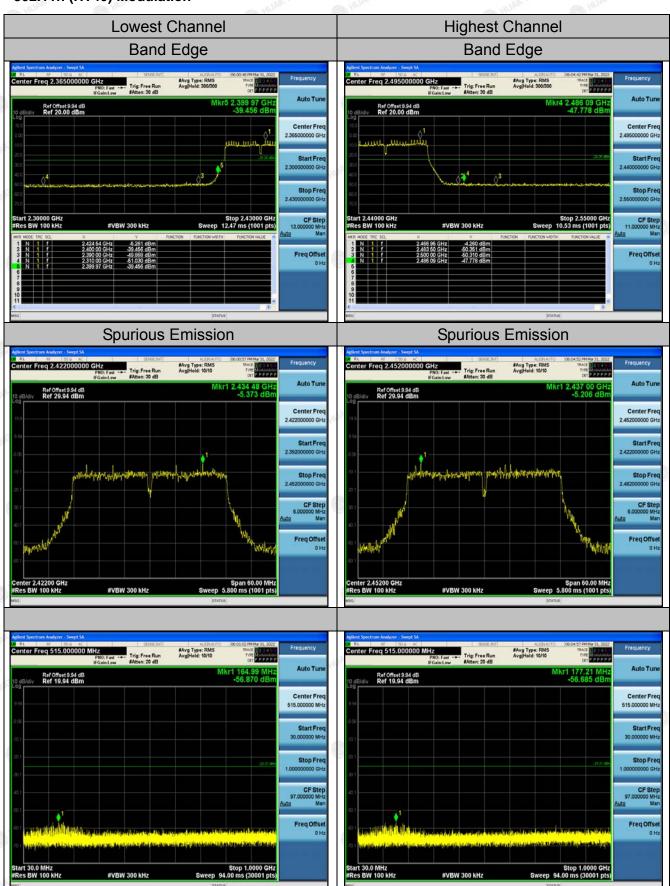
802.11g Modulation



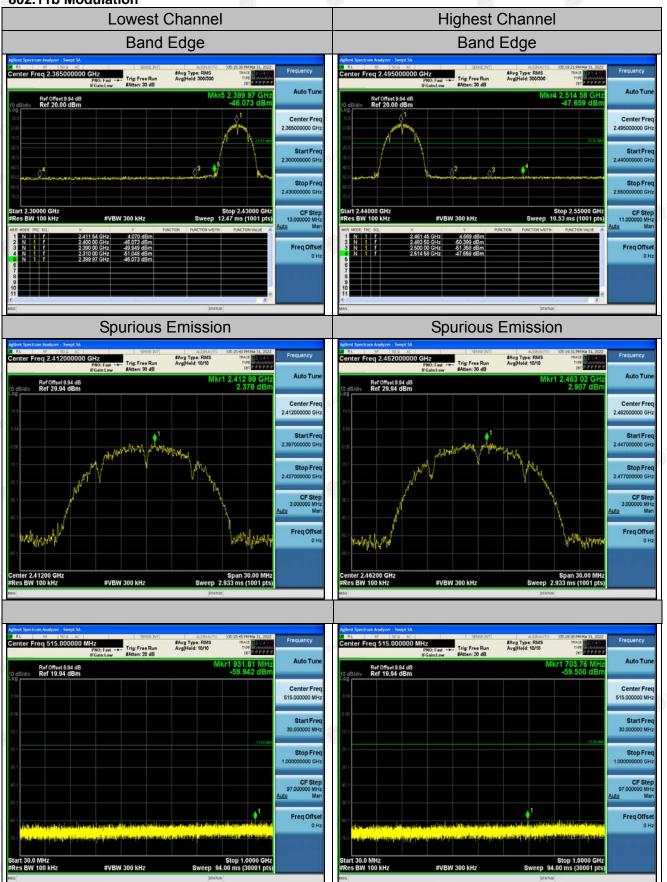


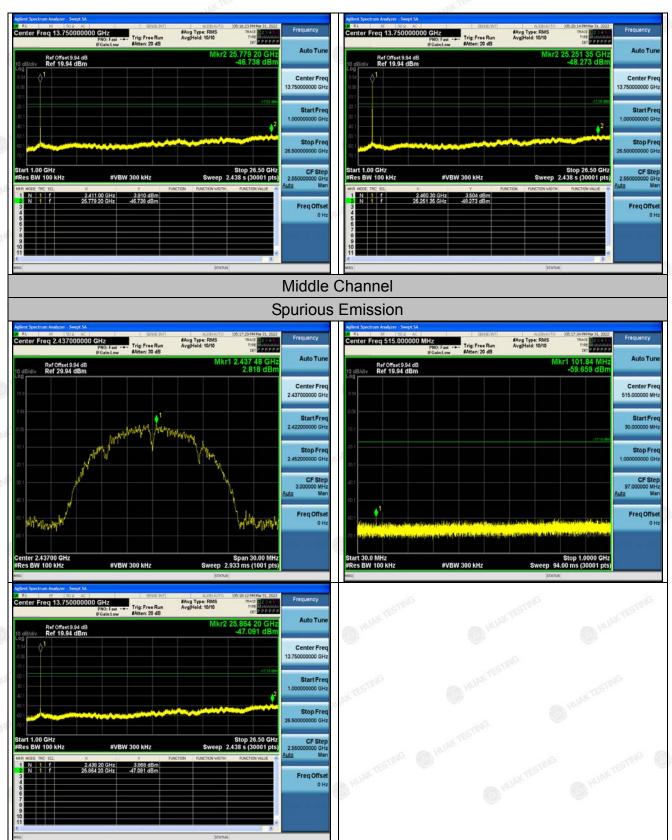

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

802.11n (HT20) Modulation

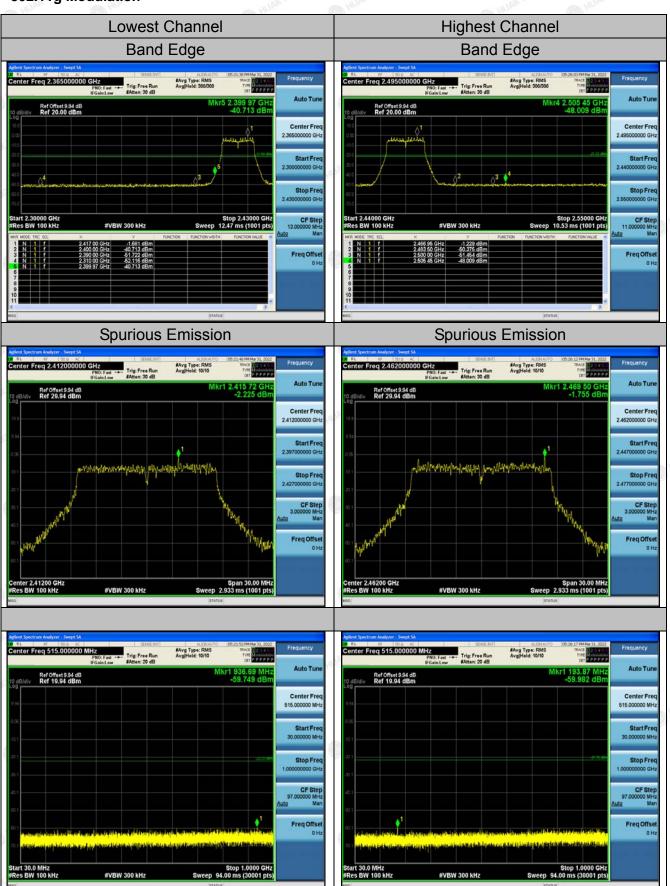



802.11n (HT40) Modulation



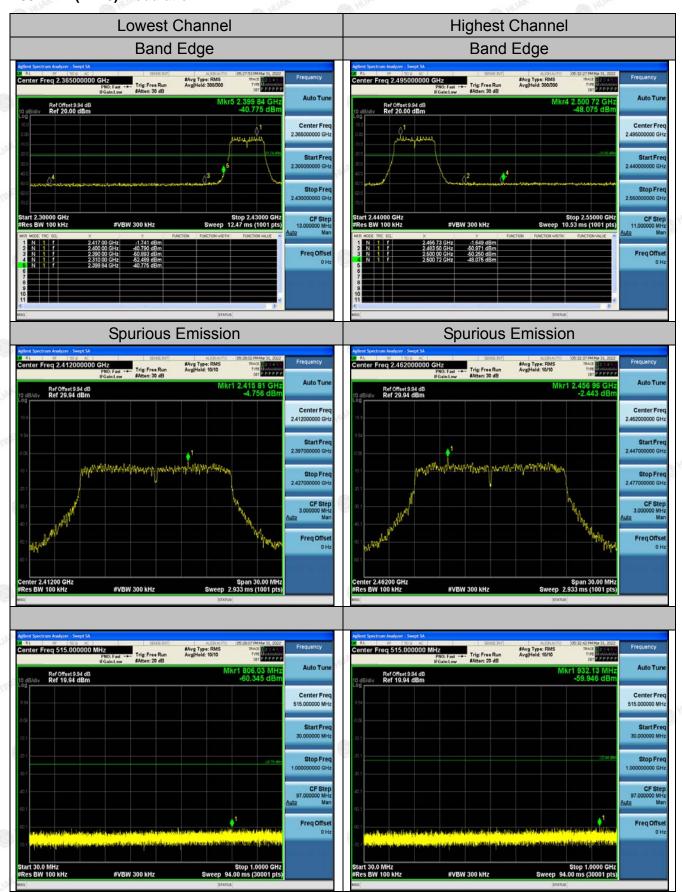


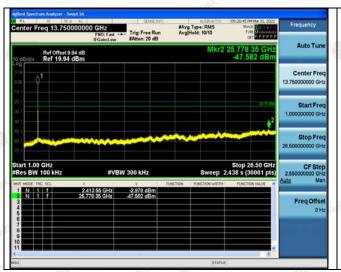
Chain 2 802.11b Modulation



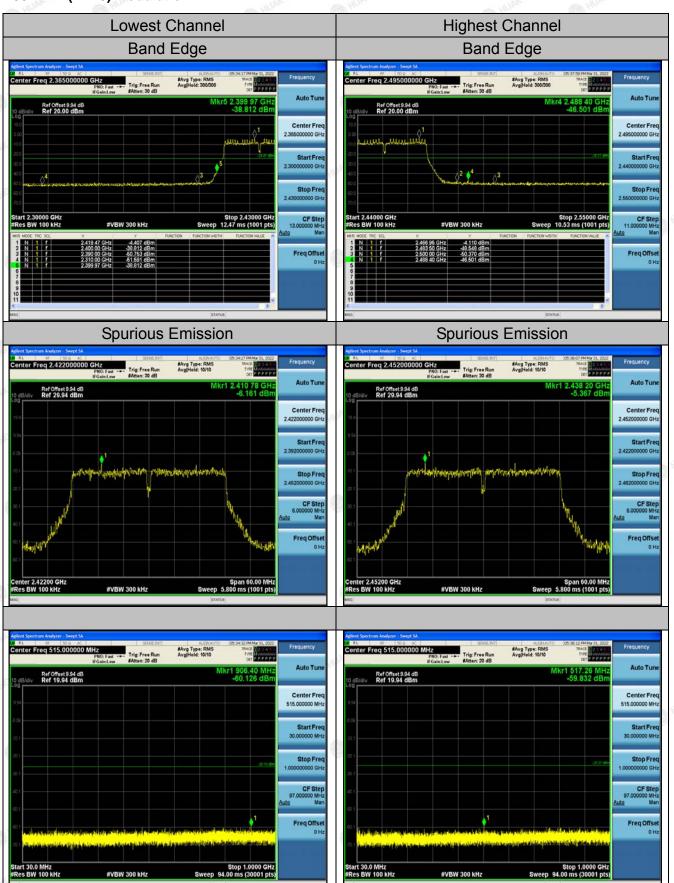
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

802.11g Modulation



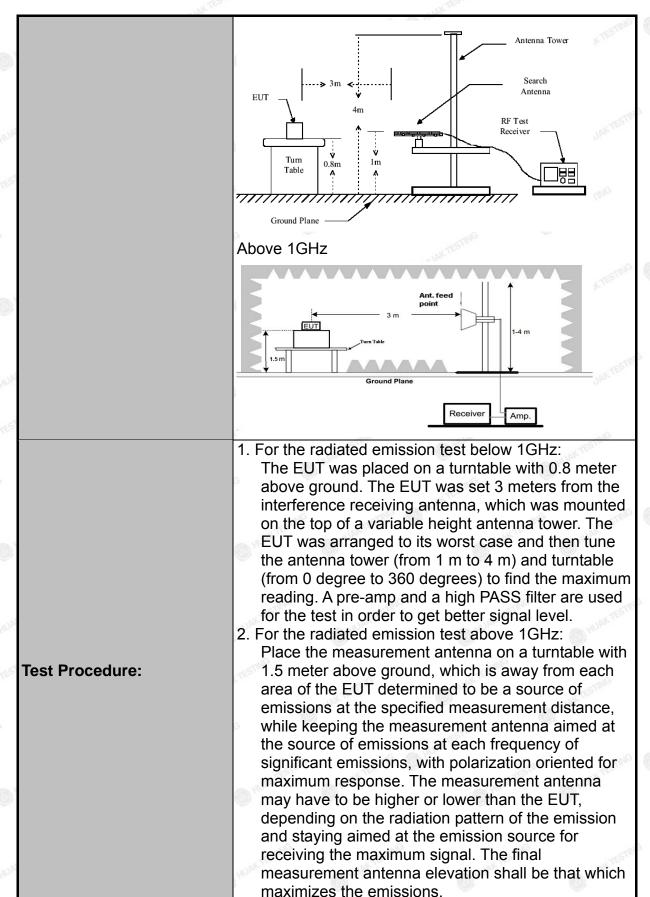


802.11n (HT20) Modulation



802.11n (HT40) Modulation

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


4.6. RADIATED SPURIOUS EMISSION MEASUREMENT

4.6.1. Test Specification

Measurement Distance: 3 m Horizontal & Vertical	Test Requirement:	FCC Part15	FCC Part15 C Section 15.209								
Measurement Distance: 3 m	Test Method:	ANSI C63.10	ANSI C63.10: 2013								
Horizontal & Vertical	Frequency Range:	9 kHz to 25 (9 kHz to 25 GHz								
Transmitting mode with modulation	Measurement Distance:	3 m	3 m								
Frequency	Antenna Polarization:	Horizontal &	Horizontal & Vertical								
Second Plane Seco	Operation mode:	Transmitting	Transmitting mode with modulation								
150kHz-30MHz						- 4.7		. 100			
Above 1GHz	Receiver Setup:	150kHz-	27			107.1797		130,007			
Above 1GHz			Quasi-	peak	120KHz	300KHz	Quas	si-peak Value			
Frequency		Above 1GHz		10		- 1467		177			
Company Comp		HIAN	Pe	ak	1MHz	10Hz	Ave	erage Value			
0.490-1.705 24000/F(KHz) 30 1.705-30 30 30 30-88 100 3 88-216 150 3 216-960 200 3 Above 960 500 3 Above 1GHz 500 3 Average For radiated emissions below 30MHz Test setup:		Frequen	су			4.6.74	_				
1.705-30 30 30 30 30 30 30 30		0.009-0.4	190	3	2400/F(k	(Hz)	,				
30-88					, ,		Automatical Company of the Company o				
Receiver Secretary Secret						Me					
Limit: 216-960 200 3 Above 960 500 3 Frequency Field Strength (microvolts/meter) Detector (meters) Above 1GHz 500 3 Average 5000 3 Peak For radiated emissions below 30MHz For radiated emissions below 30MHz RX Antenna Ground Plane Receiver											
Frequency Field Strength (microvolts/meter) Above 1GHz For radiated emissions below 30MHz For radiated emissions below 30MHz For radiated emissions below 30MHz RX Antenna Ground Plane Receiver	Limit:			STILL			STING				
Frequency Field Strength (microvolts/meter) Distance (meters) Above 1GHz 500 3 Average 5000 3 Peak For radiated emissions below 30MHz For radiated emissions below 30MHz RX Antenna Ground Plane Receiver		Above 9	17/1			HUAK.		3			
For radiated emissions below 30MHz Test setup: RX Antenna Ground Plane Receiver		Frequency	(1	microvo	olts/meter)	Distan (mete	ice	TESTIN			
Test setup: For radiated emissions below 30MHz RX Antenna Ground Plane Receiver		Above 1GHz	Z D YUM					Control of the Contro			
30MHz to 1GHz	Test setup:	EUT 0.8 m		3	m	RX Ante)†	THE THE			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TING	-STING (1)	THE STING IN THE STING
		The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
2		 Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.
		4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
		 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW;
S		Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement.
		6. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:		PASS

4.6.2. Test Instruments

	Radiated En	nission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Receiver	R&S	ESCI-7	HKE-010	Feb. 17, 2023
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 17, 2023
Preamplifier	Agilent	83051A	HKE-016	Feb. 17, 2023
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 17, 2023
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 17, 2023
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 17, 2023
Antenna Mast	Keleto	CC-A-4M	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 17, 2023
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	N/A	N/A
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A
RF cable	Times	1-40G	HKE-034	Feb. 17, 2023
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 17, 2023
RF Cable	Times	1-18G	HKE-099	Feb. 17, 2023

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.6.3. Test Data

Please refer to following diagram for individual Below 1GHz

test mode: TX 802.11b 2412MHz

All the test modes completed for test. The worst case of Radiated Emission; the test data of this mode was reported.

Horizontal

QP Detector

Suspe	cted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dalavitu
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	86.3163	-17.95	48.98	31.03	40.00	8.97	100	211	Horizontal
2	122.2422	-17.43	50.03	32.60	43.50	10.90	100	356	Horizontal
3	190.2102	-15.99	52.12	36.13	43.50	7.37	100	147	Horizontal
4	230.9910	-14.27	49.66	35.39	46.00	10.61	100	9	Horizontal
5	282.4525	-13.15	49.82	36.67	46.00	9.33	100	215	Horizontal
6	785.4154	-3.27	42.58	39.31	46.00	6.69	100	270	Horizontal

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Vertical

Suspe	cted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dalavitu
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	119.3293	-16.99	49.87	32.88	43.50	10.62	100	252	Vertical
2	145.5455	-19.80	53.23	33.43	43.50	10.07	100	347	Vertical
3	184.3844	-16.48	49.04	32.56	43.50	10.94	100	205	Vertical
4	330.0300	-11.59	42.79	31.20	46.00	14.80	100	332	Vertical
5	661.1311	-5.12	35.92	30.80	46.00	15.20	100	351	Vertical
6	814.5445	-2.84	35.48	32.64	46.00	13.36	100	0	Vertical

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
Marie Marie	HO.	HUY MININ
		<u>-</u>
	US	WIESTIN
N. TESTING	KTESTIN	HUP - WIESING

Note:1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

6

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

All modes of operation were investigated and the worst-case of Antenna 1 are reported.

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.44	-3.64	54.8	74	-19.2	peak
4824	42.56	-3.64	38.92	54	-15.08	AVG
7236	52.88	-0.95	51.93	74	-22.07	peak
7236	42.65	-0.95	41.7	54	-12.3	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.4	-3.64	55.76	74	-18.24	peak
4824	45.67	-3.64	42.03	54	-11.97	AVG
7236	57.23	-0.95	56.28	74	-17.72	peak
7236	40.25	-0.95	39.3	54	-14.7	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	。 Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.17	-3.51	57.66	74	-16.34	peak
4874	45.64	-3.51	42.13	54	-11.87	AVG
7311	54.21	-0.82	53.39	74	-20.61	peak
7311	37.59	-0.82	36.77	54	-17.23	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss -	Pre-amplifier.		ESTING	TESTIN

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
§ 4874	60.72	-3.51	57.21	74	-16.79	peak
4874	42.25	-3.51	38.74	54	-15.26	AVG
7311	53.49	-0.82	52.67	74	-21.33	peak
7311	38.87	-0.82	38.05	54	-15.95	AVG
TIME	75 W	1	TSI.		-CIMBO	1651

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HINKILL HINKILL

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	_s Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	58.65	-3.43	55.22	74	-18.78	peak
4924	42.51	-3.43	39.08	54	-14.92	AVG
7386	53.49	-0.75	52.74	74	-21.26	peak
7386	40.45	-0.75	39.7	54	-14.3	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss -	Pre-amplifier.	W HOUSE	an/G	- ETING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	58.55	-3.43	55.12	74	-18.88	peak
4924	41.27	-3.43	37.84	54	-16.16	AVG
7386	54.58	-0.75	53.83	74	-20.17	peak
7386	39.78	-0.75	39.03	54	-14.97	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412

All modes of operation were investigated and the worst-case of Antenna 1 are reported.

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	60.91	-3.64	57.27	74	-16.73	peak
4824	43.17	-3.64	39.53	54	-14.47	AVG
7236	57.43	-0.95	56.48	74	-17.52	peak
7236	39.7	-0.95	38.75	54	-15.25	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.4	-3.64	57.76	74 HUNK	-16.24	peak
4824	42.56	-3.64	38.92	54	-15.08	AVG
7236	51.12	-0.95	50.17	74	-23.83	peak
7236	40.26	-0.95	39.31	54	-14.69	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	60.22	-3.51	56.71	74	-17.29	peak
4874	45.91	-3.51	42.4	54	-11.6	AVG
7311	52.3	-0.82	51.48	74	-22.52	peak
7311	40.39	-0.82	39.57	54	-14.43	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss –	Pre-amplifier.	,	ESTING	TESTING

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
61.88	-3.51	58.37	74	-15.63	peak
40.18	-3.51	36.67	54	-17.33	AVG
55.99	-0.82	55.17	74	-18.83	peak
35.63	-0.82	34.81	54	-19.19	AVG
	(dBµV) 61.88 40.18 55.99	(dBµV) (dB) 61.88 -3.51 40.18 -3.51 55.99 -0.82	(dBμV) (dB) (dBμV/m) 61.88 -3.51 58.37 40.18 -3.51 36.67 55.99 -0.82 55.17	(dBμV) (dB) (dBμV/m) (dBμV/m) 61.88 -3.51 58.37 74 40.18 -3.51 36.67 54 55.99 -0.82 55.17 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 61.88 -3.51 58.37 74 -15.63 40.18 -3.51 36.67 54 -17.33 55.99 -0.82 55.17 74 -18.83

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	60.85	-3.43	57.42	74	-16.58	peak
4924	37.78	-3.43	34.35	54	-19.65	AVG
7386	57.27	-0.75	56.52	74	-17.48	peak
7386	35.87	-0.75	35.12	54	-18.88	AVG
Remark: Factor	r = Antenna Factor +	- Cable Loss	– Pre-amplifier.	(a)	CSTING	TESTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	57.58	-3.43	54.15	74	-19.85	peak
4924	44.08	-3.43	40.65	54	-13.35	AVG
7386	53.41	-0.75	52.66	74	-21.34	peak
7386	40.62	-0.75	39.87	54	-14.13	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

MIMO:

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	56.16	-3.64	52.52	74	-21.48	peak
4824	41.74	-3.64	38.1	54	-15.9	AVG
7236	54.22	-0.95	53.27	74	-20.73	peak
7236	41.2	-0.95	40.25	54	-13.75	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	ALL HUM
Trequency	ivieter reading	1 actor	Lillission Level	Liiilis	iviargin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	60.19	-3.64	56.55	74	-17.45	peak
4824	43.53	-3.64	39.89	54	-14.11	AVG
7236	53.91	-0.95	52.96	74	-21.04	peak
7236	41.87	-0.95	40.92	54	-13.08	AVG

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874.00	58.70	-3.51	55.19	74.00	-18.81	peak
4874.00	47.05	-3.51	43.54	54.00	-10.46	AVG
7311.00	56.76	-0.82	55.94	74.00	-18.06	peak
7311.00	42.68	-0.82	41.86	54.00	-12.14	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss –	Pre-amplifier.	9	V TESTING	LAKTESTAN

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874.00	56.47	-3.51	52.96	74.00	-21.04	peak
4874.00	41.50	-3.51	37.99	54.00	-16.01	AVG
7311.00	53.09	-0.82	52.27	74.00	-21.73	peak
7311.00	39.96	-0.82	39.14	54.00	-14.86	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Trima
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	62.77	-3.43	59.34	74	-14.66	peak
4924	40.68	-3.43	37.25	54	-16.75	AVG
7386	55.41	-0.75	54.66	74	-19.34	peak
7386	41.12	-0.75	40.37	54	-13.63	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss	– Pre-amplifier.	No Duy	TING	STING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	63.72	-3.43	60.29	74	-13.71	peak
4924	38.53	-3.43	35.1	54	-18.9	AVG
7386	55.23	-0.75	54.48	74	-19.52	peak
7386	37.62	-0.75	36.87	54	-17.13	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data eta a Turk
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	56.77	-3.63	53.14	74	-20.86	peak
4844	41.74	-3.63	38.11	54	-15.89	AVG
7266	55.73	-0.94	54.79	74	-19.21	peak
7266	40.81	-0.94	39.87	54	-14.13	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	58.37	-3.63	54.74	74	-19.26	peak
4844	43.63	-3.63	40	54	-14	AVG
7266	55.93	-0.94	54.99	74	-19.01	peak
7266	36.60	-0.94	35.66	54	-18.34	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stan Town
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	58.12	-3.51	54.61	74	-19.39	peak
4874	44.65	-3.51	41.14	54	-12.86	AVG
7311	57.37	-0.82	56.55	74	-17.45	peak
7311	43.44	-0.82	42.62	54	-11.38	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss	– Pre-amplifier.	MC WHOOL	TING	STING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stan Town
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	59.91	-3.51	56.4	74	-17.6	peak
4874	41.96	-3.51	38.45	54	-15.55	AVG
7311	55.03	-0.82	54.21	74	-19.79	peak
7311	37.71	-0.82	36.89	54	-17.11	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss	- Pre-amplifier.	ALC WALLEY	TESTING	W TESTING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
4904	56.99	-3.43	53.56	74	-20.44	peak
4904	42.88	-3.43	39.45	54	-14.55	AVG
7356	54.26	-0.75	53.51	74	-20.49	peak
7356	39.75	-0.75	39	54	-15	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tyre
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	55.95	-3.43	52.52	74	-21.48	peak
4904	46.75	-3.43	43.32	54	-10.68	AVG
7356	57.73	-0.75	56.98	74	-17.02	peak
7356	40.68	-0.75	39.93	54	-14.07	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

All modes of operation were investigated and the worst-case of Antenna 1 are reported.

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data et as Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.25	-5.81	50.44	74	-23.56	peak
2310	STING WHUA	-5.81	TNG / STIN	54	I TING	AVG
2390	59.82	-5.84	53.98	74	-20.02	peak
2390	50.82	-5.84	44.98	54	-9.02	AVG
2400	59.33	-5.84	53.49	₅ 74	-20.51	peak
2400	44.9	-5.84	39.06	54	-14.94	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.35	-5.81	50.54	74	-23.46	peak
2310	1	-5.81	1	54	1	AVG
2390	60.87	-5.84	55.03	74	-18.97	peak
2390	48.59	-5.84	42.75	54	-11.25	AVG
2400	54.99	-5.84	49.15	74	-24.85	peak
2400	44.79	-5.84	38.95	54	-15.05	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atom Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.21	-5.65	50.56	74	-23.44	peak
2483.50	ESTING /	-5.65	LAY /ESTING	54	1	AVG
2500.00	51.82	-5.65	46.17	74	-27.83	peak
2500.00	HUA!	-5.65	1	54	1	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Date Way Tresman
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.32	-5.65	49.67	74	-24.33	peak
2483.50	1	-5.65	MIAK .	54	1	AVG
2500.00	54.84	-5.65	49.19	74	-24.81	peak
2500.00	JAK TESTING (II)	-5.65	ETING LAKTESTIN	54	N ESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11g Mode TX CH Low (2412MHz) All modes of operation were investigated and the worst-case of Antenna 1 are reported.

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stor Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	53.49	-5.81	47.68	74	-26.32	peak
2310	/	-5.81	HUAKTE	54	1	AVG
2390	61.28	-5.84	55.44	74	-18.56	peak
2390	44.55	-5.84	38.71	54	-15.29	AVG
2400	58.59	-5.84	52.75	74	-21.25	peak
2400	42.07	-5.84	36.23	54	-17.77	AVG
emark: Factor	= Antenna Factor	Cable Loss	Pre-amplifier.	N _G	TESTING	TESTING

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	D'Atantan Tuna
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
54.84	-5.81	49.03	74	-24.97	peak
AKTES /	-5.81	AUNK TES	54	HUAKTISTII	AVG
61.17	-5.84	55.33	74	-18.67	peak
45.17	-5.84	39.33	54	-14.67	AVG
58.82	-5.84	52.98	74	-21.02	peak
43.34	-5.84	37.5	54	-16.5	AVG
	(dBµV) 54.84 / 61.17 45.17 58.82	(dBµV) (dB) 54.84 -5.81 / -5.81 61.17 -5.84 45.17 -5.84 58.82 -5.84	(dBμV) (dB) (dBμV/m) 54.84 -5.81 49.03 / -5.81 / 61.17 -5.84 55.33 45.17 -5.84 39.33 58.82 -5.84 52.98	(dBμV) (dB) (dBμV/m) (dBμV/m) 54.84 -5.81 49.03 74 / -5.81 / 54 61.17 -5.84 55.33 74 45.17 -5.84 39.33 54 58.82 -5.84 52.98 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 54.84 -5.81 49.03 74 -24.97 / -5.81 / 54 / 61.17 -5.84 55.33 74 -18.67 45.17 -5.84 39.33 54 -14.67 58.82 -5.84 52.98 74 -21.02

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata Timo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.57	-5.65	49.92	74	-24.08	peak
2483.50	STING /	-5.65	TANKESTING	54	1	AVG
2500.00	52.41	-5.65	46.76	74	-27.24	peak
2500.00	HUA!	-5.65	1	54	1	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.78	-5.65	50.13	74	-23.87	peak
2483.50	1	-5.65	MUAK.	54	1	AVG
2500.00	51.61	-5.65	45.96	74	-28.04	peak
2500.00	JAK TESTING	-5.65	ING I NAK TESTI	54	NK ESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MIMO:

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

		444	144		144	440
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	54.64	-5.81	48.83	74	-25.17	peak
2310	1	-5.81	1	54	1	AVG
2390	58.46	-5.84	52.62	74	-21.38	peak
2390	47.68	-5.84	41.84	54	-12.16	AVG
2400	59.42	-5.84	53.58	74	-20.42	peak
2400	43.13	-5.84	37.29	54	-16.71	AVG
Domork: Footor	- Antenna Factor J	Cable Lass	Dre amplifier		W TESTINE	W TESTINE

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	53.51	-5.81	47.7	74	-26.3	peak
2310	1	-5.81	(a) Million	54	MHUAK !	AVG
2390	61.34	-5.84	55.5	74	-18.5	peak
2390	45.6	-5.84	39.76	54	-14.24	AVG
2400	58.61	-5.84	52.77	74	-21.23	peak
2400	39.67	-5.84	33.83	54	-20.17	AVG
D	- Antonna Factor	. 0 11. 1	D Prestile	,, IAX	¢5)**	TING

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	55.07	-5.65	49.42	74	-24.58	peak
2483.50	STIME /	-5.65	TANKESTING	54	1	AVG
2500.00	54.49	-5.65	48.84	74	-25.16	peak
2500.00	ALC MUPI	-5.65	1	54	1	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.94	-5.65	50.29	74	-23.71	peak
2483.50	1	-5.65	O HUAK "	54	1	AVG
2500.00	52.6	-5.65	46.95	74	-27.05	peak
2500.00	JOK TESTING	-5.65	ING LANTESTIN	54	ESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. L. TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	55.81	-5.81	50	74	-24	peak
2310	rsms /	-5.81	MAYNESTINE	54	1	AVG
2390	60.21	-5.84	54.37	74	-19.63	peak
2390	46.03	-5.84	40.19	54	-13.81	AVG
2400	61.64	-5.84	55.8	74	-18.2	peak
2400	44.06	-5.84	38.22	54	-15.78	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data dan Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.35	-5.81	50.54	74	-23.46	peak
2310	AKTES I	-5.81	STATES IN	54	HUAKTETTING	AVG
2390	62.66	-5.84	56.82	74	-17.18	peak
2390	45.51	-5.84	39.67	₃₀ 54	-14.33	AVG
2400	60.49	-5.84	54.65	74	-19.35	peak
2400	42.28	-5.84	36.44	54	-17.56	AVG
	-1016	10%	100	10%		- NO

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2452MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata WETING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.7	-5.65	49.05	74	-24.95	peak
2483.50	STIME /	-5.65	LANAESTING	54	1	AVG
2500.00	52.62	-5.65	46.97	74	-27.03	peak
2500.00	AUA!	-5.65	1	54	1	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.37	-5.65	49.72	74	-24.28	peak
2483.50	1	-5.65	HUAK	54	1	AVG
2500.00	53.41	-5.65	47.76	74	-26.24	peak
2500.00	JAK TESTING	-5.65	TING / TESTIN	54	OK ESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

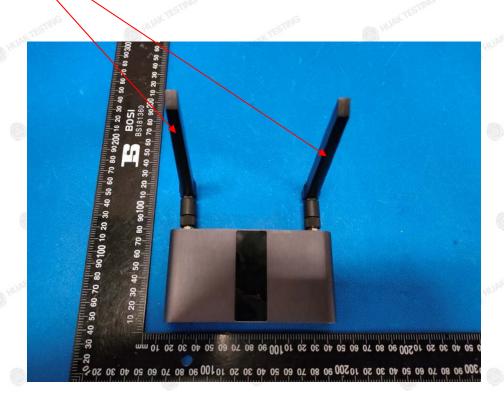
Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.7. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

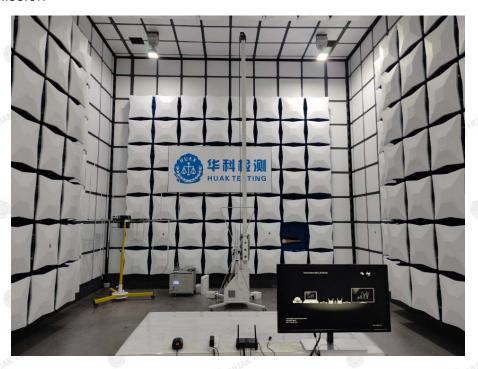

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

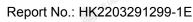
Antenna Connected Construction

The antenna used in this product is a External Antenna, which have non-standard antenna jack. It conforms to the standard requirements. and the best case gain of the antenna is Antenna port 1:2.45dBi and Antenna port 2:2.45dBi.

ANTENNA



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com


5. PHOTOGRAPH OF TEST

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.