

## **Test Report** 21-1-0179501T014a



18 2023-Mar-16 Number of pages: Date of Report:

**CETECOM GmbH** Sentec AG **Testing company:** Applicant:

> Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: +49 (0) 20 54 / 95 19-150

**Product: Patient Monitor** 

Model: tCOM+

FCC ID: 2ALTU-TCOM IC: 22941-TCOM

Testing has been carried out in accordance with: **FCC Regulations** 

Title 47 CFR, Chapter I, Subchapter A, Part 15

**Subpart B Unintentional Radiators** 

§ 15.107 Conducted limits § 15.109 Radiated emission limits

**ISED-Regulations** 

**Radio Standards Specification** 

RSS-Gen, Issue 5

General Requirements for Compliance of Radio Apparatus

ICES-003, Issue 7

Information Technology Equipment (including Digital Apparatus)

**Tested Technology:** 

**Test Results:** ☑ The EUT complies with the requirements in respect of all parameters subject to the test.

The test results relate only to devices specified in this document

Signatures:

Ninovic Perez

Test Lab Manager

Authorization of test report

Hicham Laayouni Test Manager

Responsible of test report



## **Table of Contents**

| Ta | ble o | of Annex                                                          | 3  |
|----|-------|-------------------------------------------------------------------|----|
| 1  | (     | General information                                               | 4  |
|    | 1.1   | Disclaimer and Notes                                              | 4  |
|    | 1.2   | Attestation                                                       | 4  |
|    | 1.3   | Summary of Test Results                                           | 5  |
|    | 1.4   | Summary of Test Methods                                           | 5  |
| 2  | ,     | Administrative Data                                               | 6  |
|    | 2.1   | Identification of the Testing Laboratory                          | 6  |
|    | 2.2   | General limits for environmental conditions                       | 6  |
|    | 2.3   | Test Laboratories sub-contracted                                  | 6  |
|    | 2.4   | Organizational Items                                              | 6  |
|    | 2.5   | Applicant's details                                               | 6  |
|    | 2.6   | Manufacturer's details                                            | 6  |
|    | 2.7   | Equipment under Test (EUT)                                        | 7  |
|    | 2.8   | Untested Variant (VAR)                                            | 7  |
|    | 2.9   | Auxiliary Equipment (AE)                                          | 7  |
|    | 2.10  | 0 Connected cables (CAB)                                          | 7  |
|    | 2.1   | 1 Software (SW)                                                   | 7  |
|    | 2.1   | 2 EUT set-ups                                                     | 7  |
|    | 2.13  | 3 EUT operation modes                                             | 8  |
| 3  | ı     | Equipment under test (EUT)                                        | 8  |
|    | 3.1   | General Data of Main EUT as Declared by Applicant                 | 8  |
|    | 3.2   | Modifications on Test sample                                      | 8  |
| 4  | ı     | Measurements                                                      | 9  |
|    | 4.1   | Conducted interference voltage (AC mains)                         | 9  |
|    | 4.2   | Radiated field strength emissions 30 MHz – 1 GHz                  | 11 |
|    | 4.3   | Equipment lists                                                   | 13 |
|    | 4.4   | Radiated field strength emissions above 1 GHz                     | 14 |
|    | 4.5   | Equipment lists                                                   | 16 |
| 5  | ı     | Results from external laboratory                                  | 17 |
| 6  | (     | Opinions and interpretations                                      | 17 |
| 7  | ı     | List of abbreviations                                             | 17 |
| 8  | ı     | Measurement Uncertainty valid for conducted/radiated measurements | 18 |
| 9  | ,     | Versions of test reports (change history)                         | 18 |



|                                                | Table of Annex              |                        |             |  |  |
|------------------------------------------------|-----------------------------|------------------------|-------------|--|--|
| Annex No.                                      | Contents                    | Reference Description  | Total Pages |  |  |
| Annex 1 Test result diagrams                   |                             | TR21-1-0179501T014a-A1 | 7           |  |  |
| Annex 2 Internal photographs of EUT            |                             |                        |             |  |  |
| Annex 3                                        | External photographs of EUT | TR21-1-0179501T014a-A3 | 6           |  |  |
| Annex 4                                        | Test set-up photographs     | TR21-1-0179501T014a-A4 | 4           |  |  |
| The listed attachments are separate documents. |                             |                        |             |  |  |

TR21-1-0179501T014a 3/18



\_

#### 1 General information

#### 1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

#### 1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

TR21-1-0179501T014a 4/18



## 1.3 Summary of Test Results

| Test case                         | Reference | Reference | Reference         | Page | Remark | Result |
|-----------------------------------|-----------|-----------|-------------------|------|--------|--------|
|                                   | in FCC 🛛  | in ISED 🛮 | in RSS-GEN ⊠      |      |        |        |
| AC-Power Lines Conducted          | §15.107   | ICES-003, | RSS Gen, Issue 5, | 10   |        | passad |
| <u>Emissions</u>                  |           | Issue 7   | Chapter 8.8       | 10   |        | passed |
| Radiated field strength emissions | §15.109   | ICES-003, | RSS-Gen., Issue 5 |      |        |        |
| 30 MHz – 1 GHz                    | §15.33    | Issue 7   | Chapter 8.9,      | 12   |        | passed |
|                                   | §15.35    |           | Chapter 7.3       |      |        |        |
| Radiated field strength emissions | §15.109   | ICES-003, | RSS-Gen., Issue 5 |      |        |        |
| above 1 GHz                       | §15.33    | Issue 7   | Chapter 8.9,      | 14   |        | passed |
|                                   | §15.35    |           | Chapter 7.3       |      |        |        |

PASSED The EUT complies with the essential requirements in the standard.

FAILED The EUT does not comply with the essential requirements in the standard.

N/A Test case does not apply to the test object.

NP The test was not performed by the CETECOM Laboratory.

Decision Rule: CETECOM GmbH follows ILAC G8:2019 chapter 4.2.1 (Simple Acceptance Rule).

## 1.4 Summary of Test Methods

| Test case                                        | Test method                   |
|--------------------------------------------------|-------------------------------|
| AC-Power Lines Conducted Emissions               | ANSI C63.4-2014 chapter 7     |
| Radiated field strength emissions 30 MHz – 1 GHz | ANSI C63.4-2014 chapter 8.2.3 |
| Radiated field strength emissions above 1 GHz    | ANSI C63.4-2014 chapter 8.3   |

TR21-1-0179501T014a 5/18



#### 2 Administrative Data

#### 2.1 Identification of the Testing Laboratory

Company name: CETECOM GmbH

Address: Im Teelbruch 116 45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Ninovic Perez

Accreditation scope: DAkkS Webpage: FCC ISED

IC Lab company No. / CAB ID: 3462D / DE0005

Test location: CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig

#### 2.2 General limits for environmental conditions

| Temperature:        | 22±2 °C   |
|---------------------|-----------|
| Relative. humidity: | 45±15% rH |

#### 2.3 Test Laboratories sub-contracted

Company name: --

#### 2.4 Organizational Items

Responsible test manager: Hicham Laayouni

Receipt of EUT: 20.12.2022

Date(s) of test: 2022-Dec-21 to 2022-Dec-21

Version of template: 22.0901

## 2.5 Applicant's details

Applicant's name: Sentec AG

Address: Ringstrasse 39

4106 Therwil

Switzerland

Contact Person: Oliver Friedli

Contact Person's Email: oliver.friedli@sentec.com

#### 2.6 Manufacturer's details

| Manufacturer's name: | Sentec AG      |
|----------------------|----------------|
| Address:             | Ringstrasse 39 |
|                      | 4106 Therwil   |
|                      | Schweiz        |

TR21-1-0179501T014a 6/18



#### 2.7 Equipment under Test (EUT)

| EUT<br>No.*) | Sample No.        | Product         | Model | Туре | SN     | HW              | SW            |
|--------------|-------------------|-----------------|-------|------|--------|-----------------|---------------|
| EUT 1        | 21-1-01795S18_C01 | Patient Monitor | tCOM+ | N/A  | 000014 | 103164<br>0001B | V00.01.0<br>3 |

<sup>\*)</sup> EUT short description is used to simplify the identification of the EUT in this test report.

## 2.8 Untested Variant (VAR)

| VAR   | Sample No. | Product | Model | Туре | SN | HW | SW |
|-------|------------|---------|-------|------|----|----|----|
| No.*) |            |         |       |      |    |    |    |

<sup>\*)</sup> The listed additional untested model variant(s) (VAR) is/are not object of evaluation of compliance. For further information please see Annex 5: Declaration of applicant of model differences.

#### 2.9 Auxiliary Equipment (AE)

| AE    | Sample No.        | Auxiliary Equipment        | Model                                 | SN     | HW  | SW  |
|-------|-------------------|----------------------------|---------------------------------------|--------|-----|-----|
| No.*) |                   |                            |                                       |        |     |     |
| AE 1  | 21-1-01795S21_C01 | Sensor                     | V-Sign Sensor                         | 343241 | N/A | N/A |
| AE 2  | 21-1-01795S25_C01 | Flash Drive                | USB flash drive (type C)              | N/A    | N/A | N/A |
| AE 3  | 21-1-01795S26_C01 | Flash Drive                | USB flash drive (type C)              | N/A    | N/A | N/A |
| AE 4  | 21-1-01795S30_C01 | Power Supply               | Power Supply                          | N/A    | N/A | N/A |
| AE 5  | 21-1-01795S33_C01 | Sensor Membrane<br>Changer | Membrane Changer MC-<br>R3 LOT 220946 | N/A    | N/A | N/A |

<sup>\*)</sup> AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation

#### 2.10 Connected cables (CAB)

| CAB<br>No.*) | Sample No.        | Cable Type | Connectors / Details | Length |
|--------------|-------------------|------------|----------------------|--------|
| CAB 1        | 21-1-01795S22_C01 | Cable      |                      | 15 cm  |
| CAB 2        | 21-1-01795S27_C01 | Cable      |                      | 100 cm |
| CAB 3        | 21-1-01795S28_C01 | Cable      |                      | cm     |

<sup>\*)</sup> CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation

#### 2.11 Software (SW)

| SW    | Sample No. | SW Name | Description | SW Status |
|-------|------------|---------|-------------|-----------|
| No.*) |            |         |             |           |

<sup>\*)</sup> SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

#### 2.12 EUT set-ups

| set-up<br>no.*) | Combination of EUT and AE                                           | Description               |
|-----------------|---------------------------------------------------------------------|---------------------------|
| 1               | EUT 1 + AE 1 + AE 2 + AE 3 + AE 4 + AE 5 + CAB 1 + CAB 2 +<br>CAB 3 | Used for all measurements |

TR21-1-0179501T014a 7 / 18

If the table above does not show any other line than the headline, no untested variants are available.



<sup>\*)</sup> EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

## 2.13 EUT operation modes

| EUT operating mode no.*) | Operating modes        | Additional information                         |
|--------------------------|------------------------|------------------------------------------------|
|                          | Monitoring function on | Normal monitoring function switched on,        |
| Op. 1                    | +                      | Ping between EUT and laptop via Ethernetcable, |
|                          | Ping                   | all radios are off                             |

<sup>\*)</sup> EUT operating mode no. is used to simplify the test report.

## 3 Equipment under test (EUT)

## 3.1 General Data of Main EUT as Declared by Applicant

| Firmware                                                                         | ☐ for normal use ☐ Special version for test execution |                                |  |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------|--|--|--|--|
| Power supply                                                                     | □ AC Mains                                            | single Line (L1/N) 120 V 60 Hz |  |  |  |  |
|                                                                                  | ☐ DC Mains                                            |                                |  |  |  |  |
|                                                                                  | ☐ Battery                                             |                                |  |  |  |  |
| Operational conditions                                                           | T <sub>nom</sub> =XX °C                               |                                |  |  |  |  |
| EUT sample type                                                                  | Production                                            |                                |  |  |  |  |
| Weight                                                                           | 2.500 kg                                              |                                |  |  |  |  |
| Size [LxWxH]                                                                     | 27.0 cm x 16.0 cm x 16.0 cm                           |                                |  |  |  |  |
| Interfaces/Ports                                                                 | Interfaces/Ports                                      |                                |  |  |  |  |
| For further details refer Applicants Declaration & following technical documents |                                                       |                                |  |  |  |  |

## 3.2 Modifications on Test sample

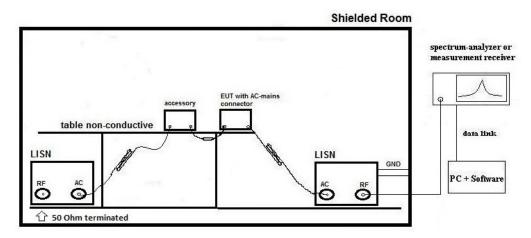
| Additions/deviations or exclusions |  |
|------------------------------------|--|
|                                    |  |

TR21-1-0179501T014a 8/18



#### 4 Measurements

#### 4.1 Conducted interference voltage (AC mains)


#### 4.1.1 Description of the general test setup and methodology

The measurement is performed as follows:

The entire frequency range is swept with Peak and Average detectors on all lines. The test result curves are based on this Preview Test. If there are peaks with margin less than 10 dB to the limits for emissions, the Final Test is started. All frequencies at which margin to the limits is less than 10 dB are scanned with Quasi peak or Average detectors on corresponding lines around those frequencies. These final values are entered to the test results curve and tables.

Diagrams show the peak values as a sum of measured lines in maxhold mode.

#### Schematic:



#### **Testing method:**

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

#### Exploratory, preliminary measurements

As a first step, determines the worst-case phase line (neutral or phase) as well as the most critical operating mode of the equipment. A complete frequency-sweep with PK-Detector is performed on each current-carrying conductor.

#### Final measurement on critical frequencies

For power phases and critical frequencies (Margin to AV- or QP limit lower than 3 dB) as a second step includes measurements with receivers detector set to Quasi-Peak and Average.

#### Formula:

 $\begin{array}{cccc} V_C = V_R + C_L & \text{(1)} & V_C = \text{measured Voltage} - \text{corrected value} \\ M = L_T - V_C & \text{(2)} & V_R = \text{Receiver reading} \\ & C_L = \text{Cable loss} \\ & M = \text{Margin} \\ & L_T = \text{Limit} \end{array}$ 

All units are dB-units, positive margin means value is below limit.

TR21-1-0179501T014a 9 / 18



#### 4.1.2 Test receiver settings

| Detector               | Peak                                                                 | Average                                          | Quasi peak           |
|------------------------|----------------------------------------------------------------------|--------------------------------------------------|----------------------|
| Min. attenuation 10 dB |                                                                      | 10 dB                                            | 10 dB                |
| Resolution bandwidth   | bandwidth 9 kHz 9 kH                                                 |                                                  | 9 kHz                |
| Dector Meas-time       | 10 ms                                                                | Pre-measurement: 10 ms<br>Final measurement: 1 s | 1 s                  |
| Step size              | 3 kHz Pre-measurement: 3 kHz Final measurement: selected frequencies |                                                  | Selected frequencies |
| Preamp                 | Off                                                                  | Off                                              | Off                  |

#### 4.1.3 Measurement Location

#### 4.1.4 Limit

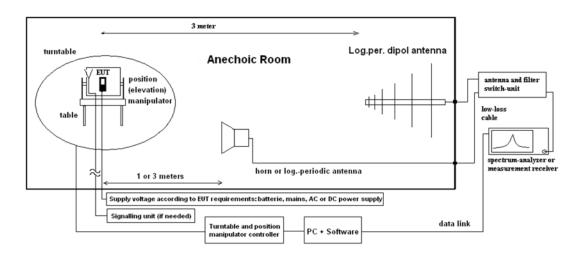
| Frequency Range [MHz] | Class B ⊠                        |           | Class A           |                |
|-----------------------|----------------------------------|-----------|-------------------|----------------|
|                       | QUASI-Peak [dBμV] AVERAGE [dBμV] |           | QUASI-Peak [dBμV] | AVERAGE [dBμV] |
| 0.15 - 0.5            | 66 to 56*                        | 56 to 46* | 79                | 66             |
| 0.5 – 5               | 56                               | 46        | 73                | 60             |
| 5 – 30                | 60 50                            |           | 73                | 60             |

#### 4.1.5 **Result**

| Diagram | Set-up | Mode | Power Line | Max [dBμV]      | Detector | Result |
|---------|--------|------|------------|-----------------|----------|--------|
| 1.01    | 01     | 01   | N/L1       | 44.17 @23.97MHz | QP       | pass   |

Remark: for more information and graphical plot see annex A1 TR21-1-0179501T014a-A1

TR21-1-0179501T014a 10/18




#### 4.2 Radiated field strength emissions 30 MHz – 1 GHz

#### 4.2.1 Description of the general test setup and methodology, see below example:

Evaluating the field emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a NSA-compliant semi anechoic room (SAR) recognized by the regulatory commissions.

#### Schematic:



#### **Testing method:**

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

#### **Exploratory, preliminary measurements**

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

#### Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

TR21-1-0179501T014a 11 / 18



On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

#### Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$  (1) AF = Antenna factor

C<sub>L</sub> = Cable loss

 $M = L_T - E_C$  (2)  $D_F = Distance correction factor (if used)$ 

E<sub>C</sub> = Electrical field – corrected value

E<sub>R</sub> = Receiver reading

G<sub>A</sub> = Gain of pre-amplifier (if used)

L<sub>T</sub> = Limit

M = Margin

All units are dB-units, positive margin means value is below limit.

#### 4.2.2 Sample calculation

| Raw-<br>Value<br>[dBuV/m] | Antenna<br>factor | Distance<br>Correction<br>[dB] | Cable<br>Loss | Preamplifier | Resulting<br>correction value<br>[dB] | Final result<br>[dBuV/m] | Remarks |
|---------------------------|-------------------|--------------------------------|---------------|--------------|---------------------------------------|--------------------------|---------|
| 32.7                      | 22.25             |                                | 3.1           |              | 25.35                                 | 58.05                    |         |

Remark: This calculation is based on an example value at 800.4 MHz

#### 4.2.3 Measurement Location

| Test site 120901 - SAC - Radiated Emission <1GHz |
|--------------------------------------------------|
|--------------------------------------------------|

#### 4.2.4 Limit

| Frequency Range | Class B         | ☑ (3 meters)      | Class A         | ☐ (10 meters)     |            |                    |
|-----------------|-----------------|-------------------|-----------------|-------------------|------------|--------------------|
| [MHz]           | Limit<br>[μV/m] | Limit<br>[dBμV/m] | Limit<br>[μV/m] | Limit<br>[dBμV/m] | Detector   | RBW / VBW<br>[kHz] |
| 30 - 88         | 100             | 40.0              | 90              | 39.0              | Quasi peak | 100 / 300          |
| 88 - 216        | 150             | 43.5              | 150             | 43.5              | Quasi peak | 100 / 300          |
| 216 - 960       | 200             | 46.0              | 210             | 46.4              | Quasi peak | 100 / 300          |
| 960 - 1000      | 500             | 54.0              | 300             | 49.5              | Quasi peak | 100 / 300          |

#### **4.2.5** Result

| Diagram | Set-up | Mode Maximum Level [dBμV/m] |                               | Result |
|---------|--------|-----------------------------|-------------------------------|--------|
|         |        |                             | Frequency Range 30 – 1000 MHz |        |
| 3.01    | 01     | 01                          | 41.82 dBμV/m @ 184.99MHz      |        |

Remark: for more information and graphical plot see annex A1 TR21-1-0179501T014a-A1

TR21-1-0179501T014a 12 / 18



## 4.3 Equipment lists

| ID    | Description                            | Manufacturer                          | SerNo     | CheckType | Last Check       | Interval | Next Check       |
|-------|----------------------------------------|---------------------------------------|-----------|-----------|------------------|----------|------------------|
|       | 120901 - SAC - Radiated Emission <1GHz |                                       |           | calchk    | cal: 2015-Jul-21 | cal: 10Y | cal: 2025-Jul-21 |
|       |                                        |                                       |           |           | chk: 2021-Jul-27 | chk: 12M | chk: 2022-Jul-27 |
| 20341 | Digital Multimeter Fluke 112           | Fluke Deutschland GmbH / Glottertal   | 81650455  | cal       | cal: 2022-May-18 | cal: 24M | cal: 2024-May-18 |
| 20442 | Semi Anechoic Chamber                  | ETS-Lindgren Gmbh / Taufkirchen       | -         | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                        |                                       |           |           | chk: -           | chk: -   | chk: -           |
| 20482 | filter matrix Filter matrix SAR 1      | CETECOM GmbH                          | -         | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                        |                                       |           |           | chk: -           | chk: -   | chk: -           |
| 20574 | Biconilog Hybrid Antenna BTA-L         | Frankonia GmbH / Heideck              | 980026L   | cal       | cal: 2022-Jun-15 | cal: 36M | cal: 2025-Jun-15 |
| 20620 | Test Receiver ESU26                    | Rohde & Schwarz Messgerätebau GmbH /  | 100362    | cal       | cal: 2022-Jun-08 | cal: 12M | cal: 2023-Jun-08 |
|       |                                        | Memmingen                             |           |           |                  |          |                  |
| 20885 | Power Supply EA3632A                   | Agilent Technologies Deutschland GmbH | 75305850  | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                        |                                       |           |           | chk: -           | chk: -   | chk: -           |
| 25038 | Loop Antenna HFH2-Z2                   | Rohde & Schwarz Messgerätebau GmbH /  | 879824/13 | cal       | cal: 2022-Jul-04 | cal: 24M | cal: 2024-Jul-04 |
|       |                                        | Memmingen                             |           |           |                  |          |                  |

## 4.3.1 Legend

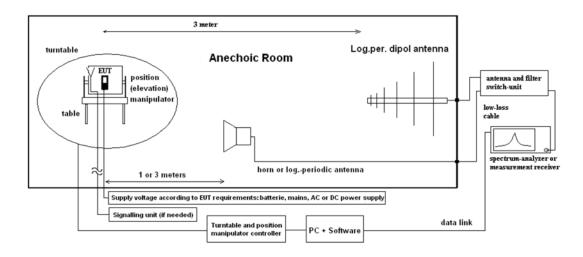
10Y

# Note / remarks Interval of calibration & Verification 12M 12 months 24M 24 months 36M 36 months

10 Years

| Abbreviation Check Type Description |                                            |
|-------------------------------------|--------------------------------------------|
| cnn                                 | Calibration and verification not necessary |
| cal                                 | Calibration                                |
| calchk                              | Calibration plus intermediate Verification |
| chk                                 | Verification                               |
| cpu                                 | Verification before usage                  |

TR21-1-0179501T014a 13/18




#### 4.4 Radiated field strength emissions above 1 GHz

#### 4.4.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

#### **Schematic:**



#### **Testing method:**

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

#### Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

#### Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

TR21-1-0179501T014a 14 / 18



On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

#### Formula:

 $E_C = E_R + A_F + C_L + D_F - G_A$  (1)  $E_C = E_C + E_C +$ 

 $E_R$  = Receiver reading

 $M = L_T - E_C$  (2) M = Margin

 $L_T = Limit$ 

 $A_F$  = Antenna factor

C<sub>L</sub> = Cable loss

D<sub>F</sub> = Distance correction factor (if used) G<sub>A</sub> = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

#### 4.4.2 Sample calculation

| Raw-<br>Value<br>[dBuV/m] | Antenna<br>factor | Distance<br>Correction<br>[dB] | Cable Loss<br>+<br>Preamplifier | Resulting<br>correction value<br>[dB] | Final result<br>[dBuV/m] | Remarks                                                        |
|---------------------------|-------------------|--------------------------------|---------------------------------|---------------------------------------|--------------------------|----------------------------------------------------------------|
| 29.37                     | 41.20             |                                | 24.28                           | 16.92                                 | 46.3                     | CableLoss and<br>PreAmp data<br>in one data<br>correction file |

Remark: This calculation is based on an example value at 10 GHz

#### 4.4.3 Measurement Location

| Test site 120907 - FAC2 - Radiated Emissions |  |
|----------------------------------------------|--|
|----------------------------------------------|--|

#### 4.4.4 Limit

|                                                                                         | Radiated emissions limits (3 meters) |    |         |             |  |  |  |
|-----------------------------------------------------------------------------------------|--------------------------------------|----|---------|-------------|--|--|--|
| Frequency Range Limit Limit Detector RBW / VB $[MHz]$ $[\mu V/m]$ $[dB\mu V/m]$ $[kHz]$ |                                      |    |         |             |  |  |  |
| Above 1000                                                                              | 500                                  | 54 | Average | 1000 / 3000 |  |  |  |
| Above 1000                                                                              | 5000                                 | 74 | Peak    | 1000 / 3000 |  |  |  |

#### **4.4.5** Result

| Dia | gram | Set-up | Mode | Maximum Level [dBμV/m] Frequency Range 1 – 12.4 GHz | Result |
|-----|------|--------|------|-----------------------------------------------------|--------|
| 4.0 | 1a   | 01     | 01   | 59.23@ 11.89 GHz                                    | pass   |

Remark: for more information and graphical plot see annex A1 TR21-1-0179501T014a-A1

| Diagram | Set-up | Mode | Maximum Level [dBμV/m] Frequency Range 12.4 – 18 GHz | Result |
|---------|--------|------|------------------------------------------------------|--------|
| 4.01b   | 01     | 01   | 52.02@ 13.40 GHz                                     | pass   |

| Diagram | Set-up | Mode | Maximum Level [dBμV/m]<br>Frequency Range 18 – 40 GHz | Result |
|---------|--------|------|-------------------------------------------------------|--------|
| 4.01c   | 01     | 01   | 56.65@ 38.83 GHz                                      | pass   |

TR21-1-0179501T014a 15/18



## 4.5 Equipment lists

| ID    | Description                               | Manufacturer                              | SerNo             | CheckType | Last Check       | Interval | Next Check       |
|-------|-------------------------------------------|-------------------------------------------|-------------------|-----------|------------------|----------|------------------|
|       | 120907 - FAC2 - Radiated Emissions        |                                           |                   | chk       |                  |          |                  |
|       |                                           |                                           |                   |           | chk: 2021-Aug-30 | chk: 12M | chk: 2022-Aug-30 |
| 20005 | AC - LISN 50 Ohm/50µH ESH2-Z5             | Rohde & Schwarz Messgerätebau GmbH /      | 861741/005        | cal       | cal: 2022-May-19 | cal: 12M | cal: 2023-May-19 |
|       |                                           | Memmingen                                 |                   |           |                  |          |                  |
| 20133 | Horn Antenna 3115 (Meas 1)                | EMCO Elektronik GmbH                      | 9012-3629         | cal       | cal: 2020-Apr-08 | cal: 36M | cal: 2023-Apr-08 |
| 20302 | Horn Antenna BBHA9170 (Meas 1)            | Schwarzbeck Mess-Elektronik OHG / Schönau | 155               | cpu       |                  |          |                  |
|       |                                           |                                           |                   |           | chk: 2020-Apr-15 | chk: 12M |                  |
| 20412 | Fully Anechoic Chamber 2                  | ETS-Lindgren Gmbh / Taufkirchen           | without           | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                           |                                           |                   |           | chk: -           | chk: -   | chk: -           |
| 20729 | FS-Z140                                   | Rohde & Schwarz Messgerätebau GmbH        | 101004            | cal       | cal: 2020-May-26 | cal: 36M | cal: 2023-May-26 |
| 20730 | FS-Z110                                   | Rohde & Schwarz Messgerätebau GmbH        | 101468            | cal       | cal: 2020-Jun-19 | cal: 36M | cal: 2023-Jun-19 |
| 20731 | FS-Z75                                    | Rohde & Schwarz Messgerätebau GmbH /      | 101022            | cal       | cal: 2022-May-18 | cal: 36M | cal: 2025-May-18 |
|       |                                           | Memmingen                                 |                   |           |                  |          |                  |
| 20732 | Signal- and Spectrum Analyzer FSW67       | Rohde & Schwarz Messgerätebau GmbH /      | 104023            | cal       | cal: 2022-Jun-08 | cal: 12M | cal: 2023-Jun-08 |
|       |                                           | Memmingen                                 |                   |           |                  |          |                  |
| 20733 | Harmonic Mixer FS-Z220                    | RPG-Radiometer Physics GmbH               | 101009            | cal       | cal: 2021-May-27 | cal: 36M | cal: 2024-May-27 |
| 20734 | Harmonic Mixer FS-Z325                    | RPG-Radiometer Physics GmbH               | 101005            | cal       | cal: 2021-May-27 | cal: 36M | cal: 2024-May-27 |
| 20765 | Pickett-Potter Horn Antenna FH-PP 40-60   | RPG-Radiometer Physics GmbH / Meckenheim  | 010001            | cal       | cal: 2020-Sep-15 | cal: 36M | cal: 2023-Sep-15 |
| 20767 | Pickett-Potter Horn Antenna FH-PP 140-220 | RPG-Radiometer Physics GmbH / Meckenheim  | 010011            | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                           |                                           |                   |           | chk: -           | chk: -   | chk: -           |
| 20811 | Horn Antenna ASY-SGH-124-SMA              | Antenna Systems Solutions S.L             | 29F14182337       | cal       | cal: 2021-Oct-20 | cal: 36M | cal: 2024-Oct-20 |
| 20812 | Pickett-Potter Horn Antenna FH-PP-325     | RPG-Radiometer Physics GmbH               | 10024             | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                           |                                           |                   |           | chk: -           | chk: -   | chk: -           |
| 20813 | Pickett-Potter Horn Antenna FH-PP 075     | RPG-Radiometer Physics GmbH / Meckenheim  | 10006             | cal       | cal: 2020-Sep-09 | cal: 36M | cal: 2023-Sep-09 |
| 20814 | Pickett-Potter Horn Antenna FH-PP 140     | RPG-Radiometer Physics GmbH               | 10008             | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                           |                                           |                   |           | chk: -           | chk: -   | chk: -           |
| 20815 | Pickett-Potter Horn Antenna FH-PP 110     | RPG-Radiometer Physics GmbH               | 10014             | cal       | cal: 2020-Sep-04 | cal: 36M | cal: 2023-Sep-04 |
| 20816 | SGH Antenna SGH-26-WR10                   | Anteral S.L.                              | 1144              | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                           |                                           |                   |           | chk: -           | chk: -   | chk: -           |
| 20817 | Waveguide Rectangular Horn Antenna SAR-   | ERAVAN                                    | 13254-01          | cal       | cal: 2020-Jul-29 | cal: 36M | cal: 2023-Jul-29 |
|       | 2309-22-S2                                |                                           |                   |           |                  |          |                  |
| 20836 | 1-18 GHz Amplifier                        | Wright Technologies, Inc., Inc.           | 0001              | chk       |                  |          |                  |
|       |                                           |                                           |                   |           |                  | chk: 36M |                  |
| 20877 | JS42-08001800-16-8P Verstärker            | Miteq Inc.                                | 2079991 / 2079992 | chk       |                  |          |                  |
|       |                                           |                                           |                   |           | chk: 2020-Feb-27 | chk: 36M | chk: 2020-May-27 |
| 20907 | Waveguide WR-15 attenuator STA-30-15-M2   | SAGE Millimeter Inc.                      | 13256-01          | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                           |                                           |                   |           | chk: -           | chk: -   | chk: -           |
| 20908 | Waveguide WR 10 attenuator STA-30-10-M2   | SAGE Millimeter Inc.                      | 13256-01          | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                           |                                           |                   |           | chk: -           | chk: -   | chk: -           |
| 20909 | Waveguide Horn Antenna PE9881-24          | Pasternack Enterprises, Inc.              | 37/2016           | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                           |                                           |                   |           | chk: -           | chk: -   | chk: -           |
| 20910 | Frequency Multiplier 936VF-10/385         | MI-Wave, Millimeter Wave Products Inc.    | 142               | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                           |                                           |                   |           | chk: -           | chk: -   | chk: -           |
| 20911 | Frequency Multiplier 938WF-10/387         | MI-Wave, Millimeter Wave Products Inc.    | 141               | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                           |                                           |                   |           | chk: -           | chk: -   | chk: -           |
| 20912 | Low noise Amplifier Module 0.5-4GHz       | RF-Lambda Europe GmbH                     | 19041200083       | cnn       | cal: -           | cal: -   | cal: -           |
|       |                                           |                                           |                   |           | chk: -           | chk: -   | chk: -           |
| 20913 | Phase Amplitude Stable Cable Assembly DC- | RF-Lambda Europe GmbH                     | AC19040001        | cnn       | cal: -           | cal: -   | cal: -           |
|       | 40GHz                                     |                                           |                   |           | chk: -           | chk: -   | chk: -           |
| 25457 | DRG Horn Antenna SAS-574                  | A.H. Systems, Inc. / Chatsworth           | 383               | cal       | cal: 2022-Mar-28 | cal: 36M | cal: 2025-Mar-28 |

Tools used in 'P3M1'

## 4.5.1 Legend

| Note / remarks | Interval of calibration & Verification |
|----------------|----------------------------------------|
| 12M            | 12 months                              |
| 24M            | 24 months                              |
| 36M            | 36 months                              |
| 10Y            | 10 Years                               |

| Abbreviation Check Type       | Description                                |
|-------------------------------|--------------------------------------------|
| cnn                           | Calibration and verification not necessary |
| cal                           | Calibration                                |
| calchk                        | Calibration plus intermediate Verification |
| chk                           | Verification                               |
| cpu Verification before usage |                                            |

TR21-1-0179501T014a 16/18



| 5  | Results from 6  | Results from external laboratory |  |  |  |  |  |  |  |
|----|-----------------|----------------------------------|--|--|--|--|--|--|--|
| No | one             | -                                |  |  |  |  |  |  |  |
| 6  | Opinions and    | interpretations                  |  |  |  |  |  |  |  |
| No | one             | -                                |  |  |  |  |  |  |  |
| 7  | List of abbrevi | iations                          |  |  |  |  |  |  |  |
| No | one             |                                  |  |  |  |  |  |  |  |

TR21-1-0179501T014a 17/18



## 8 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor  $\mathbf{k}$ , such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

| Measurement type          | Frequen<br>of meas<br>Start [MHz] | cy range<br>urement<br>Stop [MHz] | Calculated Uncertainty<br>based on<br>confidence level of 95.54% | Remarks                                                                        |
|---------------------------|-----------------------------------|-----------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                           |                                   |                                   |                                                                  |                                                                                |
| Magnetic field strength   | 0.009                             | 30                                | 4.86                                                             | Magnetic loop antenna, Pre-amp on                                              |
|                           | 30                                | 100                               | 4.57                                                             | without Pre-Amp                                                                |
|                           | 30                                | 100                               | 4.91                                                             | with PreAmp                                                                    |
|                           | 100                               | 1000                              | 4.02                                                             | without Pre-Amp                                                                |
|                           | 100                               | 1000                              | 4.26                                                             | with PreAmp                                                                    |
|                           | 1000                              | 18000                             | 4.36                                                             | without Pre-Amp                                                                |
|                           | 1000                              | 18000                             | 5.23                                                             | with PreAmp                                                                    |
| RF-Output power (eirp)    | 18000                             | 33000                             | 4.92                                                             | Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna)            |
| Unwanted emissions (eirp) | 33000                             | 50000                             | 4.17                                                             | Set-up for Q-Band (WR-22), non-wave guide antenna                              |
| [dB]                      | 40000                             | 60000                             | 4.69                                                             | Set-up U-Band (WR-19), non-waveguide antenna                                   |
| 1. 1                      | 50000                             | 75000                             | 4.06                                                             | External Mixer set-up V-Band (WR-15)                                           |
|                           | 75000                             | 110000                            | 4.17                                                             | External Mixer set-up W-Band (WR-6)                                            |
|                           | 90000                             | 140000                            | 5.49                                                             | External Mixer set-up F-Band (WR-8)                                            |
|                           | 140000                            | 225000                            | 6.22                                                             | External Mixer set-up G-Band (WR-5)                                            |
|                           | 225000                            | 325000                            | 7.04                                                             | External Mixer set-up (WR-3)                                                   |
|                           | 325000                            | 500000                            | 8.84                                                             | External Mixer set-up (WR-2.2)                                                 |
|                           | 1000                              | 18000                             | 2.85                                                             | Typical set-up with microwave generator and antenna, value for 7GHz calculated |
|                           | 18000                             | 33000                             | 4.66                                                             | Typical set-up with microwave generator and antenna                            |
| Radiated Blocking         | 33000                             | 50000                             | 3.48                                                             | WR-22 set-up                                                                   |
| [dB]                      | 50000                             | 75000                             | 3.73                                                             | WR-15 set-up                                                                   |
|                           | 75000                             | 110000                            | 4.26                                                             | WR-6 set-up                                                                    |
|                           | 75000                             | 110000                            | 4.20                                                             | wr-o set-up                                                                    |
| Frequency Error           | 40000                             | 77000                             | 276.19                                                           | calculated for 77 GHz (FMCW) carrier                                           |
| [kHz]                     | 6000                              | 7000                              | 33.92                                                            | calculated for 6.5GHz UWB Ch.5                                                 |
|                           | 30                                | 6000                              | 1.11                                                             | Power measurement with Fast-sampling-detector                                  |
|                           | 30                                | 6000                              | 1.20                                                             | Power measurement with Spectrum-Analyzer                                       |
|                           | 30                                | 6000                              | 1.20                                                             | Power Spectrum-Density measurement                                             |
|                           | 30                                | 7500                              | 1.20                                                             | Conducted Spurious emissions:                                                  |
|                           | 0.009                             | 30                                | 2.56                                                             | 5. Conducted Spurious emissions:                                               |
| TS 8997                   | 2.4                               | 2.48                              | 1.95 ppm                                                         | 6a. Bandwidth / 2-Marker Method for 2.4GHz ISM                                 |
| conducted Parameters      | 5.18                              | 5.825                             | 7.180 ppm                                                        | 6b. Bandwidth / 2-Marker Method for 5GHz WLAN                                  |
|                           | 5.18                              | 5.825                             | 1.099 ppm                                                        | 7 Frequency (Marker method) for 5GHz WLAN                                      |
|                           | 30                                | 6000                              | 0.11561µs                                                        | 8 Medium-Utilization factor / Timing                                           |
|                           | 30                                | 6000                              | 1.85                                                             | 9 Blocking-Level of companion device                                           |
|                           | 30                                | 6000                              | 1.62                                                             | 9 Blocking Generator level                                                     |
|                           |                                   |                                   |                                                                  |                                                                                |
| Conducted emissions       | 0.009                             | 30                                | 3.57                                                             |                                                                                |
| Conducted emissions       |                                   |                                   |                                                                  |                                                                                |

## 9 Versions of test reports (change history)

| Version | Applied changes | Date of release |
|---------|-----------------|-----------------|
|         | Initial release | 2023-Mar-16     |
|         |                 |                 |
|         |                 |                 |

## **End Of Test Report**

TR21-1-0179501T014a 18 / 18