



# FCC Part 15C Test Report

## FCC ID: 2ALTG-READER

|                  |                                                                                                                                                    |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Product Name:    | Disk RFID Reader                                                                                                                                   |
| Trademark:       | N/A                                                                                                                                                |
| Model Name :     | RFID-READER DiscReader                                                                                                                             |
| Prepared For :   | EnvisionWare Inc                                                                                                                                   |
| Address :        | 2855 Premiere Parkway Suite A Duluth, GA 30097-5201 United States                                                                                  |
| Prepared By :    | Shenzhen BCTC Testing Co., Ltd.                                                                                                                    |
| Address :        | BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China |
| Test Date:       | Apr. 01, 2019 – Apr. 11, 2019                                                                                                                      |
| Date of Report : | Apr. 11, 2019                                                                                                                                      |
| Report No.:      | BCTC-FY190301605E                                                                                                                                  |



## TEST RESULT CERTIFICATION

**Applicant's name**.....: EnvisionWare Inc

Address .....: 2855 Premiere Parkway Suite A Duluth, GA 30097-5201  
United States

**Manufacture's Name**.....: Dekey Smart System Co.,Ltd

Address .....: Room 201, Block A, No.1, QianWang One Road QianHai,  
Shenzhen-Hongkong cooperation Zone, Shenzhen, 518000  
China

### Product description

Product name .....: Disk RFID Reader

Trademark .....: N/A

Model and/or type reference : RFID-READER DiscReader

**Standards**.....: FCC Part15.225  
ANSI C63.10-2013

This device described above has been tested by BCTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of BCTC, this document may be altered or revised by BCTC, personal only, and shall be noted in the revision of the document.

Prepared by(Engineer): Cai Fang Zhong Cai Fang Zhong

Reviewer(Supervisor): Eric Yang

Approved(Manager): Zero Zhou





## Table of Contents

|                                                                    | Page      |
|--------------------------------------------------------------------|-----------|
| <b>1 . SUMMARY OF TEST RESULTS</b>                                 | <b>5</b>  |
| <b>1.1 TEST FACILITY</b>                                           | 5         |
| <b>1.2 MEASUREMENT UNCERTAINTY</b>                                 | 5         |
| <b>2 . GENERAL INFORMATION</b>                                     | <b>6</b>  |
| <b>2.1 GENERAL DESCRIPTION OF EUT</b>                              | 6         |
| <b>2.2 DESCRIPTION OF TEST MODES</b>                               | 7         |
| <b>2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED</b> | 8         |
| <b>2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)</b>            | 8         |
| <b>2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS</b>                      | 9         |
| <b>3 . EMC EMISSION TEST</b>                                       | <b>10</b> |
| <b>3.1 CONDUCTED EMISSION MEASUREMENT</b>                          | 10        |
| <b>3.1.1 POWER LINE CONDUCTED EMISSION LIMITS</b>                  | 10        |
| <b>3.1.2 TEST PROCEDURE</b>                                        | 10        |
| <b>3.1.3 DEVIATION FROM TEST STANDARD</b>                          | 10        |
| <b>3.1.4 TEST SETUP</b>                                            | 11        |
| <b>3.1.5 EUT OPERATING CONDITIONS</b>                              | 11        |
| <b>3.1.6 TEST RESULTS</b>                                          | 11        |
| <b>3.2 RADIATED EMISSION MEASUREMENT</b>                           | 14        |
| <b>3.2.1 RADIATED EMISSION LIMITS</b>                              | 14        |
| <b>3.2.2 TEST PROCEDURE</b>                                        | 14        |
| <b>3.2.3 DEVIATION FROM TEST STANDARD</b>                          | 15        |
| <b>3.2.4 TEST SETUP</b>                                            | 15        |
| <b>3.2.5 EUT OPERATING CONDITIONS</b>                              | 16        |
| <b>3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)</b>                  | 17        |
| <b>3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)</b>                   | 18        |
| <b>3.3 RADIATED BAND EMISSION MEASUREMENT</b>                      | 20        |
| <b>3.3.1 TEST REQUIREMENT:</b>                                     | 20        |
| <b>3.3.2 TEST PROCEDURE</b>                                        | 20        |
| <b>3.3.3 DEVIATION FROM TEST STANDARD</b>                          | 20        |
| <b>3.3.4 TEST SETUP</b>                                            | 21        |
| <b>3.3.5 EUT OPERATING CONDITIONS</b>                              | 21        |
| <b>4 . BANDWIDTH TEST</b>                                          | <b>23</b> |
| <b>4.1 APPLIED PROCEDURES</b>                                      | 23        |
| <b>4.1.1 TEST PROCEDURE</b>                                        | 23        |
| <b>4.1.2 DEVIATION FROM STANDARD</b>                               | 23        |



## Table of Contents

|                                            | Page      |
|--------------------------------------------|-----------|
| 4.1.3 TEST SETUP                           | 23        |
| 4.1.4 EUT OPERATION CONDITIONS             | 23        |
| 4.1.5 TEST RESULTS                         | 24        |
| <b>5 . TRANSMITTER FREQUENCY STABILITY</b> | <b>25</b> |
| 5.1 LIMITS                                 | 25        |
| 5.1.1 TEST PROCEDURE                       | 25        |
| 5.1.2 DEVIATION FROM STANDARD              | 25        |
| 5.1.3 TEST SETUP                           | 25        |
| 5.1.4 EUT OPERATION CONDITIONS             | 25        |
| 5.1.5 TEST RESULTS                         | 26        |
| <b>6 . ANTENNA REQUIREMENT</b>             | <b>27</b> |
| 6.1 STANDARD REQUIREMENT                   | 27        |
| 6.2 EUT ANTENNA                            | 27        |
| <b>7 . TEST SEUUP PHOTO</b>                | <b>28</b> |
| <b>8 . EUT PHOTO</b>                       | <b>30</b> |



## 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

| FCC Part15 (15.225)             |                                                                                     |          |        |
|---------------------------------|-------------------------------------------------------------------------------------|----------|--------|
| Standard Section                | Test Item                                                                           | Judgment | Remark |
| 15.207(a)                       | Conducted Emission                                                                  | PASS     |        |
| Part 15.209(a), 15.225(d)       | Radiated Spurious Emission                                                          | PASS     |        |
| 15.215(a)                       | Bandwidth                                                                           | PASS     |        |
| Part 15.209(a),<br>15.225(c)(d) | Band Edge Emission                                                                  | PASS     |        |
| 15.225(a)                       | Field Strength Emissions Within the band<br>13.553-13.567 MHz                       | PASS     |        |
| 15.225(b)                       | Field Strength Emissions Within the band<br>13.410-13.553 MHz and 13.567-13.710 MHz | PASS     |        |
| Part 15.225(e)                  | Transmitter Frequency Stability<br>(Temperature & Voltage Variation)                | PASS     |        |
| 15.203                          | Antenna Requirement                                                                 | PASS     |        |

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

### 1.1 TEST FACILITY

Shenzhen BCTC Testing Co., Ltd.

Add. : BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 712850

IC Registered No.: 23583

### 1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y \pm U$  , where expended uncertainty  $U$  is based on a standard uncertainty multiplied by a coverage factor of  $k=2$  , providing a level of confidence of approximately 95 %.

| No. | Item                                               | Uncertainty            |
|-----|----------------------------------------------------|------------------------|
| 1   | 3m chamber Radiated spurious emission(30MHz-1GHz)  | $U=4.3\text{dB}$       |
| 2   | 3m chamber Radiated spurious emission(1GHz-18GHz)  | $U=4.5\text{dB}$       |
| 3   | 3m chamber Radiated spurious emission(18GHz-40GHz) | $U=3.34\text{dB}$      |
| 4   | Conducted Adjacent channel power                   | $U=1.38\text{dB}$      |
| 5   | Conducted output power uncertainty Above 1G        | $U=1.576\text{dB}$     |
| 6   | Conducted output power uncertainty below 1G        | $U=1.28\text{dB}$      |
| 7   | humidity uncertainty                               | $U=5.3\%$              |
| 8   | Temperature uncertainty                            | $U=0.59^\circ\text{C}$ |



## 2. GENERAL INFORMATION

### 2.1 GENERAL DESCRIPTION OF EUT

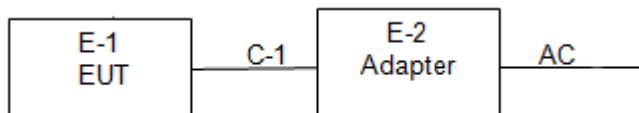
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |          |                  |     |                   |      |               |                  |                    |      |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|------------------|-----|-------------------|------|---------------|------------------|--------------------|------|
| Equipment              | Disk RFID Reader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |          |                  |     |                   |      |               |                  |                    |      |
| Trade Name             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |          |                  |     |                   |      |               |                  |                    |      |
| Model Name             | RFID-READER DiscReader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |          |                  |     |                   |      |               |                  |                    |      |
| Model Difference       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |          |                  |     |                   |      |               |                  |                    |      |
| Product Description    | <p>The EUT is a Disk RFID Reader</p> <table border="1"><tr><td>Operation Frequency:</td><td>13.56MHz</td></tr><tr><td>Modulation Type:</td><td>ASK</td></tr><tr><td>Number Of Channel</td><td>1 CH</td></tr><tr><td>Antenna type:</td><td>PCB Coil Antenna</td></tr><tr><td>Antenna Gain (dBi)</td><td>1dBi</td></tr></table> <p>Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.</p> | Operation Frequency: | 13.56MHz | Modulation Type: | ASK | Number Of Channel | 1 CH | Antenna type: | PCB Coil Antenna | Antenna Gain (dBi) | 1dBi |
| Operation Frequency:   | 13.56MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |          |                  |     |                   |      |               |                  |                    |      |
| Modulation Type:       | ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |          |                  |     |                   |      |               |                  |                    |      |
| Number Of Channel      | 1 CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |          |                  |     |                   |      |               |                  |                    |      |
| Antenna type:          | PCB Coil Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |          |                  |     |                   |      |               |                  |                    |      |
| Antenna Gain (dBi)     | 1dBi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |          |                  |     |                   |      |               |                  |                    |      |
| Channel List           | Please refer to the Note 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |                  |     |                   |      |               |                  |                    |      |
| Power                  | DC 5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |                  |     |                   |      |               |                  |                    |      |
| Connecting I/O Port(s) | Please refer to the User's Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |          |                  |     |                   |      |               |                  |                    |      |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.



## 2.2 DESCRIPTION OF TEST MODES


To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode                                 | Description |
|----------------------------------------------|-------------|
| Mode 1                                       | TX Mode     |
| <b>For Conducted &amp; Radiated Emission</b> |             |
| Final Test Mode                              | Description |
| Mode 1                                       | TX Mode     |



## 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission/Radiated Emission Test



## 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment        | Mfr/Brand | Model/Type No.            | Series No. | Note      |
|------|------------------|-----------|---------------------------|------------|-----------|
| E-1  | Disk RFID Reader | N/A       | RFID-READER<br>DiscReader | N/A        | EUT       |
| E-2  | Adapter          | N/A       | BCTC005                   | N/A        | Auxiliary |

| Item | Shielded Type | Ferrite Core | Length | Note                 |
|------|---------------|--------------|--------|----------------------|
| C-1  | NO            | NO           | 1M     | USB cable unshielded |
|      |               |              |        |                      |

Note: For detachable type I/O cable should be specified the length in cm in «Length» column.



## 2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

### Radiation Test equipment

| Item | Equipment                           | Manufacturer    | Type No.          | Serial No.    | Last calibration | Calibrated until |
|------|-------------------------------------|-----------------|-------------------|---------------|------------------|------------------|
| 1    | Spectrum Analyzer<br>(9kHz-26.5GHz) | Agilent         | E4407B            | MY45109572    | 2018.06.20       | 2019.06.20       |
| 2    | Test Receiver<br>(9kHz-7GHz)        | R&S             | ESR7              | 101154        | 2018.06.20       | 2019.06.20       |
| 3    | Bilog Antenna<br>(30MHz-3GHz)       | SCHWARZBEC<br>K | VULB9163          | VULB9163-942  | 2018.06.23       | 2019.06.23       |
| 4    | Horn Antenna<br>(1GHz-18GHz)        | SCHWARZBEC<br>K | BBHA9120D         | 1541          | 2018.06.23       | 2019.06.22       |
| 5    | Horn Antenna<br>(18GHz-40GHz)       | SCHWARZBEC<br>K | BBHA9170          | 822           | 2018.08.06       | 2019.08.06       |
| 6    | Amplifier<br>(9KHz-6GHz)            | SCHWARZBEC<br>K | BBV9744           | 9744-0037     | 2018.06.20       | 2019.06.20       |
| 7    | Amplifier<br>(0.5GHz-18GHz)         | SCHWARZBEC<br>K | BBV9718           | 9718-309      | 2018.06.20       | 2019.06.20       |
| 8    | Amplifier<br>(18GHz-40GHz)          | MITEQ           | TTA1840-35-H<br>G | 2034381       | 2018.08.06       | 2019.08.06       |
| 9    | Loop Antenna<br>(9KHz-30MHz)        | SCHWARZBEC<br>K | FMZB1519B         | 014           | 2018.06.23       | 2019.06.23       |
| 10   | RF cables1<br>(9kHz-30MHz)          | Huber+Suhnar    | 9kHz-30MHz        | B1702988-0008 | 2019.02.12       | 2020.02.12       |
| 11   | RF cables2<br>(30MHz-1GHz)          | Huber+Suhnar    | 30MHz-1GHz        | 1486150       | 2019.03.27       | 2020.03.27       |
| 12   | RF cables3<br>(1GHz-40GHz)          | Huber+Suhnar    | 1GHz-40GHz        | 1607106       | 2018.06.19       | 2019.06.19       |
| 13   | Power Meter                         | Keysight        | E4419             | \             | 2018.04.15       | 2019.04.15       |
| 14   | Power Sensor (AV)                   | Keysight        | E9 300A           | \             | 2018.04.15       | 2019.04.15       |
| 15   | Signal Analyzer<br>20kHz-26.5GHz    | KEYSIGHT        | N9020A            | MY49100060    | 2018.08.14       | 2019.08.13       |
| 16   | Test Receiver<br>9kHz-40GHz         | R&S             | FSP40             | 100550        | 2018.06.13       | 2019.06.12       |
| 17   | D.C. Power Supply                   | LongWei         | TPR-6405D         | \             | \                | \                |
| 18   | Software                            | Frad            | EZ-EMC            | FA-03A2 RE    | \                | \                |

### Conduction Test equipment

| Item | Equipment     | Manufacturer    | Type No.   | Serial No.    | Last calibration | Calibrated until |
|------|---------------|-----------------|------------|---------------|------------------|------------------|
| 1    | Test Receiver | R&S             | ESR3       | 102075        | 2018.06.20       | 2019.06.20       |
| 2    | LISN          | SCHWARZBEC<br>K | NSLK8127   | 8127739       | 2018.06.19       | 2019.06.19       |
| 3    | LISN          | R&S             | ENV216     | 101375        | 2018.06.20       | 2019.06.20       |
| 4    | RF cables     | Huber+Suhnar    | 9kHz-30MHz | B1702988-0008 | 2019.03.12       | 2020.03.12       |
| 5    | Software      | Frad            | EZ-EMC     | EMC-CON 3A1   | \                | \                |



### 3. EMC EMISSION TEST

#### 3.1 CONDUCTED EMISSION MEASUREMENT

##### 3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

| FREQUENCY (MHz) | Class B (dBuV) |           | Standard |
|-----------------|----------------|-----------|----------|
|                 | Quasi-peak     | Average   |          |
| 0.15 -0.5       | 66 - 56 *      | 56 - 46 * | FCC      |
| 0.50 -5.0       | 56.00          | 46.00     | FCC      |
| 5.0 -30.0       | 60.00          | 50.00     | FCC      |

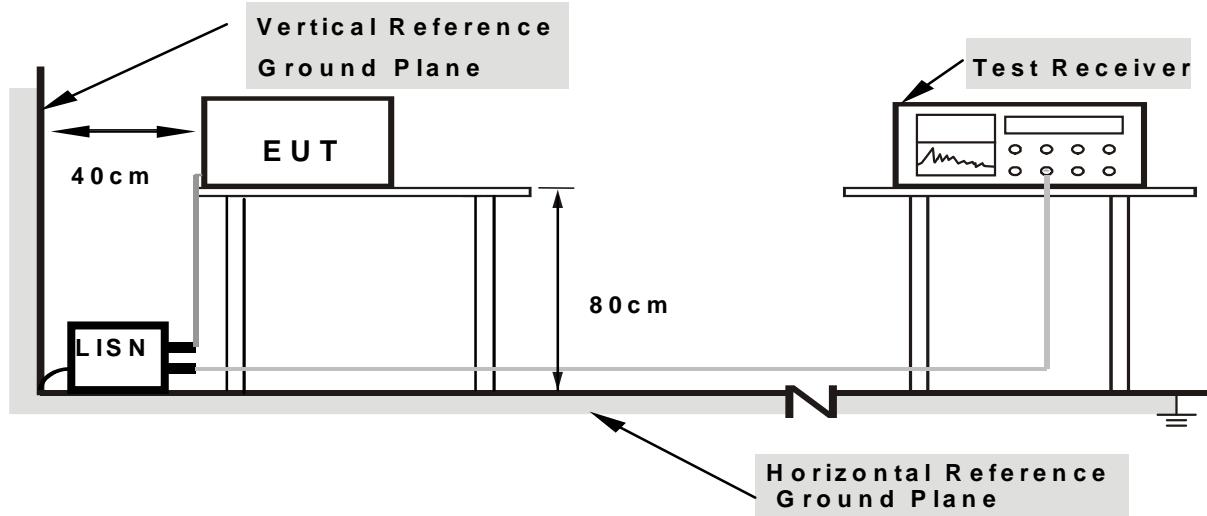
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

#### 3.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

#### 3.1.3 DEVIATION FROM TEST STANDARD

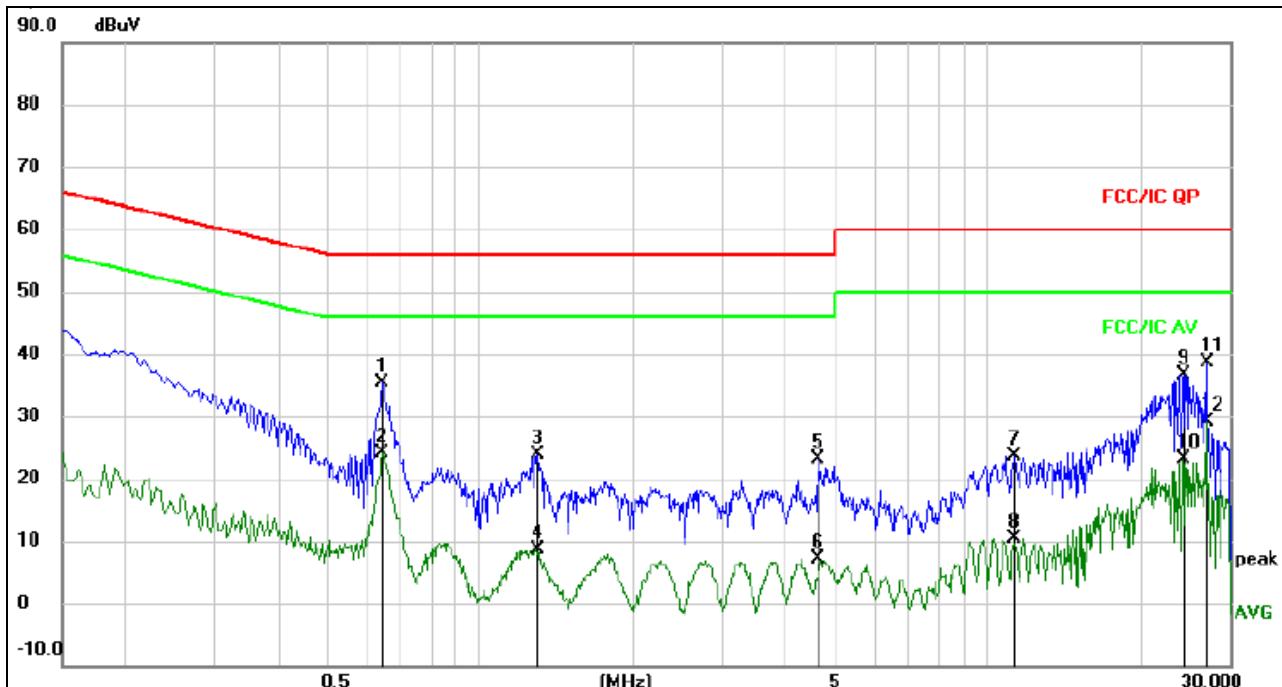
No deviation



### 3.1.4 TEST SETUP



Note: 1. Support units were connected to second LISN.  
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes


### 3.1.5 EUT OPERATING CONDITIONS

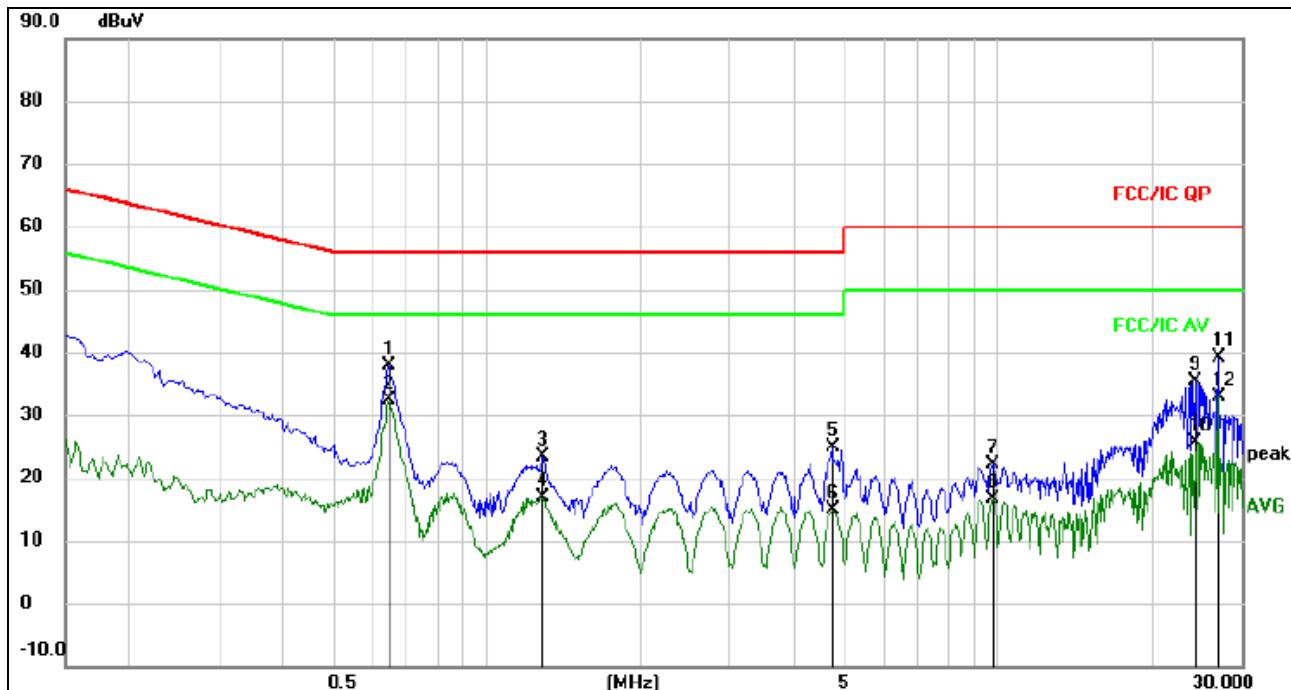
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

### 3.1.6 TEST RESULTS



|                |              |                     |        |
|----------------|--------------|---------------------|--------|
| Temperature :  | 26 °C        | Relative Humidity : | 54%    |
| Pressure :     | 101kPa       | Phase :             | L      |
| Test Voltage : | AC 120V/60Hz | Test Mode :         | Mode 1 |




Remark:

1. Factor = Insertion Loss + Cable Loss.
2. Over = Measurement - Limit. Measurement = Reading + Factor

| No. | Mk. | Freq.   | Reading | Correct | Measure- | Limit | Over   | Detector | Comment |
|-----|-----|---------|---------|---------|----------|-------|--------|----------|---------|
|     |     |         | Level   | Factor  | ment     |       |        |          |         |
| 1   | *   | 0.6419  | 25.52   | 9.85    | 35.37    | 56.00 | -20.63 | QP       |         |
| 2   |     | 0.6419  | 14.22   | 9.85    | 24.07    | 46.00 | -21.93 | AVG      |         |
| 3   |     | 1.3020  | 14.37   | 9.58    | 23.95    | 56.00 | -32.05 | QP       |         |
| 4   |     | 1.3020  | -0.95   | 9.58    | 8.63     | 46.00 | -37.37 | AVG      |         |
| 5   |     | 4.6300  | 13.26   | 9.77    | 23.03    | 56.00 | -32.97 | QP       |         |
| 6   |     | 4.6300  | -2.62   | 9.77    | 7.15     | 46.00 | -38.85 | AVG      |         |
| 7   |     | 11.2980 | 14.03   | 9.69    | 23.72    | 60.00 | -36.28 | QP       |         |
| 8   |     | 11.2980 | 0.70    | 9.69    | 10.39    | 50.00 | -39.61 | AVG      |         |
| 9   |     | 24.3660 | 26.92   | 9.75    | 36.67    | 60.00 | -23.33 | QP       |         |
| 10  |     | 24.3660 | 13.36   | 9.75    | 23.11    | 50.00 | -26.89 | AVG      |         |
| 11  |     | 27.1180 | 28.97   | 9.73    | 38.70    | 60.00 | -21.30 | QP       |         |
| 12  |     | 27.1180 | 19.34   | 9.73    | 29.07    | 50.00 | -20.93 | AVG      |         |



|                |              |                     |        |
|----------------|--------------|---------------------|--------|
| Temperature :  | 26 °C        | Relative Humidity : | 54%    |
| Pressure :     | 101kPa       | Phase :             | N      |
| Test Voltage : | AC 120V/60Hz | Test Mode :         | Mode 1 |



Remark:

1. Factor = Insertion Loss + Cable Loss.
2. Over = Measurement - Limit. Measurement = Reading + Factor

| No. | Mk. | Freq.   | Reading | Correct | Measure- | Limit | Over   | Detector | Comment |
|-----|-----|---------|---------|---------|----------|-------|--------|----------|---------|
|     |     |         | Level   | Factor  | ment     |       |        |          |         |
|     |     | MHz     | dBuV    |         | dBuV     | dBuV  | dB     |          |         |
| 1   |     | 0.6460  | 28.07   | 9.84    | 37.91    | 56.00 | -18.09 | QP       |         |
| 2   | *   | 0.6460  | 22.49   | 9.84    | 32.33    | 46.00 | -13.67 | AVG      |         |
| 3   |     | 1.2900  | 13.86   | 9.58    | 23.44    | 56.00 | -32.56 | QP       |         |
| 4   |     | 1.2900  | 7.22    | 9.58    | 16.80    | 46.00 | -29.20 | AVG      |         |
| 5   |     | 4.7540  | 15.01   | 9.78    | 24.79    | 56.00 | -31.21 | QP       |         |
| 6   |     | 4.7540  | 5.06    | 9.78    | 14.84    | 46.00 | -31.16 | AVG      |         |
| 7   |     | 9.7940  | 12.36   | 9.69    | 22.05    | 60.00 | -37.95 | QP       |         |
| 8   |     | 9.7940  | 6.92    | 9.69    | 16.61    | 50.00 | -33.39 | AVG      |         |
| 9   |     | 24.2780 | 25.69   | 9.75    | 35.44    | 60.00 | -24.56 | QP       |         |
| 10  |     | 24.2780 | 15.81   | 9.75    | 25.56    | 50.00 | -24.44 | AVG      |         |
| 11  |     | 27.1220 | 29.35   | 9.73    | 39.08    | 60.00 | -20.92 | QP       |         |
| 12  |     | 27.1220 | 23.17   | 9.73    | 32.90    | 50.00 | -17.10 | AVG      |         |



### 3.2 RADIATED EMISSION MEASUREMENT

#### 3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

1. The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters
2. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

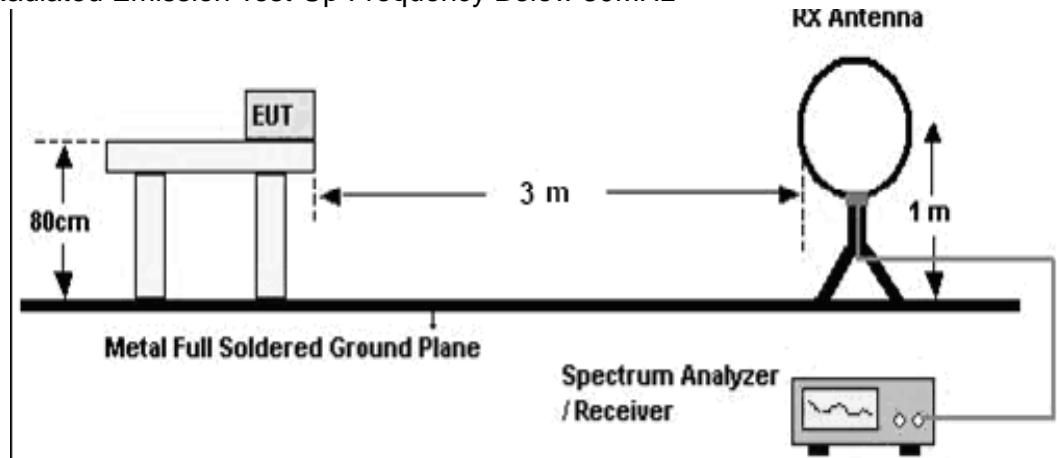
| Frequencies (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) |
|-------------------|-----------------------------------|-------------------------------|
| 0.009~0.490       | 2400/F(KHz)                       | 300                           |
| 0.490~1.705       | 24000/F(KHz)                      | 30                            |
| 1.705~30.0        | 30                                | 30                            |
| 30~88             | 100                               | 3                             |
| 88~216            | 150                               | 3                             |
| 216~960           | 200                               | 3                             |
| Above 960         | 500                               | 3                             |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

#### 3.2.2 TEST PROCEDURE

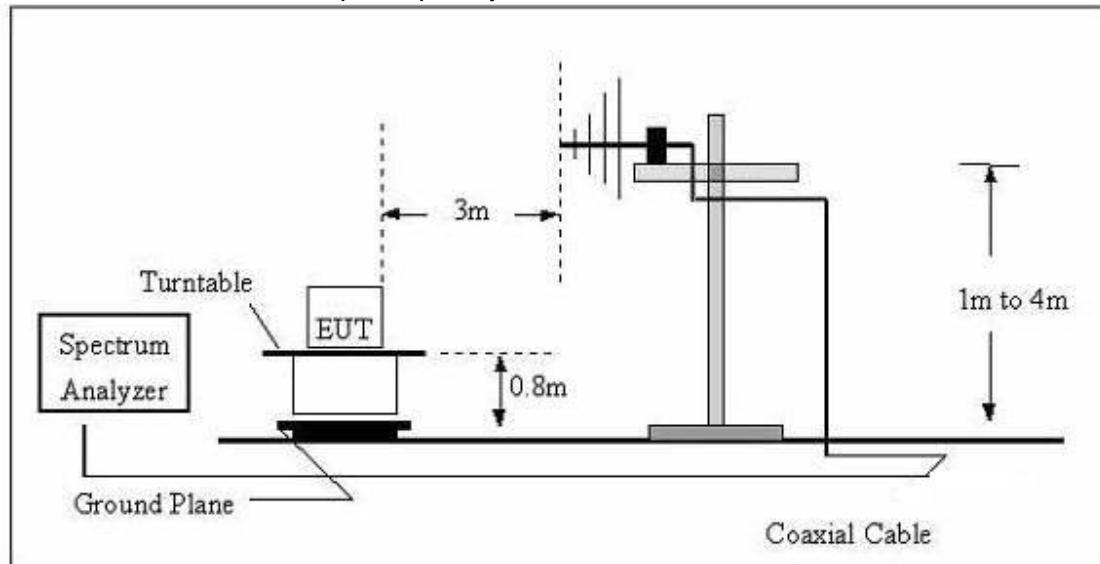
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.




### 3.2.3 DEVIATION FROM TEST STANDARD

No deviation


### 3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz





(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



### 3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



### 3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)

|              |          |                    |                    |
|--------------|----------|--------------------|--------------------|
| Temperature: | 20°C     | Relative Humidity: | 48%                |
| Pressure:    | 1010 hPa | Test Voltage :     | DC 5V From adapter |
| Test Mode :  | Mode 1   | Polarization :     | --                 |

| Frequency<br>(MHz) | Meter Reading<br>(dB $\mu$ V) | Factor<br>(dB) | Emission Level<br>(dB $\mu$ V/m) | Limits<br>(dB $\mu$ V/m) | Margin<br>(dB) | Detector Type |
|--------------------|-------------------------------|----------------|----------------------------------|--------------------------|----------------|---------------|
| 0.6954             | 20.06                         | 20.95          | 41.01                            | 50.76                    | -9.75          | QP            |
| 1.2368             | 26.97                         | 20.86          | 47.83                            | 65.76                    | -17.93         | QP            |
| 1.6394             | 25.96                         | 20.71          | 46.67                            | 63.31                    | -16.64         | QP            |
| 2.1425             | 21.47                         | 20.63          | 42.1                             | 69.54                    | -27.44         | QP            |
| 5.7851             | 24.14                         | 20.26          | 44.4                             | 69.54                    | -25.14         | QP            |
| 17.5361            | 26.34                         | 19.24          | 45.58                            | 69.54                    | -23.96         | QP            |

**NOTE:**

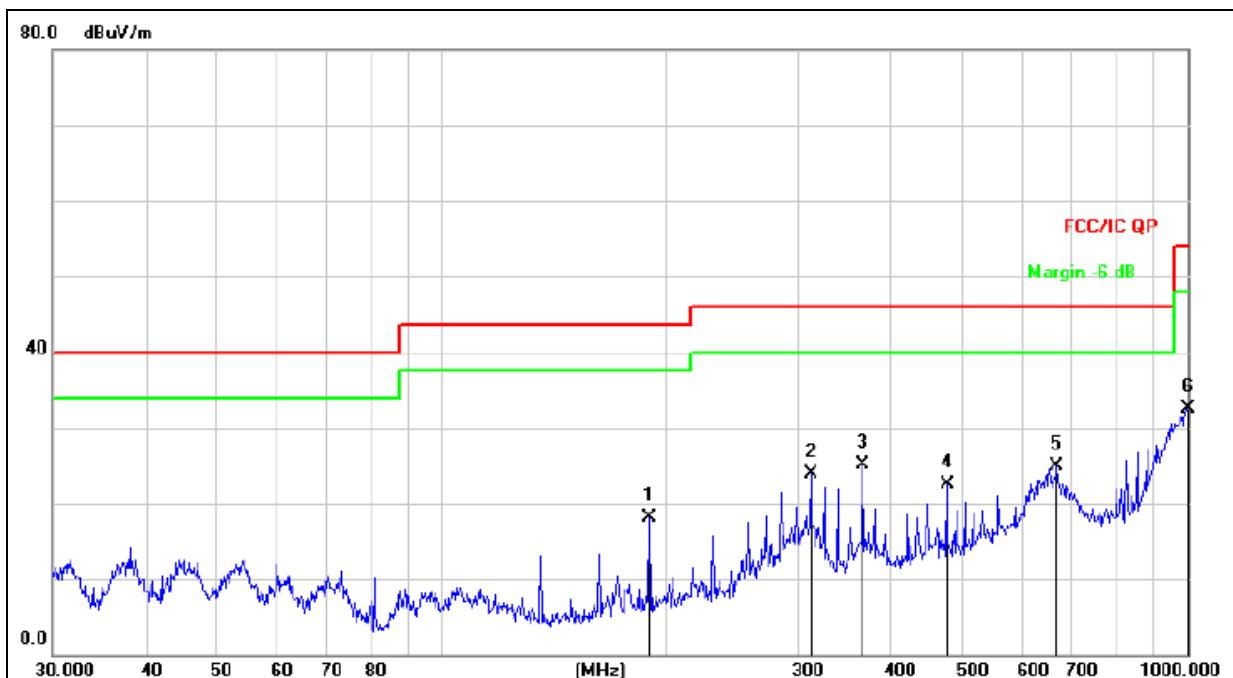
Pre-scan in the all of mode, the worst case in of was recorded.

Factor = antenna factor + cable loss – pre-amplifier.

Margin = Emission Level- Limit. Emission Level=Reading+Factor

Measurements were performed at 3 metres and results extrapolated to 30 metres.

The limit is specified at a test distance of 30 metres. However, as specified by FCC Section 15.31 (f)(2), measurements may be performed at a closer distance and the measured level corrected to the specified measurement distance by making the measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = $40 \log \left( \frac{\text{specific distance}}{\text{test distance}} \right)$ (dB);  
Limit line = specific limits(dB $\mu$ V) + distance extrapolation factor.

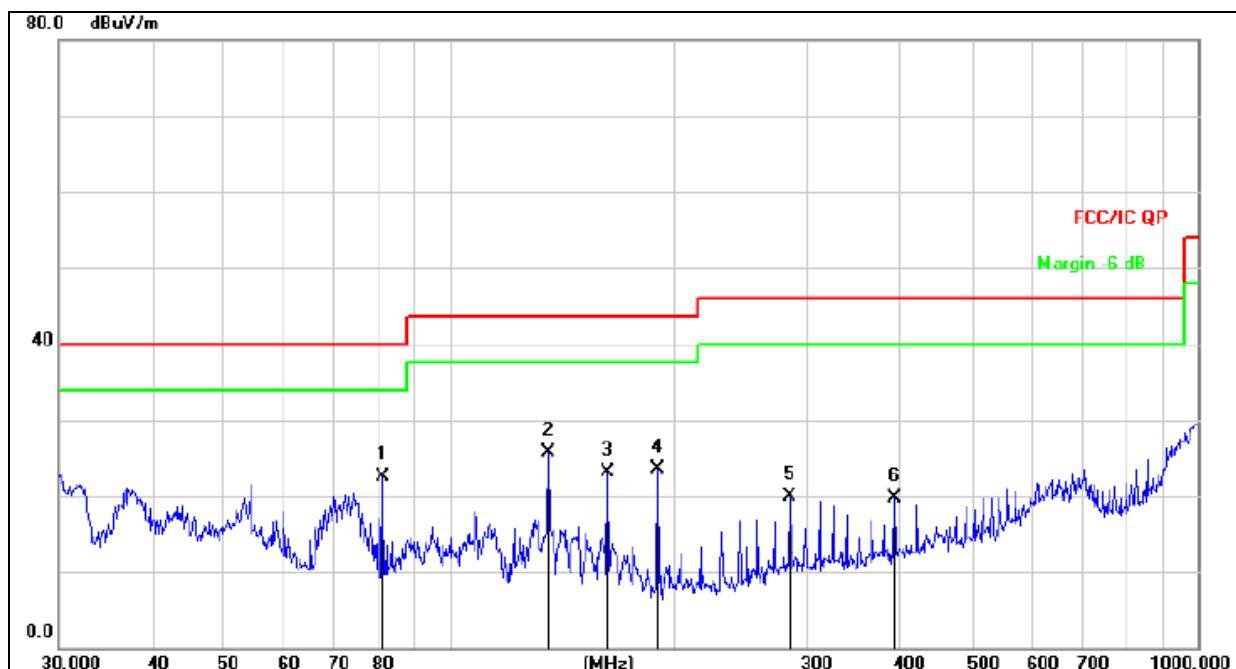


### 3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)

|                |                    |                     |            |
|----------------|--------------------|---------------------|------------|
| Temperature :  | 26°C               | Relative Humidity : | 54%        |
| Pressure :     | 1010 hPa           | Polarization :      | Horizontal |
| Test Voltage : | DC 5V From adapter |                     |            |
| Test Mode :    | Mode 1             |                     |            |



Remark:


Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over = Measurement – Limit, Measurement=Reading+Factor

| No. | Mk. | Freq.    | Reading | Correct | Measure- | Limit | Over      |
|-----|-----|----------|---------|---------|----------|-------|-----------|
|     |     |          | Level   | Factor  | ment     |       |           |
| 1   |     | 189.7385 | 35.07   | -16.96  | 18.11    | 43.50 | -25.39 QP |
| 2   |     | 312.1794 | 37.08   | -13.27  | 23.81    | 46.00 | -22.19 QP |
| 3   | *   | 366.8231 | 36.99   | -11.85  | 25.14    | 46.00 | -20.86 QP |
| 4   |     | 475.4991 | 31.85   | -9.44   | 22.41    | 46.00 | -23.59 QP |
| 5   |     | 668.1423 | 31.15   | -6.20   | 24.95    | 46.00 | -21.05 QP |
| 6   |     | 1000.000 | 33.31   | -0.81   | 32.50    | 54.00 | -21.50 QP |



|                |                    |                     |          |
|----------------|--------------------|---------------------|----------|
| Temperature :  | 26°C               | Relative Humidity : | 54%      |
| Pressure :     | 1010 hPa           | Polarization :      | Vertical |
| Test Voltage : | DC 5V From adapter |                     |          |
| Test Mode :    | Mode 1             |                     |          |



Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over = Measurement – Limit, Measurement=Reading+Factor

| No. | Mk. | Freq.    | Reading | Correct | Measure- | Limit | Over      |
|-----|-----|----------|---------|---------|----------|-------|-----------|
|     |     |          | Level   | Factor  | ment     |       |           |
| 1   | *   | 81.2117  | 42.54   | -20.13  | 22.41    | 40.00 | -17.59 QP |
| 2   |     | 135.5062 | 44.26   | -18.57  | 25.69    | 43.50 | -17.81 QP |
| 3   |     | 162.6106 | 41.83   | -18.69  | 23.14    | 43.50 | -20.36 QP |
| 4   |     | 189.7385 | 40.37   | -16.96  | 23.41    | 43.50 | -20.09 QP |
| 5   |     | 284.9767 | 34.02   | -14.07  | 19.95    | 46.00 | -26.05 QP |
| 6   |     | 393.4723 | 30.94   | -11.24  | 19.70    | 46.00 | -26.30 QP |



### 3.3 RADIATED BAND EMISSION MEASUREMENT

#### 3.3.1 TEST REQUIREMENT:

FCC Part15 C Section 15.209 and 15.225

#### LIMITS OF RADIATED EMISSION MEASUREMENT

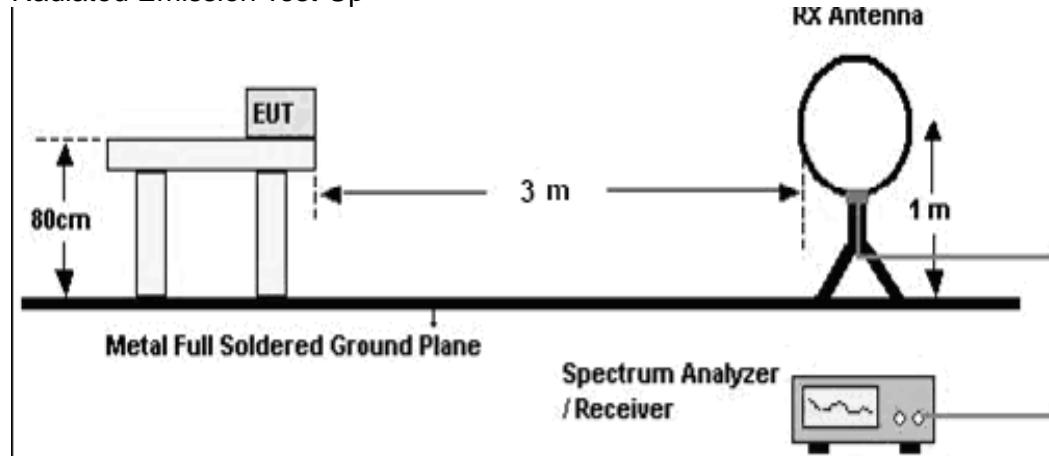
- a. 15.848 microvolts/m (84 dB $\mu$  V/m) at 30 m, within the band 13.553– 13.567 MHz.
- b. 334 microvolts/m (50.5 dB $\mu$  V/m) at 30 m, within the bands 13.410– 13.553 MHz and 13.567– 13.710 MHz.
- c. 106 microvolts/m (40.5 dB $\mu$  V/m) at 30 m, within the bands 13.110– 13.410 MHz and 13.710– 14.010 MHz.
- d. 30 microvolts/m (29.5 dB $\mu$  V/m) at 30 m, outside the band 13.110– 14.010 MHz.

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dB $\mu$ V/m)=20log Emission level (uV/m).

#### 3.3.2 TEST PROCEDURE

- a. The Product is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The maximum values of the field strength are recorded by adjusting the polarizations of the test antenna and rotating the turntable.
- b. For each suspected emission, the Product was arranged to its worst case and then turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- c. The test frequency analyzer system was set to Peak Detect (300Hz RBW in 9kHz to 150kHz and 10kHz RBW in 150kHz to 30MHz) Function and Specified Bandwidth with Maximum Hold Mode.


#### 3.3.3 DEVIATION FROM TEST STANDARD

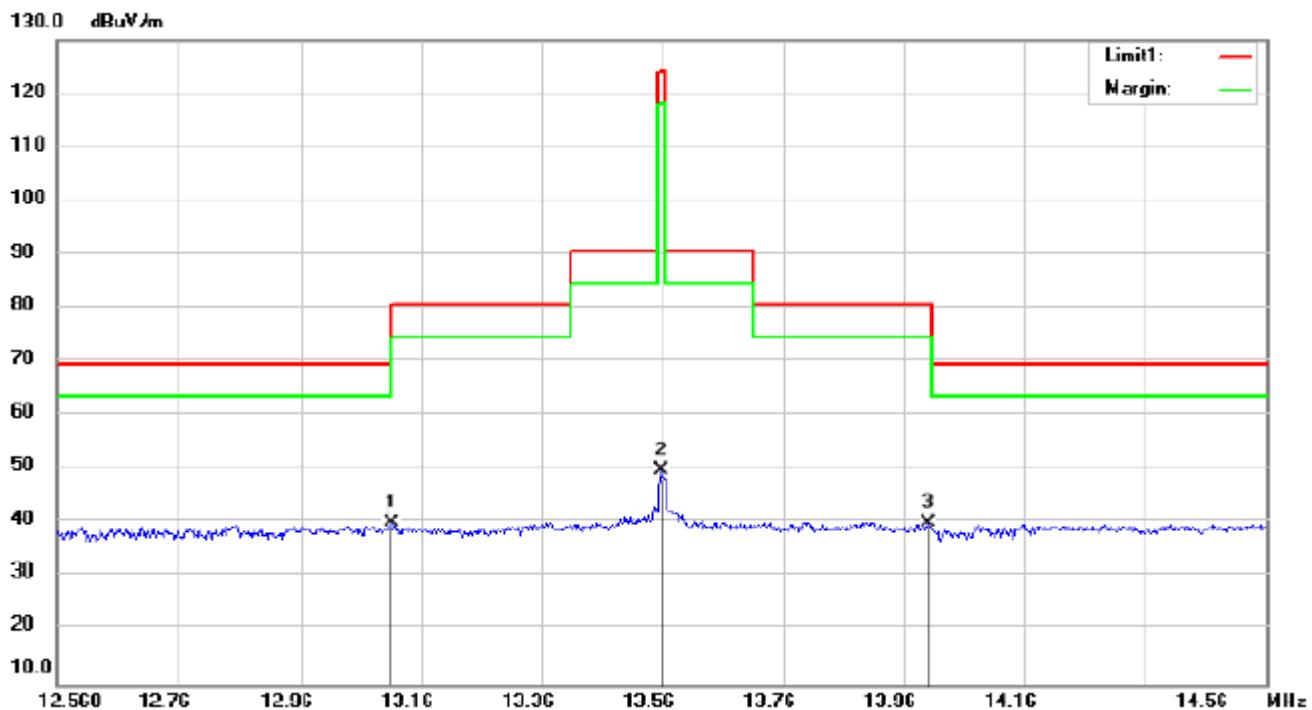
No deviation



### 3.3.4 TEST SETUP

Radiated Emission Test-Up




### 3.3.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

The report only show the worst antenna Polarity's data.



### 3.3.6 TEST RESULT



| No.MK | Frequency | Meter Reading | Factor | Emission Level | Limits         | Margin | Detector Type |
|-------|-----------|---------------|--------|----------------|----------------|--------|---------------|
|       | (MHz)     | (dB $\mu$ V)  | (dB)   | (dB $\mu$ V/m) | (dB $\mu$ V/m) | (dB)   |               |
| 1     | 13.110    | 18.72         | 19.95  | 38.67          | 80.5           | -41.83 | PK            |
| 2     | 13.560    | 29.54         | 19.95  | 49.49          | 124.0          | -74.51 | PK            |
| 3     | 14.010    | 19.09         | 19.96  | 39.05          | 80.5           | -41.45 | PK            |

Note:

Factor = antenna factor + cable loss – pre-amplifier.

Margin = Emission Level- Limit, Emission Level=Reading+Factor



## 4. BANDWIDTH TEST

### 4.1 APPLIED PROCEDURES

| FCC Part15 (15.215) |           |
|---------------------|-----------|
| Section             | Test Item |
| 15.215              | Bandwidth |

#### 4.1.1 TEST PROCEDURE

1. Set RBW = 1 kHz.
2. Set the video bandwidth (VBW)  $\geq$  RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

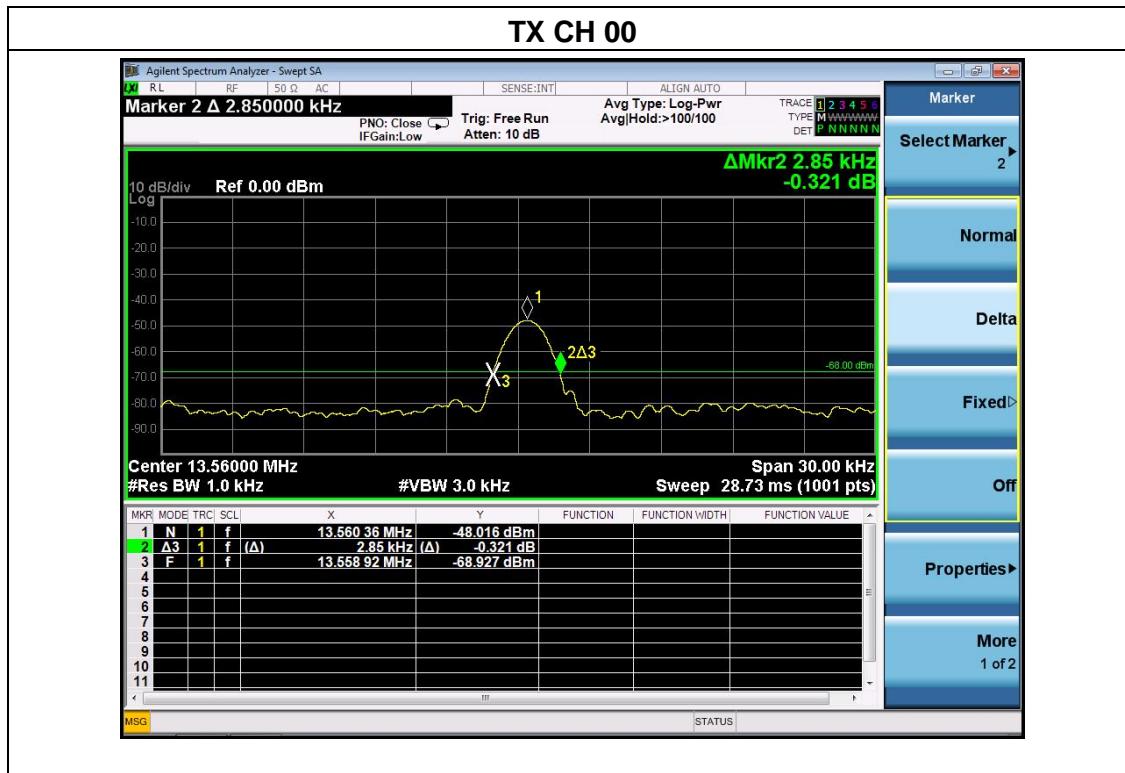
#### 4.1.2 DEVIATION FROM STANDARD

No deviation.

#### 4.1.3 TEST SETUP



#### 4.1.4 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



#### 4.1.5 TEST RESULTS

|               |          |                     |                    |
|---------------|----------|---------------------|--------------------|
| Temperature : | 26°C     | Relative Humidity : | 54%                |
| Pressure :    | 1012 hPa | Test Voltage :      | DC 5V From adapter |
| Test Mode :   | TX Mode  |                     |                    |

| Frequency<br>(MHz) | 20dB bandwidth<br>(KHz) |
|--------------------|-------------------------|
| 13.56              | 2.85                    |





## 5. TRANSMITTER FREQUENCY STABILITY

### 5.1 LIMITS

The frequency tolerance of the carrier signal shall be maintained within  $\pm 0.01\%$  of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Limit:  $\pm 0.01\%$  of 13.56MHz=1356Hz

#### 5.1.1 TEST PROCEDURE

1. Set RBW = 10 kHz.
2. Set the video bandwidth (VBW)  $\geq$  RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. The transmitter output (antenna port) was connected to the spectrum analyzer.

#### 5.1.2 DEVIATION FROM STANDARD

No deviation.

#### 5.1.3 TEST SETUP



#### 5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



### 5.1.5 TEST RESULTS

|               |         |                     |          |
|---------------|---------|---------------------|----------|
| Temperature : | 26°C    | Relative Humidity : | 54%      |
| Pressure :    | 101kPa  | Test Voltage :      | DC 3.0 V |
| Test Mode :   | TX Mode |                     |          |

| Test Conditions  |            |                     | Frequency Deviation     |                        | Result |
|------------------|------------|---------------------|-------------------------|------------------------|--------|
| Frequency<br>MHz | Power(Vdc) | Temperature<br>(°C) | Measured Freq.<br>(MHz) | Frequency<br>Error(Hz) |        |
| 13.56            | 5.0        | -20                 | 13.5602                 | 200                    | PASS   |
|                  | 5.0        | -10                 | 13.5602                 | 200                    |        |
|                  | 5.0        | 0                   | 13.5603                 | 300                    |        |
|                  | 5.0        | 10                  | 13.5604                 | 400                    |        |
|                  | 5.0        | 20                  | 13.5601                 | 100                    |        |
|                  | 5.0        | 30                  | 13.5602                 | 200                    |        |
|                  | 5.0        | 40                  | 13.5603                 | 300                    |        |
|                  | 5.0        | 50                  | 13.5603                 | 300                    |        |
|                  | 5.75       | 25                  | 13.5602                 | 200                    |        |
|                  | 5.0        | 25                  | 13.5601                 | 100                    |        |
|                  | 4.25       | 25                  | 13.5602                 | 200                    |        |



## 6. ANTENNA REQUIREMENT

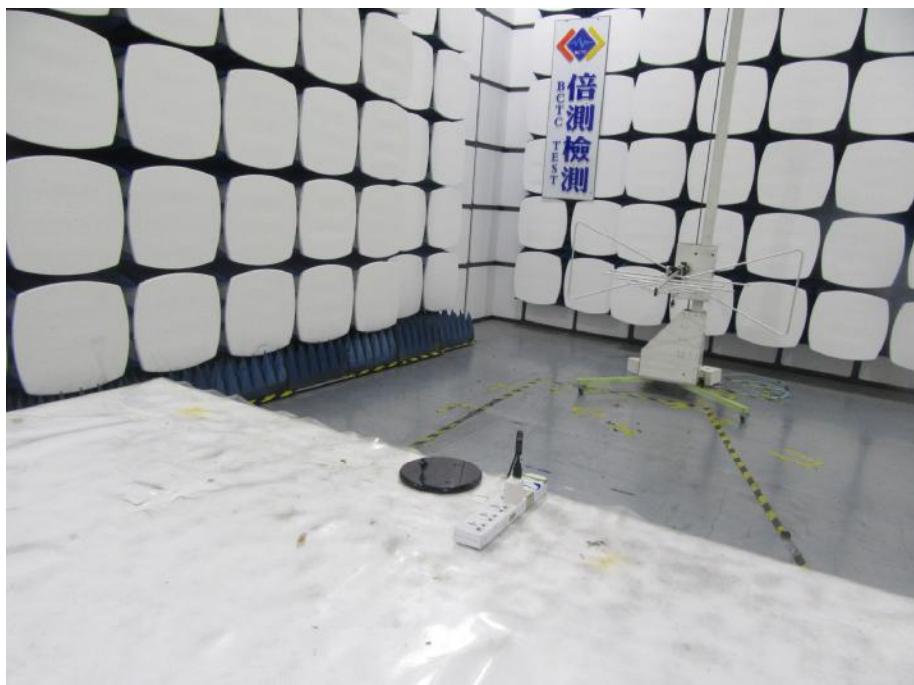
### 6.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

### 6.2 EUT ANTENNA

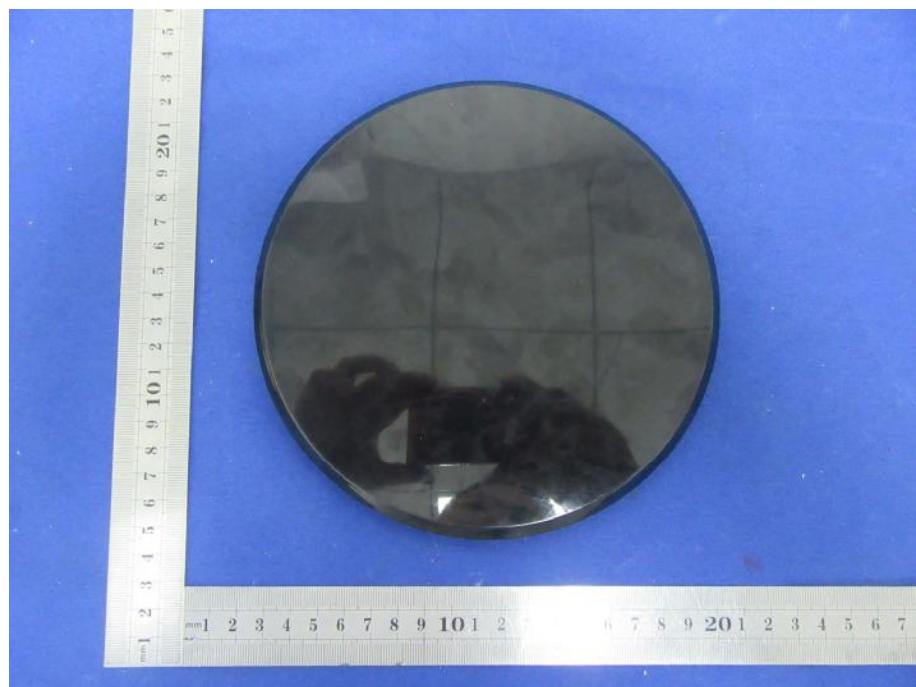
The EUT antenna is PCB Coil Antenna,. It comply with the standard requirement.

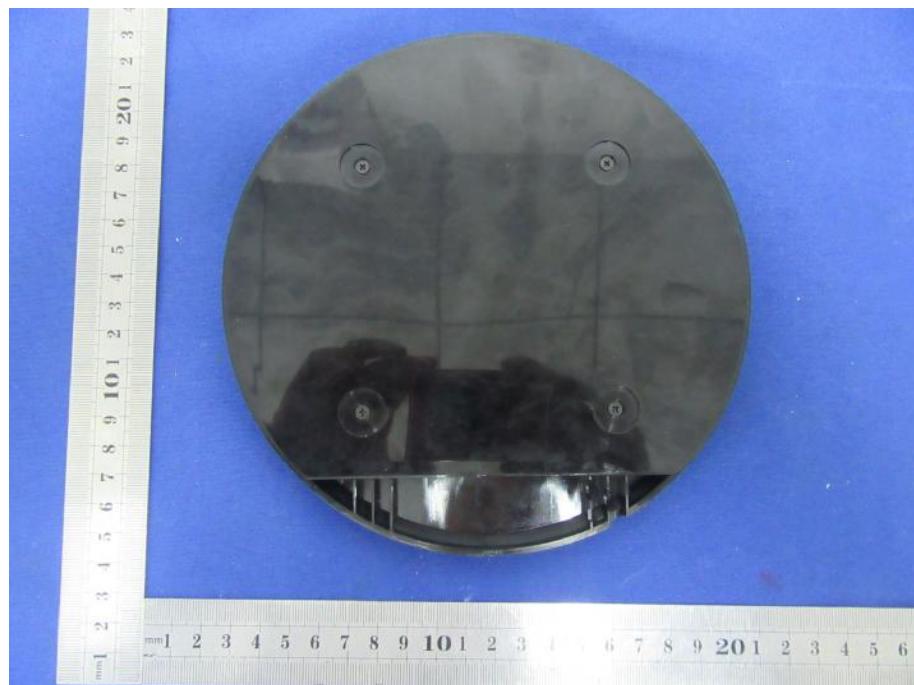



## 7. TEST SEUUP PHOTO

**Conducted Emission**







### Radiated Measurement Photos





## 8. EUT PHOTO





※※※※※ END OF REPORT ※※※※※