

RF EXPOSURE REPORT

Report No.: 17020360-FCC-H1

Supersede Report No.: N/A

Applicant	Raycan Technology Co., Ltd. (Suzhou)	
Product Name	Area radiation monitor	
Model No.	RadWall	
Serial Model	RadWall-H, RadWall-W, RadWall-Ne	
Test Standard	FCC 2.1091	
Test Date	December 19 to December 27, 2017	
Issue Date	December 27, 2017	
Test Result	<input checked="" type="checkbox"/> Pass	<input type="checkbox"/> Fail
Equipment complied with the specification	<input checked="" type="checkbox"/>	
Equipment did not comply with the specification	<input type="checkbox"/>	
Trety Lu	Deon Dai	
Trety Lu Test Engineer	Deon Dai Engineer Reviewer	
<p>This test report may be reproduced in full only Test result presented in this test report is applicable to the tested sample only</p>		

Issued by:

SIEMIC (Nanjing-China) Laboratories

2-1 Longcang Avenue Yuhua Economic and
Technology Development Park, Nanjing, China

Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email: China@siemic.com.cn

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

This page has been left blank intentionally.

CONTENTS

1	REPORT REVISION HISTORY.....	5
2	CUSTOMER INFORMATION	5
3	TEST SITE INFORMATION.....	5
4	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5	FCC §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE).....	7

1 Report Revision History

Report No.	Report Version	Description	Issue Date
17020360-FCC-H1	NONE	NONE	December 27, 2017

2 Customer information

Applicant Name	Raycan Technology Co., Ltd. (Suzhou)
Applicant Add	Bldg 17, 8 Jinfeng Road, SND, Suzhou
Manufacturer	Raycan Technology Co., Ltd. (Suzhou)
Manufacturer Add	Bldg 17, 8 Jinfeng Road, SND, Suzhou

3 Test site information

Lab performing tests	SIEMIC (Nanjing-China) Laboratories
Lab Address	2-1 Longcang Avenue Yuhua Economic and Technology Development Park, Nanjing, China
FCC Test Site No.	694825
IC Test Site No.	4842B-1
Test Software	EZ_EMU

4 Equipment under Test (EUT) Information

Description of EUT: Area radiation monitor

Main Model: RadWall

Serial Model: RadWall-H, RadWall-W, RadWall-Ne

Date EUT received: December 06, 2017

Test Date(s): December 19 to December 27, 2017

Output power 21.251 dBm

Antenna Gain: Zigbee:3 dBi

Type of Modulation: Zigbee: QPSK

RF Operating Frequency (ies): Zigbee:2405-2480 MHz

Number of Channels: Zigbee:16CH

Port: Power Port, USB Port

Input Power:
AC/DC Adapter:
Model: SK02T-0500200U
INPUT: 100-240V~50/60Hz 0.35A
OUTPUT: DC5V 2A
Battery: DC3.7V 4000mAh 14.8Wh

Trade Name : RAYCAN

FCC ID: 2ALQO-RADWALL

5 FCC §2.1091 - Maximum Permissible exposure (MPE)

Applicable Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

Test Data

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

Where: S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Type	Test mode	CH	Freq (MHz)	Conducted Power (dBm)	Tune Up Power (dBm)
Output power	Zigbee	Low	2405	21.251	20.5±1
		Mid	2440	20.844	20.0±1
		High	2480	20.377	19.5±1

For the antenna manufacturer provide only used limited to ERP/EIRP or radiated spurious emission test. The MPE evaluation as below:

Zigbee:

The maximum peak output power (turn-up power) in low channel of Zigbee is 21.5dBm

Maximum peak output power (turn-up power) at antenna input terminal: 141.254 (mW)

Prediction distance: >20 (cm)

Predication frequency: 2405(MHz) lowest frequency

Antenna Gain (typical): 3 (dBi)

Antenna Gain (typical): 1.995 (numeric)

The worst case is power density at predication frequency at 20 cm: 0.0561(mW/cm²)

MPE limit for general population exposure at prediction frequency: 1 (mW/cm²)

$0.0561(mW/cm^2) < 1(mW/cm^2)$

The maximum peak output power (turn-up power) in Middle channel of Zigbee is 21 dBm

Maximum peak output power (turn-up power) at antenna input terminal: 125.893(mW)

Prediction distance: >20 (cm)

Predication frequency: 2440(MHz) lowest frequency

Antenna Gain (typical): 3 (dBi)

Antenna Gain (typical): 1.995 (numeric)

The worst case is power density at predication frequency at 20 cm: 0.0500(mW/cm²)

MPE limit for general population exposure at prediction frequency: 1 (mW/cm²)

$0.0500(mW/cm^2) < 1(mW/cm^2)$

The maximum peak output power (turn-up power) in High channel of Zigbee is 20.5dBm

Maximum peak output power (turn-up power) at antenna input terminal: 112.202 (mW)

Prediction distance: >20 (cm)

Predication frequency: 2480(MHz) lowest frequency

Antenna Gain (typical): 3 (dBi)

Antenna Gain (typical): 1.995 (numeric)

The worst case is power density at predication frequency at 20 cm: 0.0445(mW/cm²)

MPE limit for general population exposure at prediction frequency: 1 (mW/cm²)

$0.0445 (mW/cm^2) < 1(mW/cm^2)$

Result: Pass