

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388 Web: www.mrt-cert.com Report No.: 2105TW0001-U3 Report Version: V1.0 Issue Date: 2021-07-09

MEASUREMENT REPORT

FCC PART 15.407 WLAN 802.11a/n/ac

FCC ID: 2ALGLX2000-MP

APPLICANT: CASSIA NETWORKS INC

Application Type: Certification

Product: X2000/ATX2000 Main PCBA

Model No.: X2000-MP

Brand Name: CASSIA

FCC Classification: Unlicensed National Information Infrastructure (NII)

FCC Rule Part(s): Part15 Subpart E (Section 15.407)

Test Procedure(s): ANSI C63.10-2013

Received Date: 2020.12.23

Test Date: 2021.01.20 ~ 2021.06.15

Tested By : kev)n

(Kevin Ker)

Reviewed By : Paddy Chen

Paddy Chen)

Approved By : am her

(Chenz Ker)

Testing Laborato
3261

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 Test results reported herein relate only to the item(s) tested.

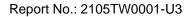
The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

FCC ID: 2ALGLX2000-MP Page Number: 1 of 360

Revision History

Report No.	Version	Description	Issue Date	Note
2105TW0001-U3	1.0	Initial Report	2021-07-09	Valid

Note: This report reused the test data from another authorized device (FCC ID: 2ALGLX2000, Original Grant Date: April 08, 2021). And add some spot check verified data according to KDB 484596 D01v01 and the difference between the FCC IDs.



CONTENTS

Des	criptio	n	Page
Gen	eral In	formation	6
1.	INTR	ODUCTION	7
	1.1.	Scope	7
	1.2.	MRT Test Location	7
2.	PROI	DUCT INFORMATION	8
	2.1.	Equipment Description	8
	2.2.	Product Specification Subjective to this Report	9
	2.3.	Working Frequencies for this report	9
	2.4.	Description of Available Antennas	10
	2.5.	Test Mode	11
	2.6.	Configuration of Test System	12
	2.7.	Test System Details	12
	2.8.	Description of Test Software	12
	2.9.	Applied Standards	13
	2.10.	Test Environment Condition	13
	2.11.	Duty Cycle	13
	2.12.	Test Configuration	14
	2.13.	EMI Suppression Device(s)/Modifications	14
	2.14.	Labeling Requirements	14
3.	DESC	CRIPTION OF TEST	15
	3.1.	Evaluation Procedure	15
	3.2.	AC Line Conducted Emissions	15
	3.3.	Radiated Emissions	16
4.	ANTE	ENNA REQUIREMENTS	17
5.	TEST	EQUIPMENT CALIBRATION DATE	18
6.	MEAS	SUREMENT UNCERTAINTY	20
7.	TEST	RESULT	21
	7.1.	Summary	21
	7.2.	26dB Bandwidth Measurement	22
	7.2.1.	Test Limit	22
	7.2.2.	Test Procedure used	22
	7.2.3.	Test Setting	22

7.2.4.	Test Setup	22
7.2.5.	Test Result	23
7.3.	6dB Bandwidth Measurement	. 34
7.3.1.	Test Limit	. 34
7.3.2.	Test Procedure used	. 34
7.3.3.	Test Setting	. 34
7.3.4.	Test Setup	. 34
7.3.5.	Test Result	35
7.4.	Output Power Measurement	. 39
7.4.1.	Test Limit	. 39
7.4.2.	Test Procedure Used	. 39
7.4.3.	Test Setting	. 39
7.4.4.	Test Setup	40
7.4.5.	Test Result	41
7.5.	Transmit Power Control	45
7.5.1.	Test Limit	45
7.5.2.	Test Procedure Used	45
7.5.3.	Test Setting	45
7.5.4.	Test Setup	45
7.5.5.	Test Result	45
7.6.	Power Spectral Density Measurement	46
7.6.1.	Test Limit	46
7.6.2.	Test Procedure Used	46
7.6.3.	Test Setting	46
7.6.4.	Test Setup	47
7.6.5.	Test Result	48
7.7.	Frequency Stability Measurement	60
7.7.1.	TestLimit	60
7.7.2.	Test Procedure Used	60
7.7.3.	Test Setup	61
7.7.4.	Test Result	62
7.8.	Radiated Spurious Emission Measurement	63
7.8.1.	Test Limit	63
7.8.2.	Test Procedure Used	63
7.8.3.	Test Setting	63
7.8.4.	Test Setup	65
7.8.5.	Test Result	66
7.9.	Radiated Restricted Band Edge Measurement	196
7.9.1.	Test Limit	196

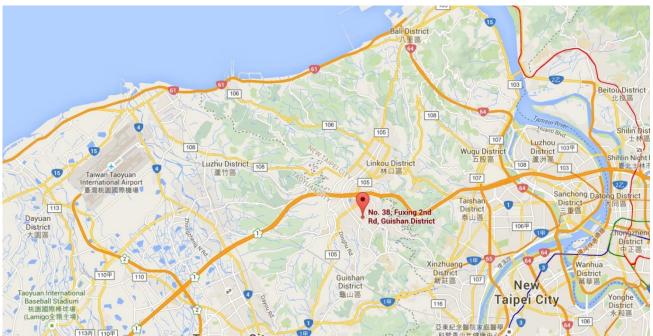
	7.9.2.	Test Procedure Used	197
	7.9.3.	Test Setting	198
	7.9.4.	Test Setup	199
	7.9.5.	Test Result	200
	7.10.	AC Conducted Emissions Measurement	353
	7.10.1.	TestLimit	353
	7.10.2.	Test Procedure	353
	7.10.3.	Test Setup	354
	7.10.4.	Test Result	355
8.	CONC	LUSION	357
Арр	endix A	A - Test Setup Photograph	358
Арр	endix E	3 - External Photograph	359
App	endix (C - Internal Photograph	360

General Information

Applicant	CASSIA NETWORKS INC		
Applicant Address	1840 Majestic Way San Jose, CA 95132,USA		
Manufacturer	CASSIA NETWORKS INC		
Manufacturer Address	1840 Majestic Way San Jose, CA 95132,USA		
Test Site	MRT Technology (Taiwan) Co., Ltd		
Test Site Address	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C)		
MRT FCC Registration No.	291082		
FCC Rule Part(s)	Part 15.407		
Test Device Serial No.	N/A ☐ Production ☐ Pre-Production ☐ Engineering		

Test Facility / Accreditations

- **1.** MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
- 2. MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada.
- 3. MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Taiwan, EU and TELEC Rules.


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	X2000/ATX2000 Main PCBA
Model No.	X2000-MP
Chip 0 Bluetooth Version	V5.0 (Single Mode)
Chip 1 Bluetooth Version	V5.0 (Single Mode)
Wi-Fi Specification	802.11a/b/g/n/ac
Working Voltage	12Vdc 2.0A or 57Vdc 350mA (PoE)

Remark:

- 1. PoE adapter was selected by MRT for all testing, due to DC adapter and PoE adapter not selling with product.
- For new device (X2000-MP), it's a PCBA, same as the internal PCBA of original device (X2000).
 The difference is shown in the table 1 as below.

	Table 1						
Diff	Original (X2000)	New (X2000-MP)	Remark				
1	With Enclosure	Without Enclosure, only PCBA	Remove enclosure and do not change PCBA design.				
2	With three internal BLE antennas	Without Internal BLE antenna	Remove BLE internal antennas, but reserve the antenna connect, the function of these internal antenna ports will be closed by software.				
3	Without Omni Antenna	Add Omni antennas for BLE and Wi-Fi 2.4G and 5G	Add some omni antennas for BLE and Wi-Fi, but the Power setting and power will not be greater than the original device under directional antennas.				

FCC ID: 2ALGLX2000-MP Page Number: 8 of 360

2.2. Product Specification Subjective to this Report

Fragueray Bangar	For 902 110/n HT20/00 V/HT20:
Frequency Range:	For 802.11a/n-HT20/ac-VHT20:
	5180~5240MHz, 5260~5320MHz, 5500~5720MHz, 5745~5825MHz
	For 802.11n-HT40/ac-VHT40:
	5190~5230MHz, 5270~5310MHz, 5510~5710MHz, 5755~5795MHz
	For 802.11ac-VHT80:
	5210MHz, 5290MHz, 5530MHz, 5610 MHz,5690 MHz,5775MHz
Type of Modulation:	802.11a/n/ac: OFDM
Data Rate:	802.11a: 6/9/12/18/24/36/48/54Mbps
	802.11n: up to 150Mbps
	802.11ac: up to 433.3Mbps

Note: For other features of this EUT, test report will be issued separately.

2.3. Working Frequencies for this report

802.11a/n-HT20/ac-VHT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180 MHz	40	5200 MHz	44	5220 MHz
48	5240 MHz	52	5260 MHz	56	5280 MHz
60	5300 MHz	64	5320 MHz	100	5500 MHz
104	5520 MHz	108	5540 MHz	112	5560 MHz
116	5580 MHz	120	5600 MHz	124	5620 MHz
128	5640 MHz	132	5660 MHz	136	5680 MHz
140	5700 MHz	144	5720 MHz	149	5745 MHz
153	5765 MHz	157	5785 MHz	161	5805 MHz
165	5825 MHz				

802.11n-HT40/ac-VHT40

Channel	Frequency	Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz	54	5270 MHz
62	5310 MHz	102	5510 MHz	110	5550MHz
118	5590 MHz	126	5630 MHz	134	5670 MHz
142	5710 MHz	151	5755 MHz	159	5795 MHz

FCC ID: 2ALGLX2000-MP Page Number: 9 of 360

802.11ac-VHT80

Channel	Frequency	Channel	Frequency	Channel	Frequency
42	5210 MHz	58	5290 MHz	106	5530 MHz
122	5610 MHz	138	5690 MHz	155	5775 MHz

2.4. Description of Available Antennas

Antenna	Model No.	Manufacturer	Frequency Band	T _X	Ant Gain		
Type			(MHz)	Paths	(dBi)		
BLE (External Antenna)							
Directional	DF24-30V14F				14.0		
Directional	DB24-40V14A				14.0		
Directional	DB24-120VH14A				14.0		
Directional	DB24-65V12A	DIPOLE			12.0		
Directional	DF24-60V12M	COMMUNICATION			12.0		
Directional	DB24-90V11A	S LIMITED			11.0		
Directional	DF24-90V11M	3 LIMITED			11.0		
Directional	DF24-110V10F			1	10.0		
Directional	DB24-120V10A		2402 ~ 2480		10.0		
Directional	DB24-120VH09A				9.0		
Directional	TDJ-2400BKC14	Kanhatana			14.0		
Directional	TDJ-2400BFE	Kenbotong			14.0		
Directional	KBT120VP13-24RT0	Technology Co., Ltd.			13.0		
Directional	TDJ-2400BKCH70	Ltd.			11.0		
Directional	SPDG16T2	SuperPass Company Inc.			12.2		
Directional	OSCAR18	Siretta Ltd			10.0		
Directional	iANT214-2400				8.5		
Directional	iANT214-2400D	Extronics Ltd.			8.0		
Directional	iANT221				7.5		
Wi-Fi (Interna	al Antenna)						
			2412 ~ 2462	1	3.70		
PCB	N2420DTS	Airgain	5150 ~ 5725	1	6.60		
			5725 ~ 5850	1	7.30		

Wi-Fi & BLE	Wi-Fi & BLE (External Antenna)						
			2402 ~ 2480	1	6.0		
Omni	iANT213-2400	Extronics Ltd.	2412 ~ 2462	1	6.0		
			5150 ~ 5850	1	6.0		
			2402 ~ 2480	1	6.0		
Omni	iANT216M	Extronics Ltd.	2412 ~ 2462	1	6.0		
			5150 ~ 5850	1	6.0		
		iANT212 Extronics Ltd.	2402 ~ 2480	1	2.0		
Omni	iANT212		2412 ~ 2462	1	2.0		
			5150 ~ 5850	1	2.0		
	MUODDO 4 400 50 7 NA	PCTEL, Inc.	2402 ~ 2480	1	5.0		
Omni	MHODB24490507NM -IP		2412 ~ 2462	1	5.0		
	-117		5150 ~ 5850	1	7.0		

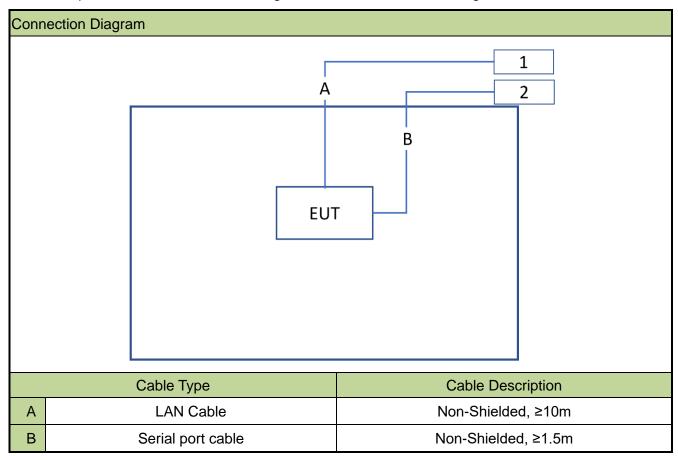
Note 1: Bluetooth and Wi-Fi 2.4G or Wi-Fi 5G can transmit simultaneously, but it can not transmit simultaneously between the Bluetooth chips.

Note 2: Only the directional antenna (DF24-30V14F) was selected for all test, the same power setting with the different BLE external antennas.

Note 3: The omni antenna (iANT216M) was selected for Wi-Fi 2.4G & BLE test, omni antenna (MHODB24490507NM-IP) was selected for Wi-Fi 5G test, the same power setting with the different external omni antennas.

Note 3: All messages as above are declared by manufacturer.

2.5. Test Mode


Test Mode	Mode 1: Transmit by 802.11a (6Mbps)
	Mode 2: Transmit by 802.11ac-VHT20 (MCS0)
	Mode 3: Transmit by 802.11ac-VHT40 (MCS0)
	Mode 4: Transmit by 802.11ac-VHT80 (MCS0)

Note: Due to the same modulation between 802.11n and 802.11ac, so 802.11n-HT20 and HT40 are covered by 802.11ac-VHT20 and VHT40 in this report, meanwhile, power setting for 802.11n-HT20 and HT40 will not be greater than 802.11ac-VHT20 and VHT40.

2.6. Configuration of Test System

The devicewas tested per the guidance ANSI C63.10: 2013was used to reference the appropriate EUT setup for radiated emissions testing and AC line conducted testing.

2.7. Test System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Manufacturer	Model No.
1	PoE Adapter	N/A	N/A
2	Notebook	DELL	Vostro 3300

2.8. Description of Test Software

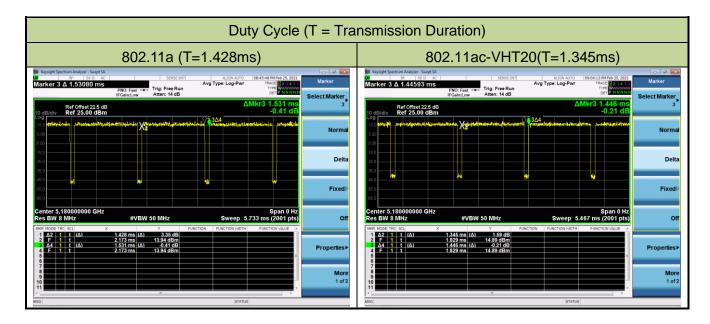
The test utility software used during testing was "SecureCRT".

Note: Final power setting please refer to operational description.

2.9. Applied Standards

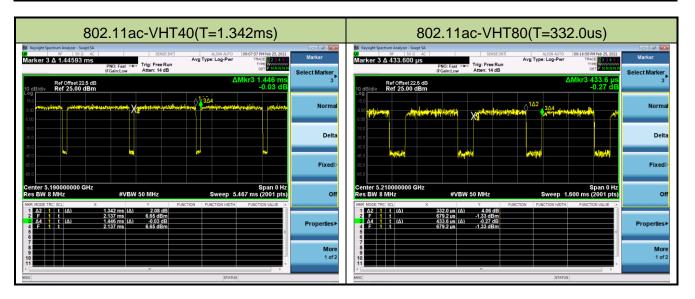
According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.407
- KDB 789033 D02v02r01
- ANSI C63.10-2013


2.10. Test Environment Condition

Ambient Temperature	15°C~35°C
Relative Humidity	20%RH ~75%RH

2.11. Duty Cycle


5GHz (NII) operation is possible in 20MHz, 40MHz and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	Duty Cycle
802.11a	93.27%
802.11ac-VHT20	93.02%
802.11ac-VHT40	92.81%
802.11ac-VHT80	76.57%

FCC ID: 2ALGLX2000-MP Page Number: 13 of 360

2.12. Test Configuration

The device was tested per the guidance of KDB 789033 D02v02r01.ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testingand AC line conducted testing.

2.13. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.14. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphletsupplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label andlabel location.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 789033 D02v02r01 were used in themeasurement.

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50uH$ Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remotecontrolled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated tomaximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by theresponsible party can be used with the device. The use of a permanently attached antenna or of an antennathat uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna of the device uses a unique connector (i-PEX connector).

Conclusion:

The unit complies with the requirement of §15.203.

FCC ID: 2ALGLX2000-MP Page Number: 17 of 360

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Two-Line V-Network	D & C	ENV216	MPTTWAGGG	1 year	2021/03/26
TWO-LINE V-NetWORK	R&S ENV216	EINVZIO	MRTTWA00019	1 year	2022/3/23
Two-Line V-Network	D O C	ENV216	6 MRTTWA00020	1 year	2021/04/24
TWO-LINE V-NetWORK	R&S	ENVZIO		1 year	2022/4/28
EMI Test Receiver	D & C	ESR3	MRTTWA00045	1 year	2021/5/26
EIVII Test Receiver	R&S	ESKS	WKTTWA00045	1 year	2022/5/25
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00033	1 year	2021/8/28

Radiated Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Broadband TRILOG Antenna	SCHWARZBECK	VULB 9162	MRTTWA00001	1 year	2021/10/5
A situa I son Antonno	CCUMA DZDECK	FMZB 1519B	MRTTWA00002	1 year	2021/04/27
Acitve Loop Antenna	SCHWARZBECK	LINIZD 1319D	WKTTWA00002	1 year	2022/5/6
Droedh and Harrantona	COLIMA DZDECK	DDLIA 0420D	MADITIMA OOOOO	1 year	2021/4/24
Broadband Hornantenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	1 year	2022/4/21
Breitband Hornantenna	COLIMA DZDECK	DDLIA 0470	MDTTMAGGGGA	1 year	2021/4/24
Breitband Homantenna	SCHWARZBECK	K BBHA 9170 MRTTWA0000	IVIR I I VVAUUUU4	1 year	2022/4/28
Broadband Broamplifier	CCUMA DZDECK	BBV 9718	MRTTWA00005	1 year	2021/4/24
Broadband Preamplifier	SCHWARZBECK		1 year	2022/4/21	
Droadband Amplifiar		(BBV 9721 MRTTWA00006	MADTTIMA	1 year	2021/4/24
Broadband Amplifier	SCHWARZBECK		1 year	2022/4/26	
Cignal Anglyzor	R&S	F0\/40	MADITIMA	1 year	2021/3/24
Signal Analyzer	Ras	FSV40	MRTTWA00007	1 year	2022/3/23
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2021/3/25
EWI Test Receiver	Ras	ESKS	INIKT TVVAUUUU9	1 year	2022/3/24
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2021/10/14
Antonna Cabla	LUBEDOULNED	05400	MADITIME 00040	1 year	2021/6/16
Antenna Cable	HUBERSUHNER	SF 100	F106 MRTTWE00010		2022/6/15
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00032	1 year	2021/8/28

FCC ID: 2ALGLX2000-MP Page Number: 18 of 360

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
X-Series USB Peak and	KEYSIGHT	1100041//	BADTTIA/A OOOA A	1 year	2022/4/21
Average Power Sensor	KETSIGHT	U2021XA	MRTTWA00014	1 year	2022/4/21
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2021/10/14
EXA Signal Analyzer	KEYSIGHT	N9010B	MRTTWA00074	1 year	2021/7/14
Attenuator	WTI	218FS-20	MRTTWE00026	1 year	2021/05/30
Attenuator	210	21053-20	IVIRTI WEUUU26	1 year	2022/05/30
Attenuator	WTI	04050 40	MRTTWE00027	1 year	2021/05/30
		218FS-10		1 year	2022/05/30
Attenuator	WTI	04050.00	MRTTWE00028	1 year	2021/05/30
		218FS-06		1 year	2022/05/30
Temperature & Humidity	TEN DILLION	TTU DOUD	MDTTMAGGGG	1 year	2021/6/10
Chamber	TEN BILLION	TTH-B3UP	MRTTWA00036	1 year	2022/6/9
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00033	1 year	2021/8/28

Software	Version	Function
e3	V 9	EMI Test Software
EMI	V 3	EMI Test Software

FCC ID: 2ALGLX2000-MP Page Number: 19 of 360

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

150kHz~30MHz: 2.53dB

Radiated Emission Measurement

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz ~ 1GHz: 4.25dB 1GHz ~ 40GHz: 4.45dB

Conducted Power

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 0.84dB

Conducted Spurious Emission

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):± 2.65 dB

Occupied Bandwidth

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): 3.3%

Temp. / Humidity

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±0.82°C/±3%

Frequency Error

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±78.4Hz

FCC ID: 2ALGLX2000-MP Page Number: 20 of 360

7. TEST RESULT

7.1. Summary

FCC	Test Description	Test Limit	Test	Test	Reference
Section(s)			Condition	Result	
15.407(a)	26dB Bandwidth	N/A		Pass	Section 7.2
15.407(e)	6dB Bandwidth	≥ 500kHz		Pass	Section 7.3
15.407(a)(1)(i),	Maximum Conducted	Refer to section 7.4		Pass	Coation 7.4
(2), (3)	Output Power	Refer to section 7.4	Conducted	Pass	Section 7.4
15.407(h)(1)	Transmit Power Control	≤ 24 dBm	Conducted	N/A	Section 7.5
15.407(a)(1)(i),	Peak Power Spectral	Refer to section 7.6		Pass	Section 7.6
(2), (3), (12)	Density	Refer to section 7.6		F 455	Section 7.6
15.407(g)	Frequency Stability	± 20 ppm		Pass	Section 7.7
15.407(b)(1),	Undesirable Emissions	Refer to Section 7.8		Pass	
(2), (3), (4)(i)	Offices liable Effissions	Refer to Section 7.6		F 4 5 5	
15.205, 15.209	General Field Strength	Emissions in restricted	Radiated		Section
·	Limits (Restricted Bands	bands must meet the	Naulaleu	Pass	7.8 & 7.9
15.407(b)(7),	and Radiated Emission	radiated limits detailed in		Pass	
(8), (9)	Limits)	15.209			
	AC Conducted		Line		Section
15.207	Emissions	< FCC 15.207 limits		Pass	
	150kHz - 30MHz		Conducted		7.10

Notes:

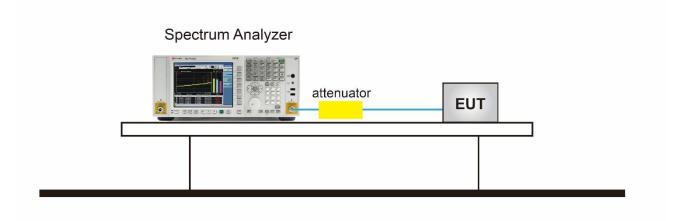
- Determining compliance is based on the test results met the regulation limits or requirements declared by clients, and the test results don't take into account the value of measurement uncertainty.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) Output power test was verified over all data rates of each mode (data refers to operational description), and then choose the maximum power output (low data rate) for final test of each channel.
- 4) For radiated emission test, the test results shown in the following sections represent the worst-case emissions.
- 5) Test Items "26 dB Bandwidth" & "6dB Bandwidth" showed the worst test data in this report.

FCC ID: 2ALGLX2000-MP Page Number: 21 of 360

7.2. 26dB Bandwidth Measurement

7.2.1.Test Limit

N/A


7.2.2.Test Procedure used

KDB 789033 D02v02r01- Section C.1

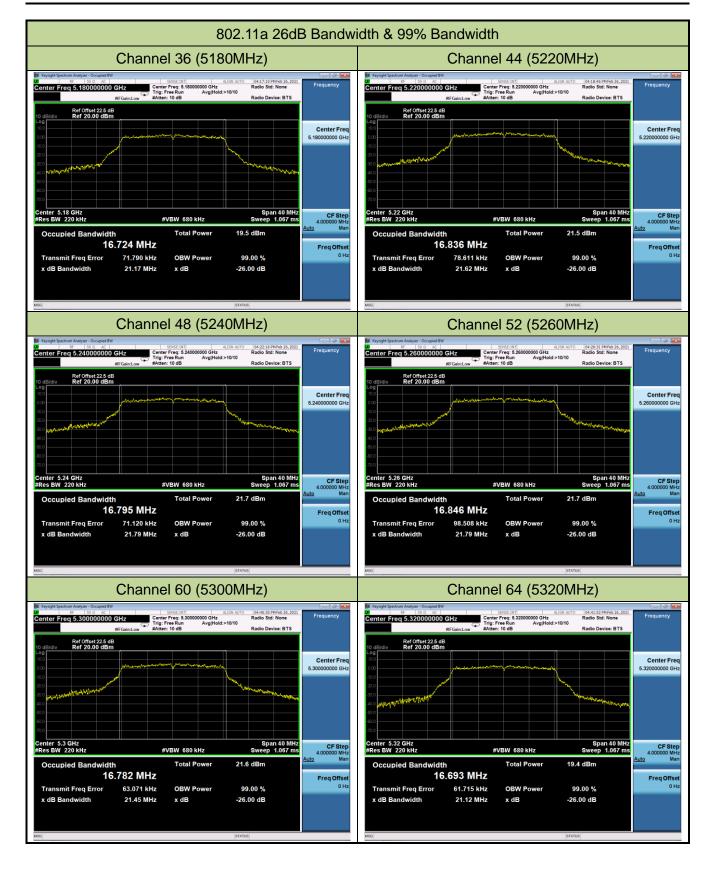
7.2.3.Test Setting

- 1. The analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediated power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth.
- 3. VBW ≥ 3×RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.

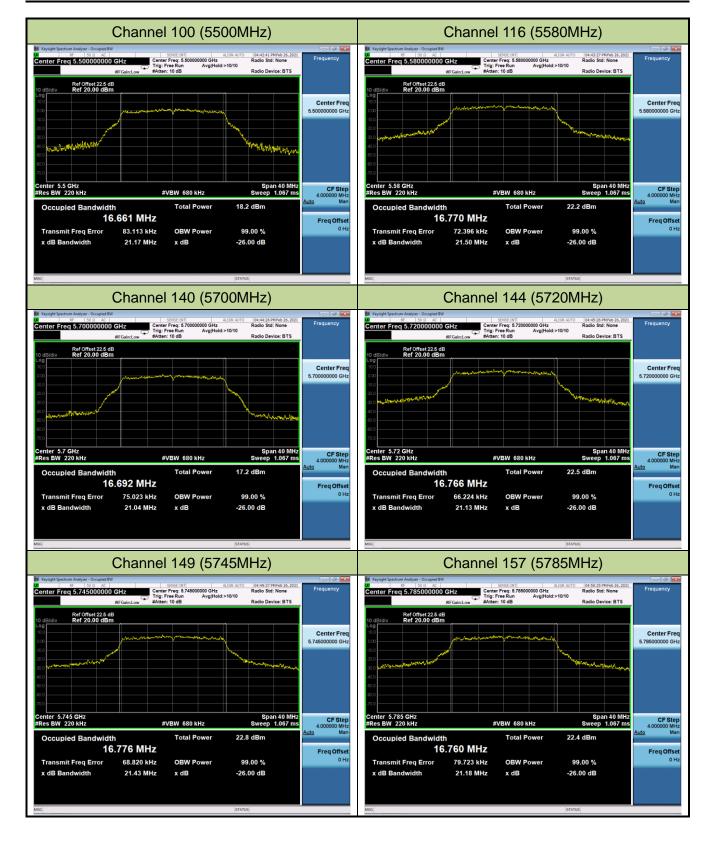
7.2.4.Test Setup

7.2.5.Test Result

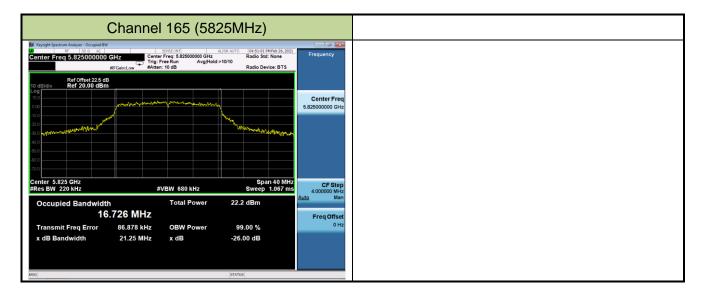
Product	X2000/ATX2000 Main PCBA	Test Engineer	Eric Lin
Test Site	SR1	Test Date	2021/02/26

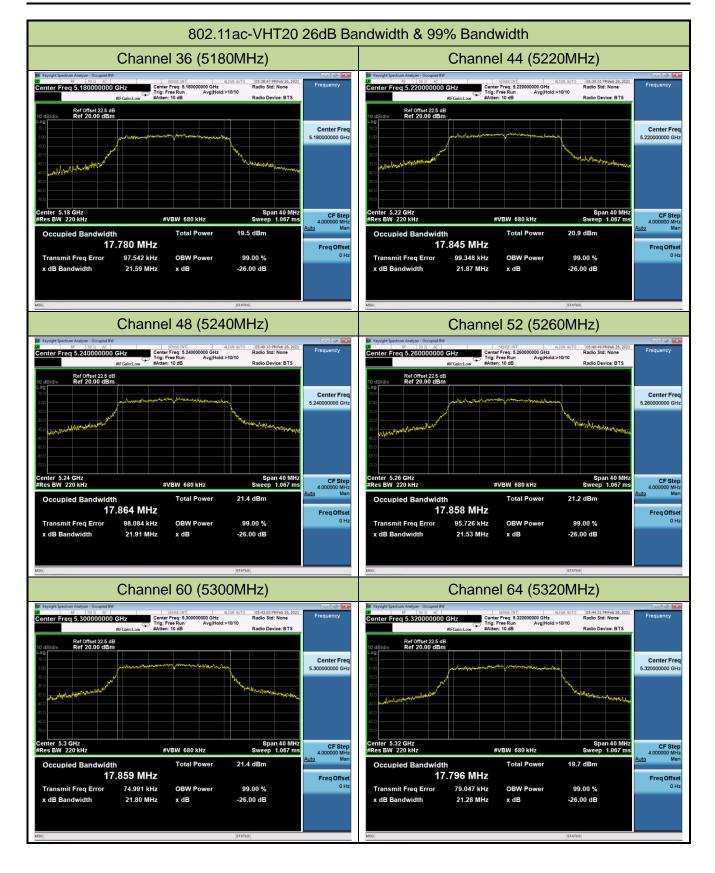

Test Mode	Data Rate/ MCS	Channel No.	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
802.11a	6Mbps	36	5180	21.17	16.72
802.11a	6Mbps	44	5220	21.62	16.84
802.11a	6Mbps	48	5240	21.79	16.80
802.11a	6Mbps	52	5260	21.79	16.85
802.11a	6Mbps	60	5300	21.45	16.78
802.11a	6Mbps	64	5320	21.12	16.69
802.11a	6Mbps	100	5500	21.17	16.66
802.11a	6Mbps	116	5580	21.50	16.77
802.11a	6Mbps	140	5700	21.04	16.69
802.11a	6Mbps	144	5720	21.13	16.77
802.11a	6Mbps	149	5745	21.43	16.78
802.11a	6Mbps	157	5785	21.18	16.76
802.11a	6Mbps	165	5825	21.25	16.73
802.11ac-VHT20	MCS0	36	5180	21.59	17.78
802.11ac-VHT20	MCS0	44	5220	21.87	17.85
802.11ac-VHT20	MCS0	48	5240	21.91	17.86
802.11ac-VHT20	MCS0	52	5260	21.53	17.86
802.11ac-VHT20	MCS0	60	5300	21.80	17.86
802.11ac-VHT20	MCS0	64	5320	21.28	17.80
802.11ac-VHT20	MCS0	100	5500	21.65	17.82
802.11ac-VHT20	MCS0	116	5580	21.47	17.86
802.11ac-VHT20	MCS0	140	5700	21.34	17.77
802.11ac-VHT20	MCS0	144	5720	21.74	17.82
802.11ac-VHT20	MCS0	149	5745	21.49	17.85
802.11ac-VHT20	MCS0	157	5785	21.27	17.81
802.11ac-VHT20	MCS0	165	5825	21.46	17.81

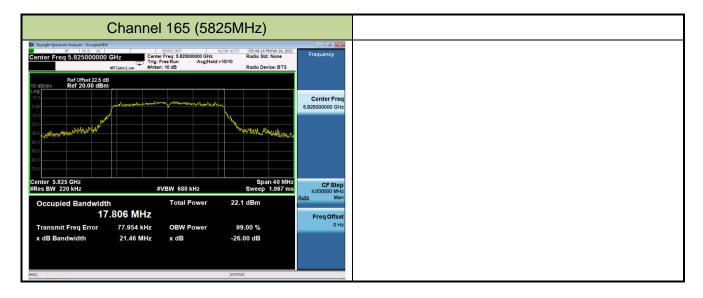
FCC ID: 2ALGLX2000-MP Page Number: 23 of 360

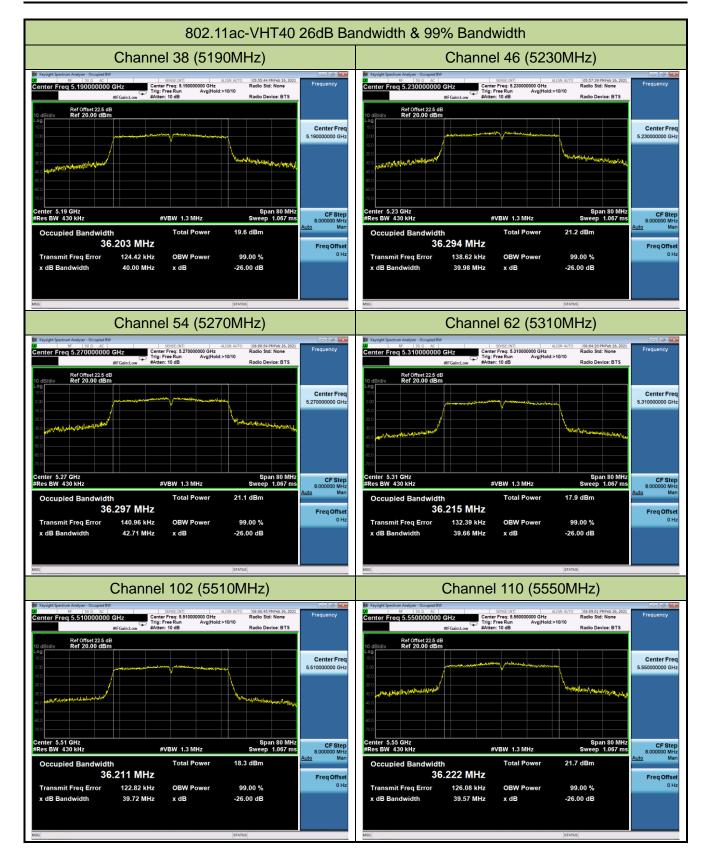


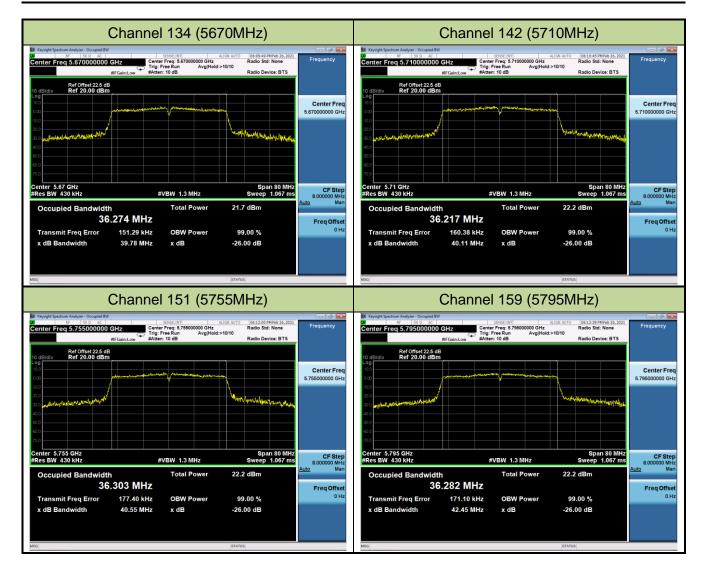
Test Mode	Data Rate/ MCS	Channel No.	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
802.11ac-VHT40	MCS0	38	5190	40.00	36.20
802.11ac-VHT40	MCS0	46	5230	39.98	36.29
802.11ac-VHT40	MCS0	54	5270	42.71	36.30
802.11ac-VHT40	MCS0	62	5310	39.66	36.22
802.11ac-VHT40	MCS0	102	5510	39.72	36.21
802.11ac-VHT40	MCS0	110	5550	39.57	36.22
802.11ac-VHT40	MCS0	134	5670	39.78	36.27
802.11ac-VHT40	MCS0	142	5710	40.11	36.22
802.11ac-VHT40	MCS0	151	5755	40.55	36.30
802.11ac-VHT40	MCS0	159	5795	42.45	36.28
802.11ac-VHT80	MCS0	42	5210	81.09	75.46
802.11ac-VHT80	MCS0	58	5290	81.00	75.44
802.11ac-VHT80	MCS0	106	5530	81.47	75.43
802.11ac-VHT80	MCS0	122	5610	80.87	75.47
802.11ac-VHT80	MCS0	138	5690	80.65	75.59
802.11ac-VHT80	MCS0	155	5775	81.18	75.58

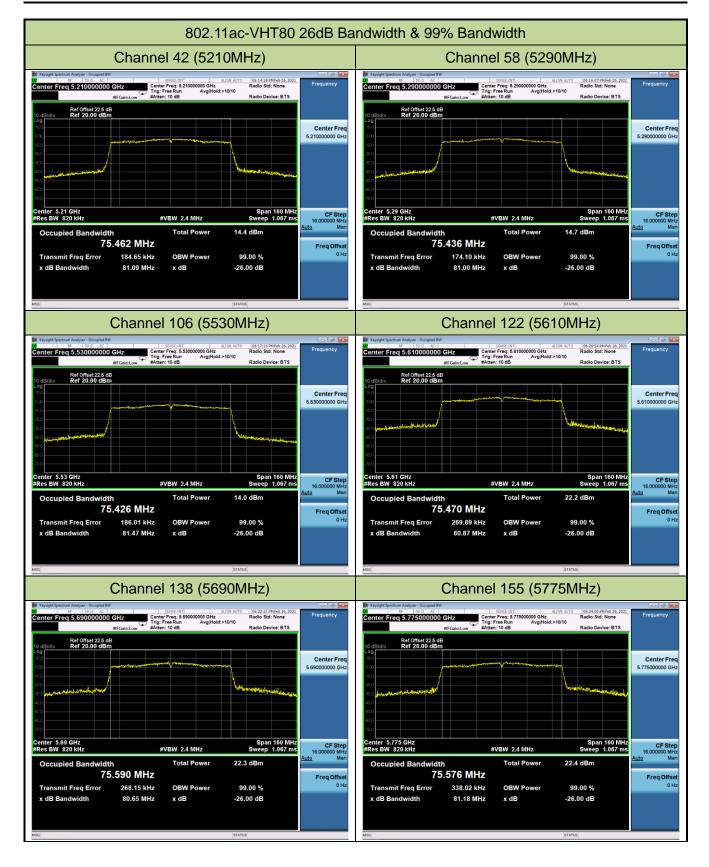








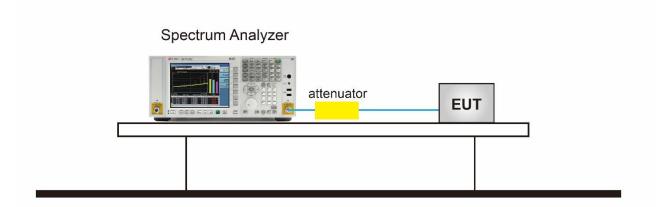




7.3. 6dB Bandwidth Measurement

7.3.1.Test Limit

The minimum 6dBbandwidth shall be at least 500 kHz.


7.3.2.Test Procedure used

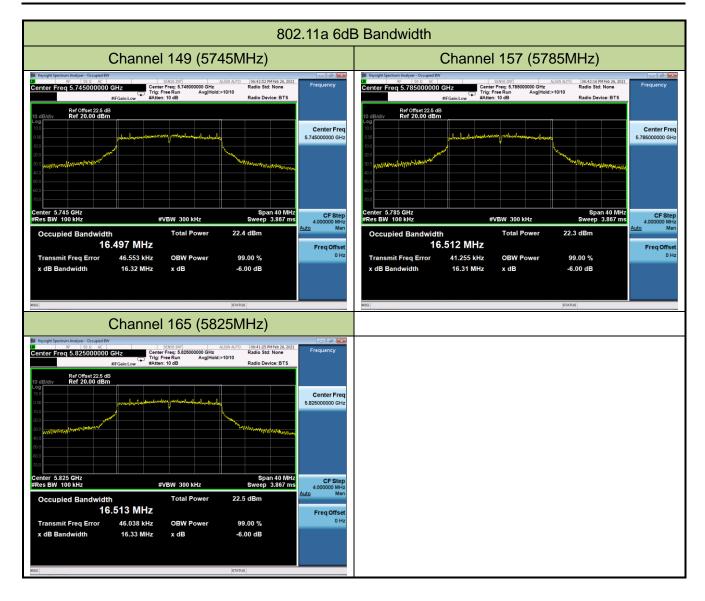
KDB 789033 D02v02r01- Section C.2

7.3.3.Test Setting

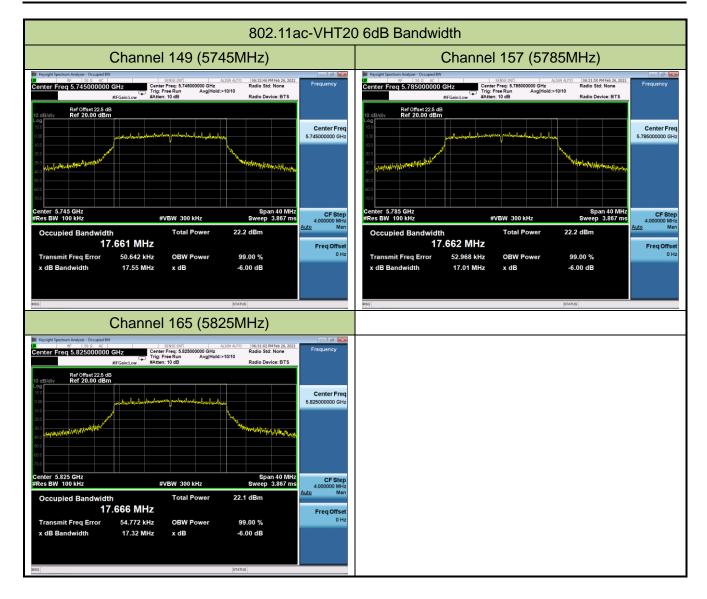
- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. RBW = 100 kHz.
- 3. VBW 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.4.Test Setup

FCC ID: 2ALGLX2000-MP Page Number: 34 of 360



7.3.5.Test Result


Product	X2000/ATX2000 Main PCBA	Test Engineer	Eric Lin
Test Site	SR1	Test Date	2022/02/26

Test Mode	Data Rate/ MCS	Channel No.	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result
802.11a	6Mbps	149	5745	16.32	≥ 0.5	Pass
802.11a	6Mbps	157	5785	16.31	≥ 0.5	Pass
802.11a	6Mbps	165	5825	16.33	≥ 0.5	Pass
802.11ac-VHT20	MCS0	149	5745	17.55	≥ 0.5	Pass
802.11ac-VHT20	MCS0	157	5785	17.01	≥ 0.5	Pass
802.11ac-VHT20	MCS0	165	5825	17.32	≥ 0.5	Pass
802.11ac-VHT40	MCS0	151	5755	36.05	≥ 0.5	Pass
802.11ac-VHT40	MCS0	159	5795	35.36	≥ 0.5	Pass
802.11ac-VHT80	MCS0	155	5775	75.25	≥ 0.5	Pass

