

FCC C2PC Test Report

FCC ID : 2AL6XWAP7635
Equipment : Tri-band 2x2 Indoor AP
Model No. : WAP7635
Brand Name : Emplus
Applicant : Emplus Technologies, Inc
Address : Bld B, 10F, No.209, Sec.1, Nangang Rd. Taipei City Taiwan
Standard : 47 CFR FCC Part 15.407
Equipment Class / Type : 6ID: Indoor access point
 6PP: Subordinate device
 6XD: Client device
Received Date : Mar. 25, 2025
Tested Date : May 28 ~ May 29, 2025

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Along Chen

Along Chen / Assistant Manager

Approved by:

Gary Chang

Gary Chang / Manager

Table of Contents

1	General Description	5
1.1	Information.....	5
1.2	The Equipment List	8
1.3	Test Standards	8
1.4	Reference Guidance	8
1.5	Deviation from Test Standard and Measurement Procedure.....	8
1.6	Measurement Uncertainty	9
2	Test Configuration.....	10
2.1	Testing Facility	10
2.2	Test Worst Modes and Channel Details.....	10
3	Transmitter Test Results.....	11
3.1	Contention Based Protocol.....	11
4	Test laboratory information.....	13

Appendix A. Contention Based Protocol

Release Record

Report No.	Version	Description	Issued Date
FR532503-01AO	Rev. 01	Initial issue	Jun. 23, 2025

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.407(d)(6)	Contention Based Protocol	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Information

This report is issued as a duplicate report to original ICC report no. FR532503AO. The modification is changing software version.

The contention based protocol has been re-tested, and the results are presented in the following sections.

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS
5925 ~ 7125	ax (HE20)	5935 ~ 7115	1 ~ 233 [60]	2	MCS 0-11
5925 ~ 7125	ax (HE40)	5965 ~ 7085	3 ~ 227 [29]	2	MCS 0-11
5925 ~ 7125	ax (HE80)	5985 ~ 7025	7 ~ 215 [14]	2	MCS 0-11
5925 ~ 7125	ax (HE160)	6025 ~ 6985	15 ~ 207 [7]	2	MCS 0-11
5925 ~ 7125	be (EHT20)	5955 ~ 7115	1 ~ 233 [60]	2	MCS 0-13
5925 ~ 7125	be (EHT40)	5965 ~ 7085	3 ~ 227 [29]	2	MCS 0-13
5925 ~ 7125	be (EHT80)	5985 ~ 7025	7 ~ 215 [14]	2	MCS 0-13
5925 ~ 7125	be (EHT160)	6025 ~ 6985	15 ~ 207 [7]	2	MCS 0-13
5925 ~ 7125	be (EHT320)	6105 ~ 6905	31 ~ 191 [6]	2	MCS 0-13

Note 1: OFDM/OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM and 4096QAM modulation.
 Note 2: 802.11be supports beamforming function.

1.1.2 Antenna Details

Ant. No.	Model	Type	Connector	Operating Frequencies (MHz) / Gain (dBi)			
				5925~6425	6425~6525	6525~6875	6875~7125
1	6-1	PIFA	UFL	5.1	4.7	4.7	5.1
2	6-2	PIFA	UFL	4.8	4.6	4.6	4.5

1.1.3 Configuration of Equipment under Test (EUT)

Power Supply Type	12V-- from AC adapter 54V-- from POE	
Beamforming	<input checked="" type="checkbox"/> Support	<input type="checkbox"/> Not support
RU Configuration	<input checked="" type="checkbox"/> Full RU	<input type="checkbox"/> Partial RU
Channel Puncturing	<input type="checkbox"/> Support	<input checked="" type="checkbox"/> Not support

Note: The above power supply is not bundled in market.

1.1.4 Accessories

N/A

1.1.5 Channel List

ax HE20 / be EHT20							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
2	5935	57	6235	117	6535	177	6835
1	5955	61	6255	121	6555	181	6855
5	5975	65	6275	125	6575	185	6875
9	5995	69	6295	129	6595	189	6895
13	6015	73	6315	133	6615	193	6915
17	6035	77	6335	137	6635	197	6935
21	6055	81	6355	141	6655	201	6955
25	6075	85	6375	145	6675	205	6975
29	6095	89	6395	149	6695	209	6995
33	6115	93	6415	153	6715	213	7015
37	6135	97	6435	157	6735	217	7035
41	6155	101	6455	161	6755	221	7055
45	6175	105	6475	165	6775	225	7075
49	6195	109	6495	169	6795	229	7095
53	6215	113	6515	173	6815	233	7115

ax HE40 / be EHT40							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	5965	67	6285	131	6605	195	6925
11	6005	75	6325	139	6645	203	6965
19	6045	83	6365	147	6685	211	7005
27	6085	91	6405	155	6725	219	7045
35	6125	99	6445	163	6765	227	7085
43	6165	107	6485	171	6805	---	---
51	6205	115	6525	179	6845	---	---
59	6245	123	6565	187	6885	---	---

ax HE80 / be EHT80							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
7	5985	71	6305	135	6625	199	6945
23	6065	87	6385	151	6705	215	7025
39	6145	103	6465	167	6785	---	---
55	6225	119	6545	183	6865	---	---

ax HE160 / be EHT160							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
15	6025	79	6345	143	6665	207	6985
47	6185	111	6505	175	6825	---	---

be EHT320							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	---	---
31	6105	95	6425	159	6745	---	---
63	6265	127	6585	191	6905	---	---

1.2 The Equipment List

Test Item	Contention Based Protocol				
Test Site	(TH01-WS)				
Tested Date	May 28 ~ May 29, 2025				
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV3044	101747	Mar.18, 2025	Mar. 17, 2026
AWGN Signal Generator	R&S	SMW200A	109619	Jul. 27, 2024	Jul. 26, 2025
RF CABLE	woken	woken-S05	S/N:S05-141231-105	Oct. 11, 2024	Oct. 10, 2025
RF CABLE	woken	woken-S05	S/N:S05-141231-106	Oct. 11, 2024	Oct. 10, 2025
RF CABLE	woken	woken-S05	S/N:S05-141231-108	Oct. 11, 2024	Oct. 10, 2025
Combiner(1x4)	MCLI	PS4-14	24939	Oct. 11, 2024	Oct. 10, 2025
Attenuator	woken	PE7013-20	20-1	Oct. 12, 2024	Oct. 11, 2025
Measurement Software	NA	NA	NA	NA	NA

Note: Calibration Interval of instruments listed above is one year.

1.3 Test Standards

47 CFR FCC Part 15.407

ANSI C63.10-2013

1.4 Reference Guidance

FCC KDB 987594 D02 U-NII 6 GHz EMC Measurement v03

FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01

FCC KDB 412172 D01 Determining ERP and EIRP v01r01

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

1.5 Deviation from Test Standard and Measurement Procedure

None

1.6 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.130 Hz
Conducted power	±0.808 dB
Frequency error	±1x10 ⁻⁹
Power density	±0.583 dB
Conducted emission	±2.715 dB
AC conducted emission	±2.92 dB
Radiated emission ≤ 1GHz	±3.96 dB
Radiated emission > 1GHz	±4.51 dB
Time	±0.1%
Temperature	±0.4 °C

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corporation
Test Site	TH01-WS
Address of Test Site	No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

2.2 Test Worst Modes and Channel Details

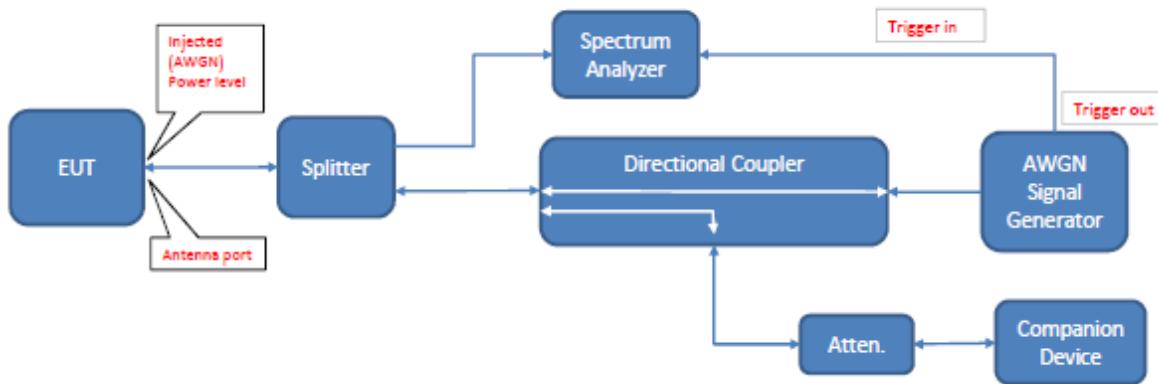
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test Configuration
Contention Based Protocol	be EHT20-OFDMA	6195 / 6475 / 6695 / 6995	MCS 0	1
	be EHT320-OFDMA	6105 / 6425 / 6905	MCS 0	

NOTE:

1. The EUT had been tested by following test configurations.
 - 1) Configuration 1: Adapter mode
 - 2) Configuration 2: POE mode

3 Transmitter Test Results

3.1 Contention Based Protocol


3.1.1 Limit

Unlicensed low-power indoor devices must detect co-channel radio frequency power that is at least -62 dBm or lower. The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain. Additionally, low-power indoor devices must detect co-channel energy with 90% or greater certainty

3.1.2 Test Procedure

1. Configure the EUT to transmit with a constant duty cycle
2. Set the operating parameters of the EUT including power level, operating frequency, modulation and bandwidth
3. Set the signal analyzer center frequency to the nominal EEUT channel center frequency. The span range of the signal analyzer shall be between two times and five times the OBW of the EUT. Connect the output port of the EUT to the signal analyzer 2, as shown in Figure 2. Ensure that the attenuator 2 provides enough attenuation to not overload the signal analyzer 2 receiver.
4. Monitoring the signal analyzer 2, verify the EUT is operating and transmitting with the parameters set at step two.
5. Using an AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use Table 1 to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
6. Set the AWGN signal power to an extremely low level (more than 20 dB below the -62 dBm threshold). Connect the AWGN signal source, via a 3-dB splitter, to the signal analyzer 1 and the EUT as shown in Figure 2
7. Transmit the AWGN signal (RF ON) and verify its characteristics on the signal analyzer 1.
8. Monitor the signal analyzer 2 to verify if the AWGN signal has been detected and the EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.
9. (Including all losses in the RF paths) Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
10. Refer to Table 1 to determine number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step 5, choose a different center frequency for the AWGN signal and repeat the process.

3.1.3 Test Setup

3.1.4 Test Result

Ambient Condition	23°C / 65%	Tested By	Nai Xu
EUT FW version	1.8.95		

Refer to Appendix A.

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <http://www.icertifi.com.tw>.

Linkou

Tel: 886-2-2601-1640
No.30-2, Ding Fwu Tsuen, Lin Kou
District, New Taipei City, Taiwan
(R.O.C.)

Kwei Shan

Tel: 886-3-271-8666
No.3-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)
No.2-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)

Kwei Shan Site II

Tel: 886-3-271-8640
No.14-1, Lane 19, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666
Fax: 886-3-318-0345
Email: ICC_Service@icertifi.com.tw

—END—

Mode	UNII Band	Center Frequency (MHz)	Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna gain With path Loss (dBi)	Adjusted Power (dBm)	Detection limit (dBm)	EUT Tx Status
be EHT20	5	6195	6194	-65.22	4.8	-70.02	-62	Ceased
				-69.22	4.8	-74.02	-62	Minimal
				-79.22	4.8	-84.02	-62	Normal
	6	6475	6474	-65.41	4.6	-70.01	-62	Ceased
				-68.41	4.6	-73.01	-62	Minimal
				-83.01	4.6	-87.61	-62	Normal
	7	6695	6694	-64.41	4.6	-69.01	-62	Ceased
				-67.41	4.6	-72.01	-62	Minimal
				-79.41	4.6	-84.01	-62	Normal
	8	6995	6994	-66.23	4.5	-70.73	-62	Ceased
				-69.23	4.5	-73.73	-62	Minimal
				-82.23	4.5	-86.73	-62	Normal

Note: Adjusted Power = Injected AWGN Power (dBm) – Antenna Gain (dBi) + Path Loss (dB)


Mode	UNII Band	Center Frequency (MHz)	Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna gain with path Loss (dBi)	Adjusted Power (dBm)	Detection limit (dBm)	EUT Tx Status
be EHT320	5	6105	6260	-61.36	4.8	-66.16	-62	Ceased
				-64.36	4.8	-69.16	-62	Minimal
				-76.36	4.8	-81.16	-62	Normal
	5 / 6 / 7	6425	6580	-59.76	4.6	-64.36	-62	Ceased
				-63.76	4.6	-68.36	-62	Minimal
				-75.76	4.6	-80.36	-62	Normal
	7 / 8	6905	7060	-63.46	4.5	-67.96	-62	Ceased
				-66.46	4.5	-70.96	-62	Minimal
				-79.46	4.5	-83.96	-62	Normal

Note: Adjusted Power = Injected AWGN Power (dBm) – Antenna Gain (dBi) + Path Loss (dB)

Mode	UNII Band	Center Frequency (MHz)	Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Adjusted Power (dBm)	1	2	3	4	5	6	7	8	9	10	Detection Probability (%)	Limit (%)
be EHT20	5	6195	6194	-65.22	-70.02	V	V	V	V	V	V	V	V	V	V	100	90
	6	6475	6474	-65.41	-70.01	V	V	V	V	V	V	V	V	V	V	100	90
	7	6695	6694	-64.41	-69.01	V	V	V	X	V	V	V	V	V	V	90	90
	8	6995	6994	-66.23	-70.73	V	V	V	V	V	V	V	V	V	V	100	90

Mode	UNII Band	Center Frequency (MHz)	Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Adjusted Power (dBm)	1	2	3	4	5	6	7	8	9	10	Detection Probability (%)	Limit (%)
be EHT320	5	6105	5950	-65.26	-70.06	V	V	V	V	V	V	V	X	V	V	90	90
			6100	-65.25	-70.05	V	V	V	V	V	V	V	X	V	V	90	90
			6260	-61.36	-66.16	V	V	V	X	V	V	V	V	V	V	90	90
	5/ 6 / 7	6425	6270	-65.08	-69.68	V	V	V	V	V	V	V	V	X	V	90	90
			6420	-65.06	-69.66	V	V	V	V	V	V	V	V	V	V	100	90
			6580	-59.76	-64.36	V	V	V	V	V	X	V	V	V	V	90	90
	7 / 8	6905	6750	-65.31	-69.81	V	V	V	V	V	V	V	V	V	V	100	90
			6900	-66.26	-70.76	V	V	V	V	V	V	V	X	V	V	90	90
			7060	-63.46	-67.96	V	V	X	V	V	V	V	V	V	V	90	90

Test plot of Incumbent signal
BW: 20 MHz / Frequency: 6194 MHz

BW: 20 MHz / Frequency: 6474 MHz

BW: 20 MHz / Frequency: 6694 MHz

BW: 20 MHz / Frequency: 6994 MHz

BW: 320 MHz / Frequency: 5950 MHz

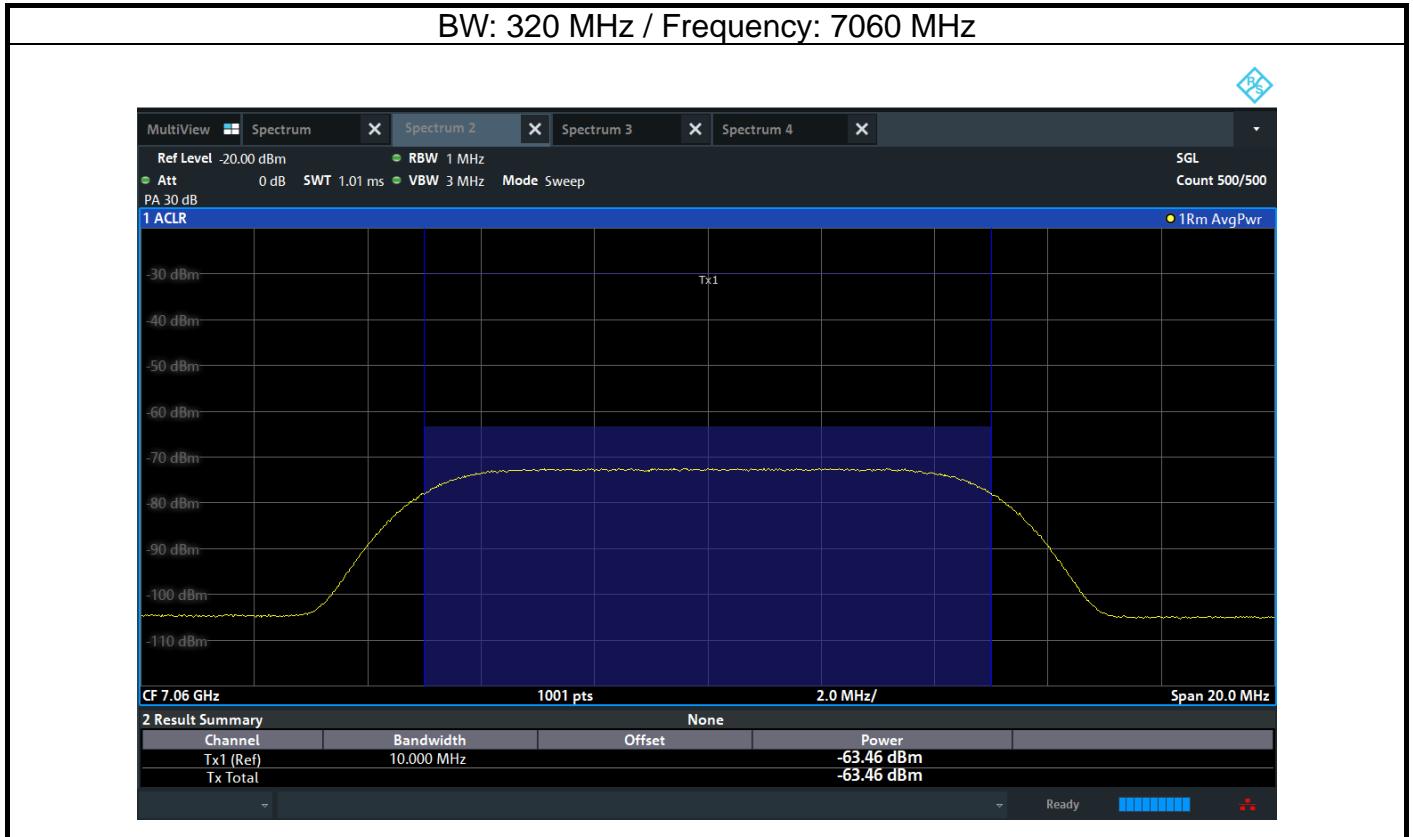

BW: 320 MHz / Frequency: 6100 MHz

BW: 320 MHz / Frequency: 6260 MHz

BW: 320 MHz / Frequency: 6270 MHz

BW: 320 MHz / Frequency: 6420 MHz

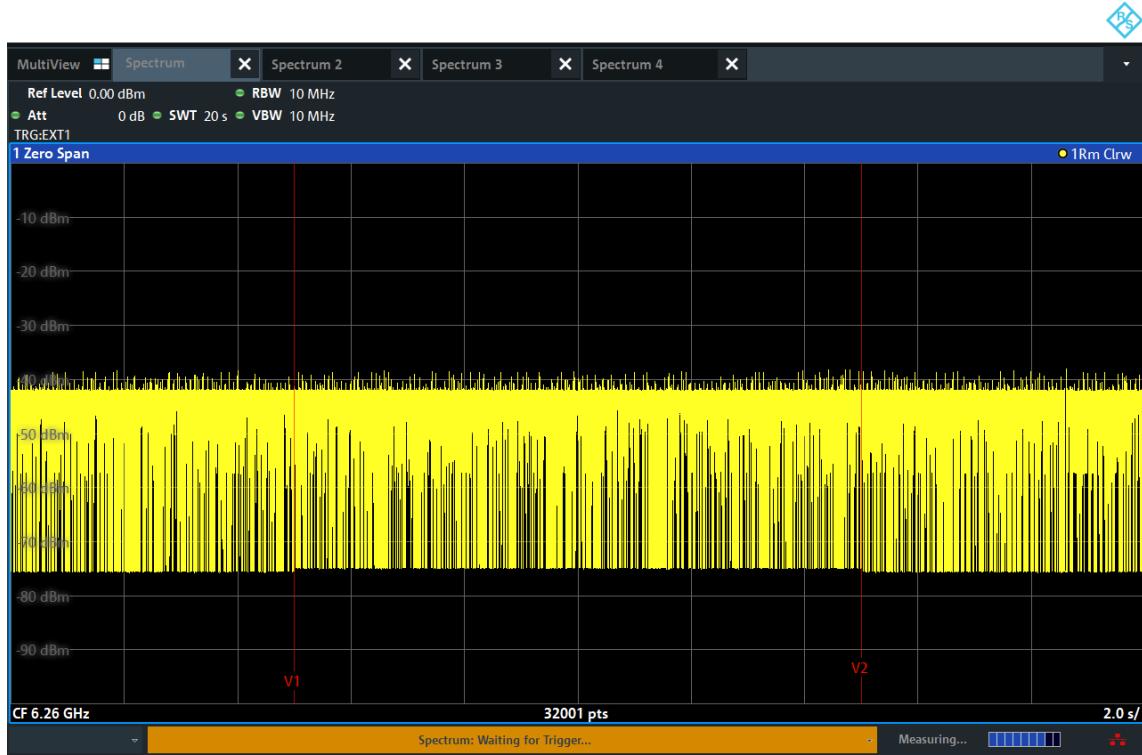
BW: 320 MHz / Frequency: 6580 MHz

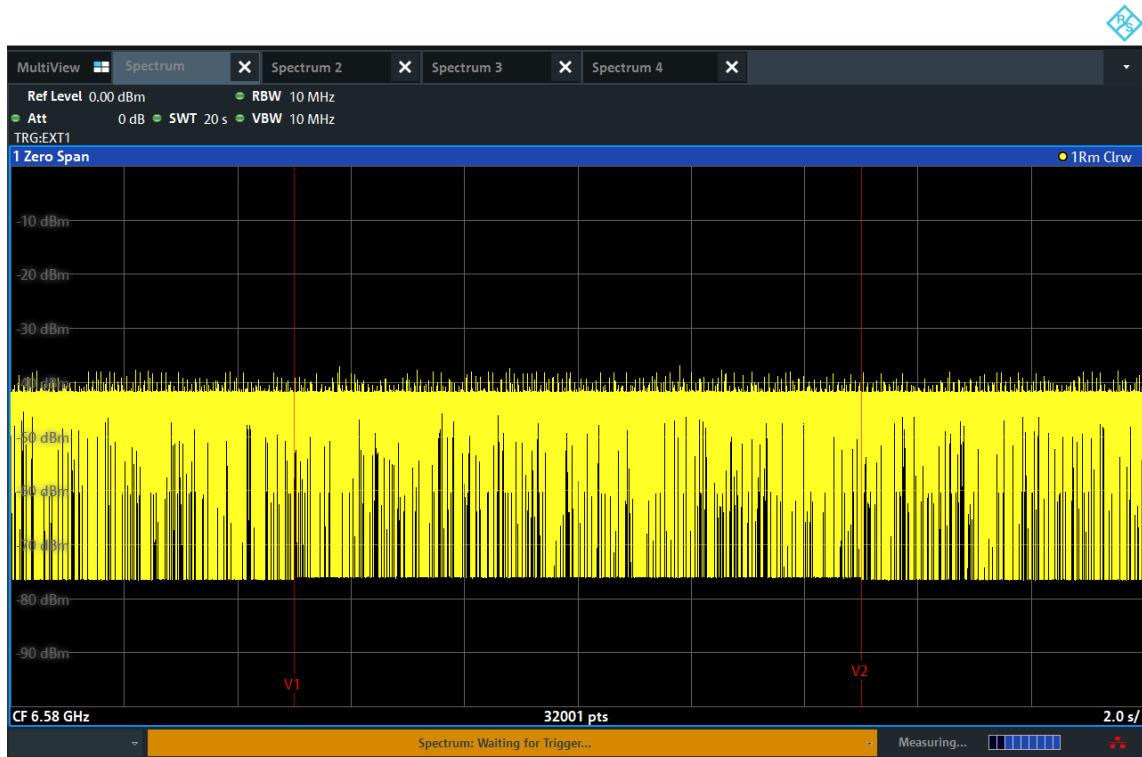


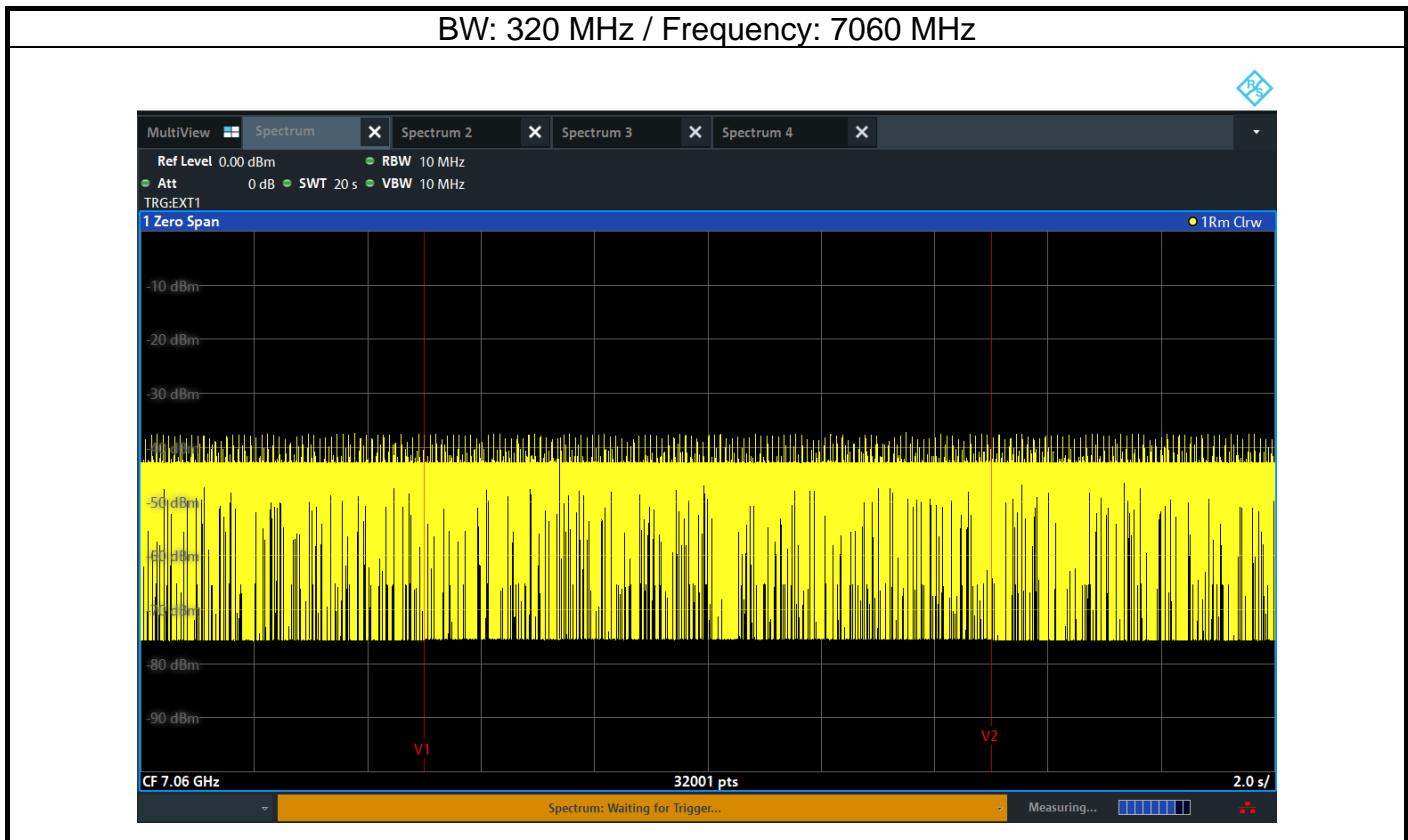
BW: 320 MHz / Frequency: 6750 MHz

BW: 320 MHz / Frequency: 6900 MHz

**Test plot of Contention Based Protocol
EUT Normal transmission****BW: 20 MHz / Frequency: 6194 MHz****BW: 20 MHz / Frequency: 6474 MHz**


BW: 20 MHz / Frequency: 6694 MHz


BW: 20 MHz / Frequency: 6994 MHz



BW: 320 MHz / Frequency: 6260 MHz

BW: 320 MHz / Frequency: 6580 MHz

EUT Minimal transmission**BW: 20 MHz / Frequency: 6194 MHz****BW: 20 MHz / Frequency: 6474 MHz**

BW: 20 MHz / Frequency: 6694 MHz

BW: 20 MHz / Frequency: 6994 MHz

BW: 320 MHz / Frequency: 6260 MHz

BW: 320 MHz / Frequency: 6580MHz

EUT ceased transmission**BW: 20 MHz / Frequency: 6194 MHz****BW: 20 MHz / Frequency: 6474 MHz**

Note: T1: AWGN signal is injected, T2: AWGN signal is removed.

BW: 20 MHz / Frequency: 6694 MHz

BW: 20 MHz / Frequency: 6994 MHz

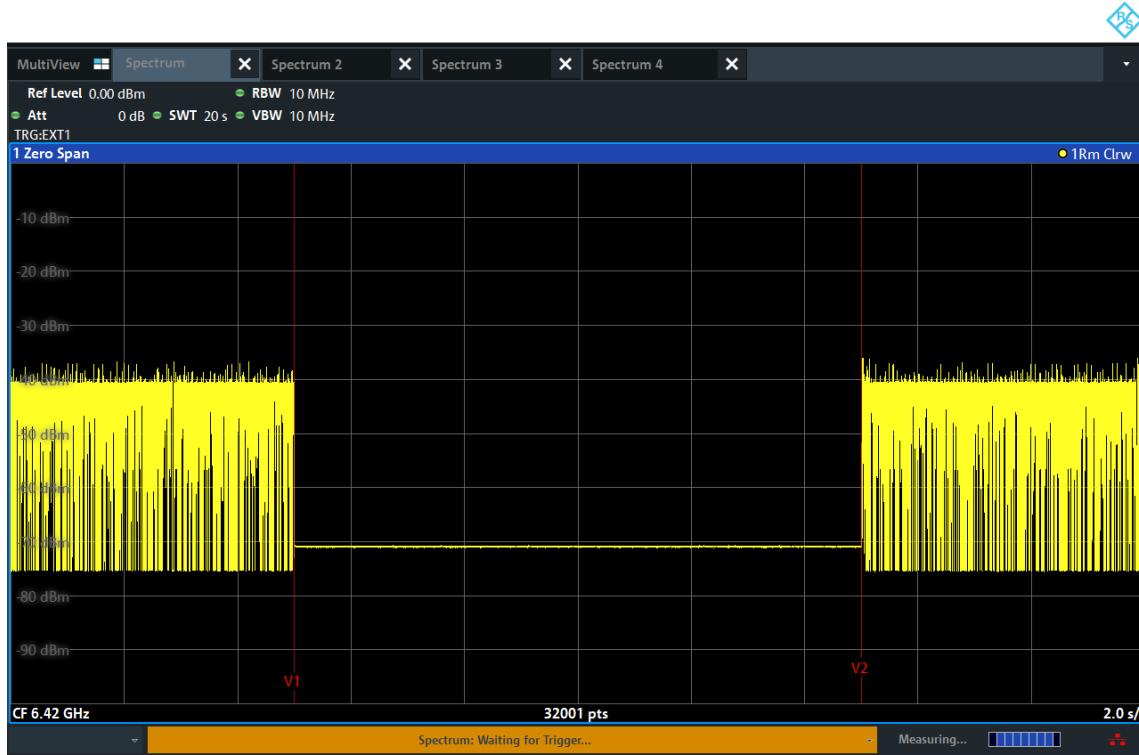
Note: T1: AWGN signal is injected, T2: AWGN signal is removed.

BW: 320 MHz / Frequency: 5950 MHz

BW: 320 MHz / Frequency: 6100 MHz

Note: T1: AWGN signal is injected, T2: AWGN signal is removed.

BW: 320 MHz / Frequency: 6260 MHz



BW: 320 MHz / Frequency: 6270 MHz

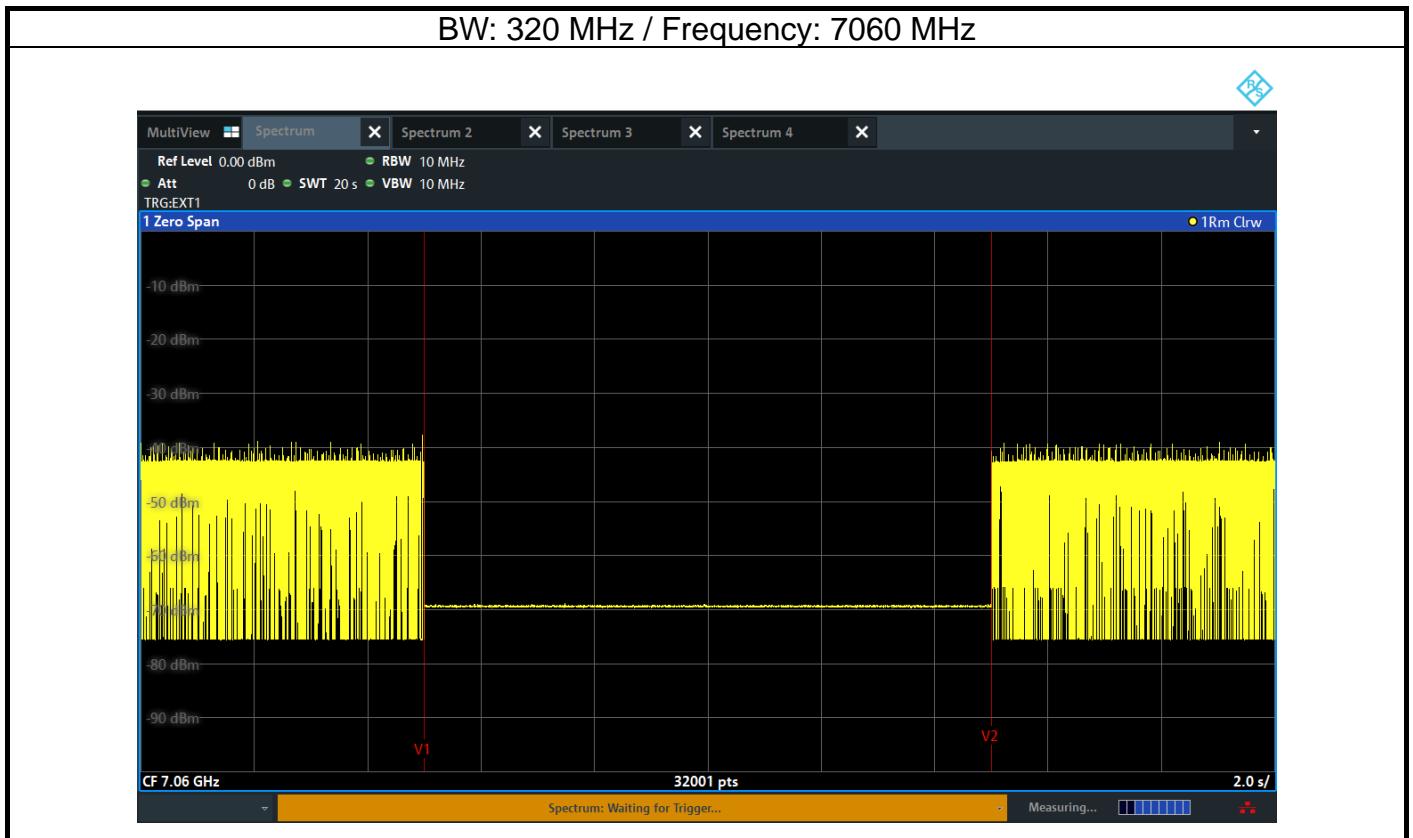
Note: T1: AWGN signal is injected, T2: AWGN signal is removed.

BW: 320 MHz / Frequency: 6420 MHz

BW: 320 MHz / Frequency: 6580 MHz



Note: T1: AWGN signal is injected, T2: AWGN signal is removed.


BW: 320 MHz / Frequency: 6750 MHz

BW: 320 MHz / Frequency: 6900 MHz

Note: T1: AWGN signal is injected, T2: AWGN signal is removed.

Note: T1: AWGN signal is injected, T2: AWGN signal is removed.