

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC180664 Page: 1 of 92

FCC Radio Test Report FCC ID: 2AKUR-JF-IPC

Original Grant

Report No. : TB-FCC180664

Applicant: Hangzhou Jufeng Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name : camera

Model No. : IPC-ENK8330PX-IR2R-WS

Series Model No. : Please Refer To Page 05

Brand Name : ---

Sample ID : 20210518-14_01-1#&20210518-14_01-2#

Receipt Date : 2021-05-27

Test Date : 2021-05-27 to 2021-09-13

Issue Date : 2021-09-13

Standards : FCC Part 15, Subpart C 15.247

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

amille Li

Test/Witness

Engineer

Engineer Supervisor:

Engineer Manager :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	10
2.	TEST SUMMARY	11
3.	TEST SOFTWARE	11
4.	TEST EQUIPMENT	12
5.	CONDUCTED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	15
	5.5 EUT Operating Mode	15
	5.6 Test Data	15
6.	RADIATED EMISSION TEST	16
	6.1 Test Standard and Limit	16
	6.2 Test Setup	17
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	19
	6.5 EUT Operating Condition	19
	6.6 Test Data	
7.	RESTRICTED BANDS REQUIREMENT	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	21
	7.4 Deviation From Test Standard	22
	7.5 EUT Operating Condition	
	7.6 Test Data	22
8.	BANDWIDTH TEST	23
	8.1 Test Standard and Limit	23
	8.2 Test Setup	23
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	23

	8.5 EUT Operating Condition	23
	8.6 Test Data	
9.	PEAK OUTPUT POWER TEST	24
	9.1 Test Standard and Limit	24
	9.2 Test Setup	24
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	24
	9.5 EUT Operating Condition	24
	9.6 Test Data	24
10.	POWER SPECTRAL DENSITY TEST	25
	10.1 Test Standard and Limit	25
	10.2 Test Setup	25
	10.3 Test Procedure	25
	9.4 Deviation From Test Standard	25
	9.5 EUT Operating Condition	25
	9.6 Test Data	25
11.	ANTENNA REQUIREMENT	26
	11.1 Standard Requirement	26
	11.2 Deviation From Test Standard	
	11.3 Antenna Connected Construction	26
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	23242424242424252525252526262626272931
	ACHMENT B RADIATED EMISSION TEST DATA	
	ACHMENT C EMISSIONS IN RESTRICTED BANDS TEST DATA	
	ACHMENT D BANDWIDTH TEST DATA	
	ACHMENT E PEAK OUTPUT POWER TEST DATA	
	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	
AII	AUDIVIENT F FUWER SPECTRAL DENSITY TEST DATA	85

Revision History

Report No.	Version	Description	Issued Date
TB-FCC180664	Rev.01	Initial issue of report	2021-09-13
4000		TOBY	2 (100)
المراز			10 22
A COURS	W W		The state of the s
		(1)33	Mary N
GIV.	3	031	
	TOBY	The same of the sa	
COD'S			
	Dias a		

1. General Information about EUT

1.1 Client Information

Applicant		Hangzhou Jufeng Technology Co., Ltd.		
Address	-	Building 9, Yinhu Innovation Center, No.9 FuXian Road, YinHu Street, Hangzhou China		
Manufacturer		Hangzhou Jufeng Technology Co., Ltd.		
Address		Building 9, Yinhu Innovation Center, No.9 FuXian Road, YinHu Street, Hangzhou China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	: camera			
Models No.		IPC-ENK8330PX-IR2R-WS, IPC-ENK8330PX-IR2R-WS-V2, JF-IPC-ENK8330PX-IR2R-WS, JF-IPC-ENK8330PX-IR2R-WS-V2, IPC-END8330PX-IR2R-WS, IPC-END8330PX-IR2R-WS-V2, IPC-ED8330PX-IR2R-WS, IPC-ED8330PX-IR2R-WS-V2, JF-IPC-ED8330PX-IR2R-WS, JF-IPC-END8330PX-IR2R-WS, JF-IPC-END8330PX-IR2R-WS, JF-IPC-END8330PX-IR2R-WS-V2, JF-IPC-END8320PX-IR2R-WS, IPC-END8320PX-IR2R-WS			
Model Different: All PCB boards and circuit diagrams are the same, t pixels are different.		rcuit diagrams are the same, the only difference is			
MOBY TO		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz		
Product		Number of Channel:	11 channels		
Description		Modulation Type:	802.11b: DSSS (CCK, DQPSK, DBPSK) 802.11g/n: OFDM (BPSK, PSK,16QAM,64QAM)		
	6	Antenna Gain:	5dBi dipole Antenna		
Power Supply	:	Input: AC 100-240V 50	0/60Hz 1.5A Max		
Software Version	:	PC_XM530_50X30-W	NG_WIFINVRXM713G_TB. 713g.Nat		
Hardware Version		: BLK530AI-0M25-38X38-WIFI V1.02			
Connecting I/O Port(S)		Please refer to the User's Manual			
Remark		The antenna gain and adapter provided by the applicant, the verified for the RF conduction test and adapter provided by TOBY test lab.			

Note:

- (1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v05.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 92

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

Note: CH 01~CH 11 for 802.11b/g/n(HT20) CH 03~CH 9 for 802.11n(HT40)

- (4) The Antenna information about the equipment is provided by the applicant.
- 1.3 Block Diagram Showing the Configuration of System Tested

Charging Mode+TX mode

Adapter		EUT		
	Cable 1			

1.4 Description of Support Units

Equipment Information								
Name	Model	FCC ID/VOC	Manufacturer	Used "√"				
	V 0							
	Cable Information							
Number	Shielded Type	Ferrite Core	Length	Note				
E-100								

Page: 7 of 92

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode Description					
Mode 1	Charging + TX B Mode				

For Radiated Test			
Final Test Mode	Description		
Mode 2	TX Mode B Mode Channel 01/06/11		
Mode 3	TX Mode G Mode Channel 01/06/11		
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11		
Mode 5 TX Mode N(HT40) Mode Channel 03/0			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst-case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore, only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel&Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

1	Test Sof	tware: SecureCR	The state of the				
	Test Mode: Continuously transmitting						
Mode	Data Rate	Channel	Parameters				
	CCK/ 1Mbps	01	17				
802.11b	CCK/ 1Mbps	06	17				
ann	CCK/ 1Mbps	11	17				
	OFDM/ 6Mbps	01	17				
802.11g	OFDM/ 6Mbps	06	17				
mn33	OFDM/ 6Mbps	11	17				
100	MCS 0	01	17				
802.11n(HT20)	MCS 0	06	17				
	MCS 0	11	17				
	MCS 0	03	16				
802.11n(HT40)	MCS 0	06	16				
1000	MCS 0	09	16				

Page: 9 of 92

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 10 of 92

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.Designation Number:CN1223

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

2. Test Summary

Standard Section		_ , .				
FCC	IC	Test Item	Test Sample(s)	Judgment	t Remark	
15.203		Antenna Requirement	20210518-14_01-1#	PASS	N/A	
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	20210518-14_01-2#	PASS	N/A	
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	20210518-14_01-1#	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	20210518-14_01-1#	PASS	N/A	
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	20210518-14_01-1#	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	20210518-14_01-1#	PASS	N/A	
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	20210518-14_01-1# 20210518-14_01-2#	PASS	N/A	

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item Test Software		Manufacturer	Version No.	
Conducted Emission	EZ-EMC	EZ	CDI-03A2	
Radiation Emission	EZ-EMC	EZ	FA-03A2RE	

Report No.: TB-FCC180664 Page: 12 of 92

4. Test Equipment

Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021
Radiation Emission 1	est	-			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	FSVR	102197	Jul. 06, 2020	Jul. 05, 2021
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 07, 2020	Jul. 06, 2021
Pre-amplifier	Sonoma	310N	185903	Mar.01, 2020	Feb. 28, 2021
Pre-amplifier	HP	8449B	3008A00849	Mar.01, 2020	Feb. 28, 2021
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.01, 2020	Feb. 28, 2021
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 06, 2020	Jul. 05, 2021
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 11, 2020	Sep. 10, 2021
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 11, 2020	Sep. 10, 2021

Conducted Emission Test Serial No. Last Cal. Cal. Due Date **Equipment** Manufacturer Model No. Rohde & Schwarz **ESCI** 100321 Jul. 02, 2021 Jul. 01, 2022 **EMI Test Receiver** Compliance RF Switching Unit 34403 Jul. 02, 2021 Jul. 01, 2022 **Direction Systems** RSU-A4 Inc **SCHWARZBECK** NNBL 8226-2 8226-2/164 Jul. 02, 2021 Jul. 01, 2022 **AMN** LISN Rohde & Schwarz **ENV216** 101131 Jul. 02, 2021 Jul. 01, 2022 **Radiation Emission Test Equipment** Manufacturer Model No. Serial No. Last Cal. Cal. Due Date Jul. 02, 2021 Jul. 01, 2022 E4407B MY45106456 Spectrum Analyzer Agilent Jul. 02, 2021 Jul. 01, 2022 **EMI Test Receiver** Rohde & Schwarz **ESPI** 100010/007 Jul. 01, 2022 Spectrum Analyzer Rohde & Schwarz FSV40-N 102197 Jul. 02, 2021 **ETS-LINDGREN** 3142E 00117537 Mar.01, 2020 Feb. 28, 2022 Bilog Antenna Mar.01, 2020 Feb. 28, 2022 Horn Antenna **ETS-LINDGREN** 3117 00143207 Horn Antenna **ETS-LINDGREN BBHA 9170** BBHA9170582 Mar.01, 2020 Feb. 28, 2022 SCHWARZBECK Jul. 06, 2021 Jul. 05, 2022 Loop Antenna FMZB 1519 B 1519B-059 Feb.25, 2021 Feb. 24, 2022 Pre-amplifier Sonoma 310N 185903 Pre-amplifier HP 8449B 3008A00849 Feb.25, 2021 Feb. 24, 2022 LNPA_1840G-50 SK201904032 Feb.25, 2021 Feb. 24, 2022 SKET Pre-amplifier Feb.25, 2021 Feb. 24, 2022 **HUBER+SUHNER** SUCOFLEX Cable 100 Positioning Controller **ETS-LINDGREN** 2090 N/A N/A N/A **Antenna Conducted Emission Equipment** Manufacturer Model No. Serial No. Last Cal. Cal. Due Date Jul. 02, 2021 Spectrum Analyzer Agilent MY45106456 Jul. 01, 2022 E4407B Rohde & Schwarz Jul. 02, 2021 Jul. 01, 2022 Spectrum Analyzer 100010/007 **ESPI** N9020A MY49100060 Sep. 10, 2021 Sep. 09, 2022 MXA Signal Analyzer Agilent Vector Signal Generator Agilent N5182A MY50141294 Sep. 10, 2021 Sep. 09, 2022 **Analog Signal Generator** N5181A MY50141953 Sep. 10, 2021 Sep. 09, 2022 Agilent **DARE!! Instruments** Sep. 10, 2021 Sep. 09, 2022 17I00015SNO26 RadiPowerRPR3006W **DARE!! Instruments** 17I00015SNO29 Sep. 10, 2021 Sep. 09, 2022 RadiPowerRPR3006W RF Power Sensor **DARE!! Instruments** 17I00015SNO31 Sep. 10, 2021 Sep. 09, 2022 RadiPowerRPR3006W Sep. 09, 2022 **DARE!! Instruments** RadiPowerRPR3006W 17I00015SNO33 Sep. 10, 2021

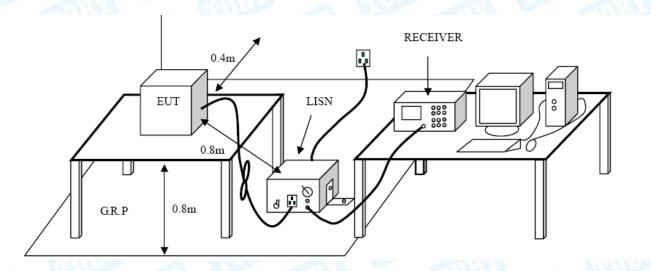
Page: 14 of 92

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Fundamental (1)	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Report No.: TB-FCC180664 Page: 15 of 92

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

6. Radiated Emission Test

6.1 Test Standard and Limit

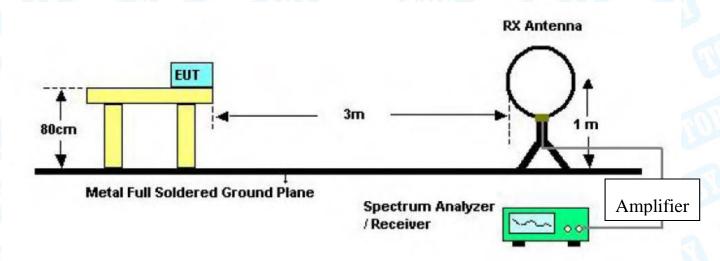
6.1.1 Test Standard FCC Part 15.209

6.1.2 Test Limit

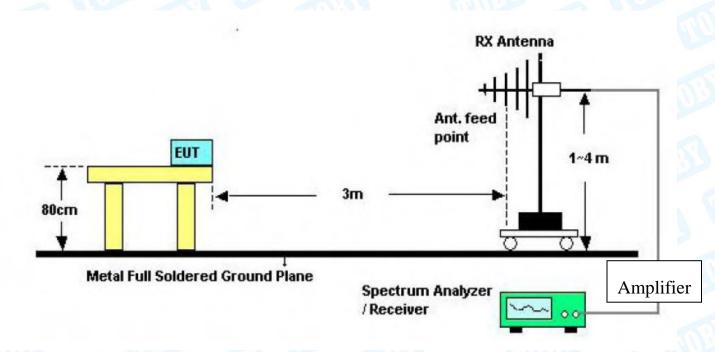
Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

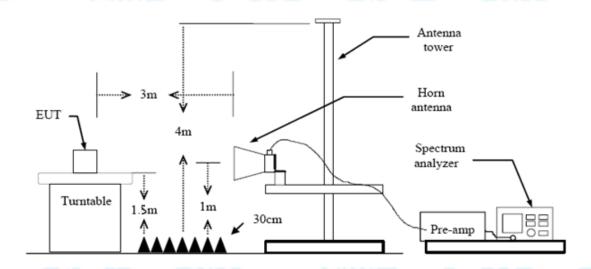
Radiated Emission Limit (Above 1000MHz)


Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

6.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Report No.: TB-FCC180664 Page: 18 of 92

Above 1GHz Test Setup

6.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 19 of 92

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

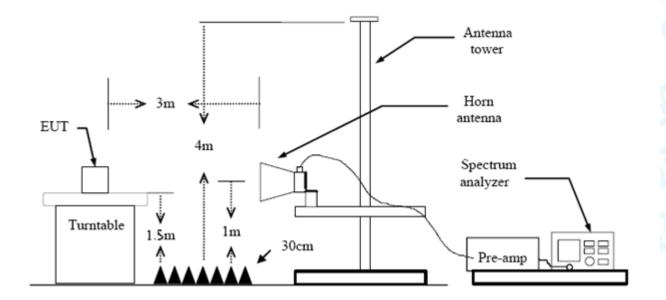
Page: 20 of 92

7. Restricted Bands Requirement

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.247(d)


FCC Part 15.209

FCC Part 15.205

7.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)			
Band (MHz)	Peak	Average		
2310 ~2390	74	54		
2483.5 ~2500	74	54		

7.2 Test Setup

Page: 21 of 92

7.3 Test Procedure

- ---Radiated measurement
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.
- --- Conducted measurement
- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

Page: 22 of 92

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

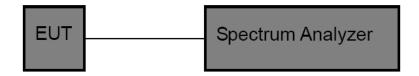
The Equipment Under Test was set to Continual Transmitting in maximum power.

7.6 Test Data

Please refer to the Attachment C.

Report No.: TB-FCC180664 Page: 23 of 92

8. Bandwidth Test


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(2)

8.1.2 Test Limit

FCC Part 15 Subpart C (15.247)/RSS-210					
Test Item	Test Item Limit Frequency Range(Mi				
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5			

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

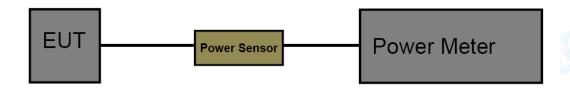
The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

8.6 Test Data

Please refer to the Attachment D.

Page: 24 of 92

9. Peak Output Power Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (b)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210					
Test Item	Limit	Frequency Range(MHz)			
Peak Output Power	1 Watt or 30 dBm	2400~2483.5			

9.2 Test Setup

9.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v05. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

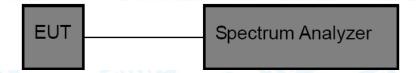
The EUT was set to continuously transmitting in the max power during the test.

9.6 Test Data

Please refer to the Attachment E.

Report No.: TB-FCC180664 Page: 25 of 92

10. Power Spectral Density Test


10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (e)

10.1.2 Test Limit

FCC Part 15 Subpart C(15.247)					
Test Item Limit Frequency Range (MHz					
Power Spectral Density	8dBm (in any 3 kHz)	2400~2483.5			

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to DTS channel centre frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

9.6 Test Data

Please refer to the Attachment F.

Page: 26 of 92

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard

FCC Part 15.203

11.1.2 Requirement

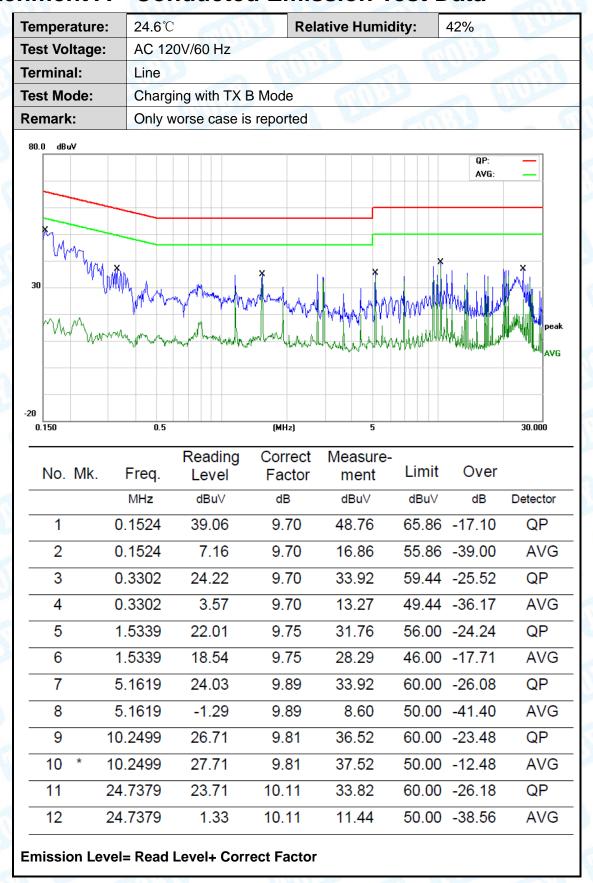
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

11.3 Antenna Connected Construction

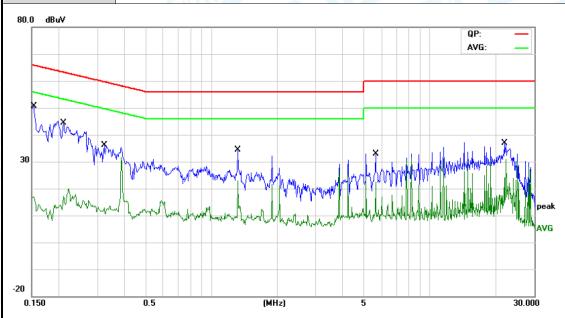
The gains of the antenna used for transmitting is 5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.


Result

The EUT antenna is a Dipole Antenna. It complies with the standard requirement.

Antenna Type				
33	⊠Permanent attached antenna	MOBA		
4000	☐Unique connector antenna			
	☐Professional installation antenna	W.		

Attachment A-- Conducted Emission Test Data


Temperature:
24.6 °C
Relative Humidity:
42%

Test Voltage:
AC 120V/60 Hz

Terminal:
Neutral

Test Mode:
Charging with TX B Mode

Remark:
Only worse case is reported

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector
1 *	0.1539	38.36	9.80	48.16	65.78	-17.62	QP
2	0.1539	7.13	9.80	16.93	55.78	-38.85	AVG
3	0.2099	32.12	9.80	41.92	63.21	-21.29	QP
4	0.2099	7.37	9.80	17.17	53.21	-36.04	AVG
5	0.3234	24.39	9.80	34.19	59.62	-25.43	QP
6	0.3234	2.22	9.80	12.02	49.62	-37.60	AVG
7	1.3300	21.95	9.80	31.75	56.00	-24.25	QP
8	1.3300	3.24	9.80	13.04	46.00	-32.96	AVG
9	5.6539	19.75	9.83	29.58	60.00	-30.42	QP
10	5.6539	3.38	9.83	13.21	50.00	-36.79	AVG
11	22.1060	23.71	10.05	33.76	60.00	-26.24	QP
12	22.1060	6.91	10.05	16.96	50.00	-33.04	AVG

Emission Level= Read Level+ Correct Factor

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Emission Level= Read Level+ Correct Factor

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

emperature:	23.9℃			Relative H	umidity:	44%	
est Voltage:	AC 120	V/60 Hz		CHILL		All	
nt. Pol.	Horizon	tal					2 8
est Mode:	TX B M	ode 2412M	lHz				
Remark:	Only wo	rse case is	reported				
30 1		3	4~~~		FCC 15B	3M Radiation Margin -6 dt	B 6
-20	50 60 70 8	30	(MHz)	300	400 500	600 700	1000.000
		Reading Level	(MHz) Correct Factor	Measure- ment	400 500 Limit	600 700 Over	1000.000
30.000 40	50 60 70 8	Reading	Correct	Measure-			1000.000 Detector
30.000 40 No. Mk.	50 60 70 8 Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	Detector
No. Mk.	50 60 70 8 Freq.	Reading Level	Correct Factor	Measure- ment dBuV/m	Limit dBuV/m	Over	Detector
No. Mk.	Freq. MHz 31.7313	Reading Level dBuV 38.68	Correct Factor dB/m -14.25	Measure- ment dBuV/m 24.43	Limit dBuV/m 40.00	Over dB -15.57	Detector peak peak
No. Mk.	Freq. MHz 31.7313 85.2980	Reading Level dBuV 38.68 55.58	Correct Factor dB/m -14.25 -22.14	Measure- ment dBuV/m 24.43 33.44	Limit dBuV/m 40.00 40.00	Over dB -15.57 -6.56	Detector peak peak
No. Mk. 1 2 * 3 4	Freq. MHz 31.7313 85.2980 112.1304	Reading Level dBuV 38.68 55.58 51.72	Correct Factor dB/m -14.25 -22.14 -22.27	Measure- ment dBuV/m 24.43 33.44 29.45	Limit dBuV/m 40.00 40.00 43.50	Over dB -15.57 -6.56 -14.05	Detector peak peak peak peak

Temperature:
23.9 °C

Relative Humidity:
44%

Test Voltage:
AC 120V/60 Hz

Ant. Pol.
Vertical

Test Mode:
TX B Mode 2412MHz

Remark:
Only worse case is reported

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		30.6378	37.29	-13.43	23.86	40.00	-16.14	peak
2		47.9939	51.95	-22.40	29.55	40.00	-10.45	peak
3		87.7248	53.56	-21.99	31.57	40.00	-8.43	peak
4		111.3468	54.06	-22.28	31.78	43.50	-11.72	peak
5		475.4990	40.57	-11.19	29.38	46.00	-16.62	peak
6	×	821.7103	44.59	-5.76	38.83	46.00	-7.17	peak

^{*:}Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

Above 1GHz~26.5GHz

Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60 Hz		
Ant. Pol.	Horizontal		MIN TO
Test Mode:	TX B Mode 2412MHz		
Remark:	No report for the emission limit.	n which more than 20 dE	B below the prescribed

No	. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.830	32.60	12.54	45.14	54.00	-8.86	AVG
2		4823.872	43.80	12.54	56.34	74.00	-17.66	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	HILL	Re	elative Humid	dity: 4	4%	671	
Test Voltage:	AC 120	0V/60 Hz	TITO DE	- N	MA		10	
Ant. Pol.	Vertical							
Test Mode:	TXBN	TX B Mode 2412MHz						
Remark:	Remark: No report for the emission which more than 20 dB below the prescribe limit.							
No. Mk.	Freg.	Reading Level	Correct Factor	Measure- ment	Limit	Over		

-	No.	Mk.	Freq.	•	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4823.904	33.78	12.54	46.32	54.00	-7.68	AVG
2			4823.980	44.26	12.54	56.80	74.00	-17.20	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%				
Test Voltage:	AC 120V/60 Hz		7				
Ant. Pol.	Horizontal						
Test Mode:	TX B Mode 2437MHz	TX B Mode 2437MHz					
Remark:	No report for the emission	No report for the emission which more than 20 dB below the					
	prescribed limit.						

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.758	44.21	12.85	57.06	74.00	-16.94	peak
2	*	4873.918	32.83	12.85	45.68	54.00	-8.32	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%				
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Vertical						
Test Mode:	TX B Mode 2437MHz	TX B Mode 2437MHz					
Remark:	No report for the emission which more than 20 dB below the prescribed limit.						

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4873.920	33.34	12.85	46.19	54.00	-7.81	AVG
2		4873.948	44.94	12.85	57.79	74.00	-16.21	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 33 of 92

Temperature:	23.9℃	Relative Humidity:	44%				
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Horizontal						
Test Mode:	TX B Mode 2462MHz						
Remark:	No report for the emission which more than 20 dB below the prescribed limit.						

No	o. Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4923.856	34.13	13.15	47.28	54.00	-6.72	AVG
2		4924.020	44.87	13.15	58.02	74.00	-15.98	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60 Hz	WOOD .	THU.
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2462MHz		
Remark:	No report for the emission prescribed limit.	which more than 20 dE	3 below the

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.742	45.16	13.15	58.31	74.00	-15.69	peak
2	*	4923.982	35.39	13.15	48.54	54.00	-5.46	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature: 23.9°C Relative Humidity: 44%

Test Voltage: AC 120V/60 Hz

Ant. Pol. Horizontal

Test Mode: TX G Mode 2412MHz

Remark: No report for the emission which more than 20 dB below the

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.536	41.16	12.54	53.70	74.00	-20.30	peak
2	*	4823.954	33.45	12.54	45.99	54.00	-8.01	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

prescribed limit.

- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	A Branch	Relative Hu	midity:	44%	
Test Voltage:	AC 120V/60 Hz		HALL		6	
Ant. Pol.	Vertical	TAU .		11.50		HALL
Test Mode:	TX G Mode 241	12MHz			M'A	
Remark:	No report for the prescribed limit		which more th	nan 20 dB	below the	noBY
No. Mk. Fre	Reading q. Level	Correct Factor	Measure- ment	Limit	Over	
MH	z dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 4824.0	078 41.28	12.54	53.82	74.00	-20.18	peak
2 * 4824.2	256 31.02	12.54	43.56	54.00	-10.44	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

 Temperature:
 23.9℃
 Relative Humidity:
 44%

 Test Voltage:
 AC 120V/60 Hz

 Ant. Pol.
 Horizontal

 Test Mode:
 TX G Mode 2437MHz

 Remark:
 No report for the emission which more than 20 dB below the prescribed limit.

N	o. N	Λk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		4873.762	33.12	12.85	45.97	54.00	-8.03	AVG
2			4874.050	42.72	12.85	55.57	74.00	-18.43	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60 Hz		
Ant. Pol.	Vertical		
Test Mode:	TX G Mode 2437MHz	MUDE	
Remark:	No report for the emission prescribed limit.	which more than 20 dE	3 below the

No	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.922	42.09	12.85	54.94	74.00	-19.06	peak
2	*	4874.342	33.56	12.85	46.41	54.00	-7.59	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Test Voltage: AC 120V/60 Hz

Ant. Pol. Horizontal

Test Mode: TX G Mode 2462MHz

Remark: No report for the emission which more than 20 dB below the prescribed limit.

44%

Relative Humidity: 44%

44%

No	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.914	42.44	13.15	55.59	74.00	-18.41	peak
2	*	4923.938	31.03	13.15	44.18	54.00	-9.82	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60 Hz		WID?
Ant. Pol.	Vertical	1 100	
Test Mode:	TX G Mode 2462MHz		
Remark:	No report for the emis	ssion which more than 20 dl	3 below the

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.834	42.63	13.15	55.78	74.00	-18.22	peak
2	*	4923.944	32.65	13.15	45.80	54.00	-8.20	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature: 23.9 °C Relative Humidity: 44%

Test Voltage: AC 120V/60 Hz

Ant. Pol. Horizontal

Test Mode: TX N(HT20) Mode 2412MHz

Remark: No report for the emission which more than 20 dB below the prescribed limit.

No	o. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4824.074	27.94	12.54	40.48	54.00	-13.52	AVG
2		4824.458	42.55	12.54	55.09	74.00	-18.91	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT20) Mode 2	412MHz				
Remark:	No report for the em prescribed limit.	ission which more than 20 dB	3 below the			
	•					

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.642	42.19	12.54	54.73	74.00	-19.27	peak
2	*	4823.788	28.38	12.54	40.92	54.00	-13.08	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

23.9℃ **Relative Humidity:** 44% Temperature: **Test Voltage:** AC 120V/60 Hz Ant. Pol. Horizontal Test Mode: TX N(HT20) Mode 2437MHz Remark: No report for the emission which more than 20 dB below the prescribed limit.

No	o. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4873.736	28.18	12.85	41.03	54.00	-12.97	AVG
2		4874.364	42.78	12.85	55.63	74.00	-18.37	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%		
Test Voltage:	AC 120V/60 Hz		MILLOR		
Ant. Pol. Vertical					
Test Mode:	TX N(HT20) Mode 2437M	1Hz			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.				

N	o. l	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	•	4873.962	28.16	12.85	41.01	54.00	-12.99	AVG
2			4874.394	42.38	12.85	55.23	74.00	-18.77	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

 Temperature:
 23.9℃
 Relative Humidity:
 44%

 Test Voltage:
 AC 120V/60 Hz

 Ant. Pol.
 Horizontal

 Test Mode:
 TX N(HT20) Mode 2462MHz

 Remark:
 No report for the emission which more than 20 dB below the prescribed limit.

No	0.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4923.738	28.13	13.15	41.28	54.00	-12.72	AVG
2			4923.920	42.39	13.15	55.54	74.00	-18.46	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%				
Test Voltage:	AC 120V/60 Hz	THU -					
Ant. Pol.	Vertical						
Test Mode:	TX N(HT20) Mode 2462MH	z					
Remark:	No report for the emission which more than 20 dB below the						
	prescribed limit.						

No	. Mk	. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.112	42.47	13.15	55.62	74.00	-18.38	peak
2	*	4924.418	28.21	13.15	41.36	54.00	-12.64	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%						
Test Voltage:	AC 120V/60 Hz	AC 120V/60 Hz							
Ant. Pol.	Horizontal								
Test Mode:	TX N(HT40) Mode 2422	MHz							
Remark:	No report for the emission which more than 20 dB below the								
	prescribed limit.								

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4843.544	28.00	12.66	40.66	54.00	-13.34	AVG
2		4844.500	40.68	12.67	53.35	74.00	-20.65	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%				
Test Voltage:	AC 120V/60 Hz		MAN				
Ant. Pol.	Pol. Vertical						
Test Mode:	TX N(HT40) Mode 242	22MHz					
Remark:	3 below the						

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4844.006	42.24	12.67	54.91	74.00	-19.09	peak
2	*	4844.324	28.03	12.67	40.70	54.00	-13.30	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature: 23.9℃ Relative Humidity: 44%

Test Voltage: AC 120V/60 Hz

Ant. Pol. Horizontal

Test Mode: TX N(HT40) Mode 2437MHz

Remark: No report for the emission which more than 20 dB below the prescribed limit.

No	o. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBu∀/m	dBu∀/m	dB	Detector
1		4874.012	41.96	12.85	54.81	74.00	-19.19	peak
2	*	4874.145	28.08	12.85	40.93	54.00	-13.07	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60 Hz		MUDE
Ant. Pol.	Vertical		
Test Mode:	TX N(HT40) Mode 24	437MHz	
Remark:	No report for the emi prescribed limit.	ssion which more than 20 d	B below the

N	o. MI	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB	Detector
1	*	4874.124	28.10	12.85	40.95	54.00	-13.05	AVG
2		4874.256	41.95	12.85	54.80	74.00	-19.20	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

 Temperature:
 23.9℃
 Relative Humidity:
 44%

 Test Voltage:
 AC 120V/60 Hz

 Ant. Pol.
 Horizontal

 Test Mode:
 TX N(HT40) Mode 2452MHz

 Remark:
 No report for the emission which more than 20 dB below the prescribed limit.

No	o. MI	κ. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4904.086	28.56	13.03	41.59	54.00	-12.41	AVG
2		4904.496	42.62	13.04	55.66	74.00	-18.34	peak

Remark:

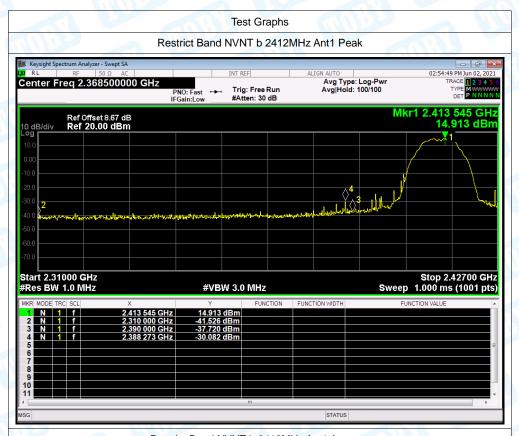
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

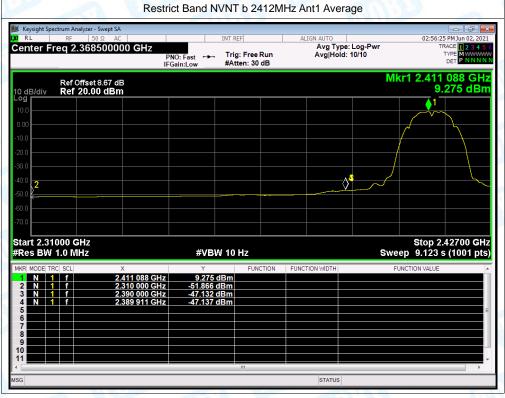
Temperature:	23.9℃	Relative Humidity:	44%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT40) Mode 2452MH:	z	THUR			
Remark:	No report for the emission which more than 20 dB below the					
	prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4904.378	43.05	13.03	56.08	74.00	-17.92	peak
2	*	4904.422	28.47	13.03	41.50	54.00	-12.50	AVG

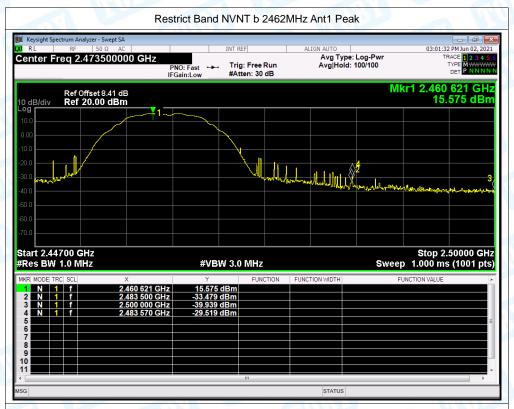
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

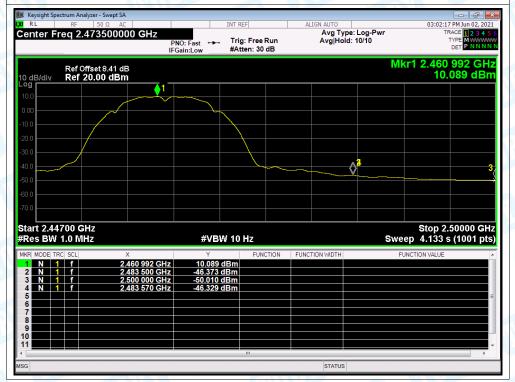
Attachment C-- Emissions in Restricted Bands Test Data

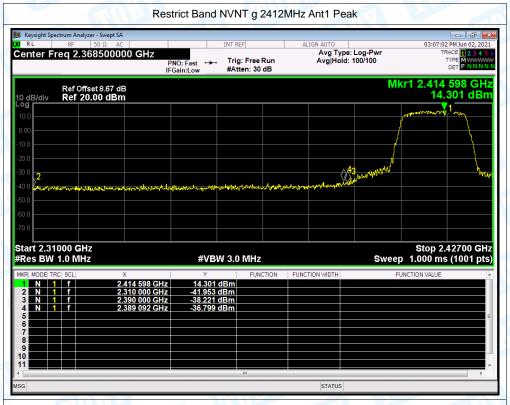

Mode	Frequency	Antenna	Spur Freq (MHz)	Power (dBm)	Gain (dBi)	E (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
	(MHz)								
b	2412	Ant1	2310	-40.68	5	59.58	Peak	74	Pass
b	2412	Ant1	2310	-51.87	5	48.39	Average	54	Pass
b	2412	Ant1	2388.273	-30.08	5	70.18	Peak	74	Pass
b	2412	Ant1	2389.911	-47.13	5	53.13	Average	54	Pass
b	2412	Ant1	2390	-37.72	5	62.54	Peak	74	Pass
b	2412	Ant1	2390	-47.13	5	53.13	Average	54	Pass
b	2462	Ant1	2483.5	-33.47	5	66.79	Peak	74	Pass
b	2462	Ant1	2483.5	-46.37	5	53.89	Average	54	Pass
b	2462	Ant1	2483.57	-29.51	5	70.75	Peak	74	Pass
b	2462	Ant1	2483.57	-46.32	5	53.94	Average	54	Pass
b	2462	Ant1	2500	-39.93	5	60.33	Peak	74	Pass
b	2462	Ant1	2500	-50.01	5	50.25	Average	54	Pass
g	2412	Ant1	2310	-40.53	5	59.73	Peak	74	Pass
g	2412	Ant1	2310	-51.94	5	48.32	Average	54	Pass
g	2412	Ant1	2389.092	-36.79	5	63.47	Peak	74	Pass
g	2412	Ant1	2389.911	-48.37	5	51.89	Average	54	Pass
g	2412	Ant1	2390	-38.22	5	62.04	Peak	74	Pass
g	2412	Ant1	2390	-48.27	5	51.99	Average	54	Pass
g	2462	Ant1	2483.5	-37.38	5	62.88	Peak	74	Pass
g	2462	Ant1	2483.5	-47.93	5	52.33	Average	54	Pass
g	2462	Ant1	2485.266	-33.53	5	66.73	Peak	74	Pass
g	2462	Ant1	2483.517	-47.93	5	52.33	Average	54	Pass
g	2462	Ant1	2500	-40.92	5	59.34	Peak	74	Pass
g	2462	Ant1	2500	-50.59	5	49.67	Average	54	Pass
n(HT20)	2412	Ant1	2310	-41.6	5	58.66	Peak	74	Pass
n(HT20)	2412	Ant1	2310	-51.92	5	48.34	Average	54	Pass
n(HT20)	2412	Ant1	2389.443	-33.51	5	66.75	Peak	74	Pass
n(HT20)	2412	Ant1	2389.911	-47.59	5	52.67	Average	54	Pass
n(HT20)	2412	Ant1	2390	-34.64	5	65.62	Peak	74	Pass
n(HT20)	2412	Ant1	2390	-47.5	5	52.76	Average	54	Pass
n(HT20)	2462	Ant1	2483.5	-34.16	5	66.1	Peak	74	Pass
n(HT20)	2462	Ant1	2483.5	-47.47	5	52.79	Average	54	Pass
n(HT20)	2462	Ant1	2486.273	-33.98	5	66.28	Peak	74	Pass
n(HT20)	2462	Ant1	2483.517	-47.47	5	52.79	Average	54	Pass
n(HT20)	2462	Ant1	2500	-40.02	5	60.24	Peak	74	Pass
n(HT20)	2462	Ant1	2500	-50.54	5	49.72	Average	54	Pass
n(HT40)	2422	Ant1	2310	-42.48	5	57.78	Peak	74	Pass
n(HT40)	2422	Ant1	2310	-51.93	5	48.33	Average	54	Pass

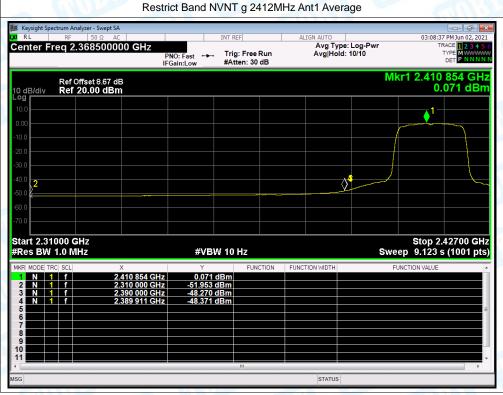


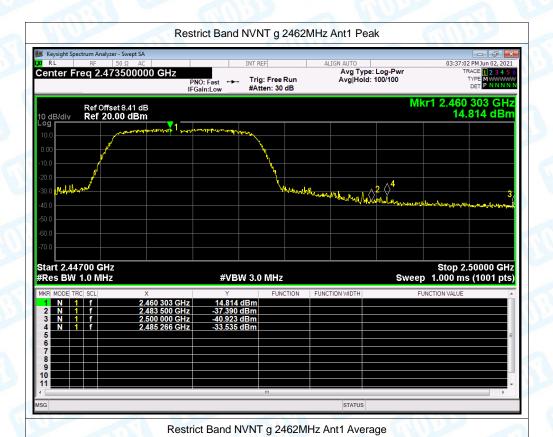
Report No.: TB-FCC180664 Page: 44 of 92

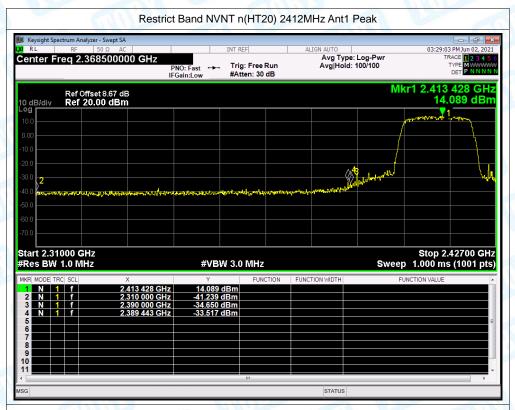

n(HT40)	2422	Ant1	2387.248	-30.62	5	69.64	Peak	74	Pass
n(HT40)	2422	Ant1	2389.804	-46.65	5	53.61	Average	54	Pass
n(HT40)	2422	Ant1	2390	-36.13	5	64.13	Peak	74	Pass
n(HT40)	2422	Ant1	2390	-46.65	5	53.61	Average	54	Pass
n(HT40)	2452	Ant1	2483.5	-35.41	5	64.85	Peak	74	Pass
n(HT40)	2452	Ant1	2483.5	-48.98	5	51.28	Average	54	Pass
n(HT40)	2452	Ant1	2485.96	-32.15	5	68.11	Peak	74	Pass
n(HT40)	2452	Ant1	2483.698	-48.96	5	51.3	Average	54	Pass
n(HT40)	2452	Ant1	2500	-43.55	5	56.71	Peak	74	Pass
n(HT40)	2452	Ant1	2500	-55.23	5	45.03	Average	54	Pass

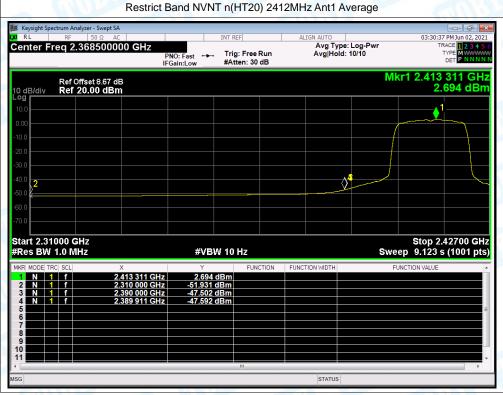


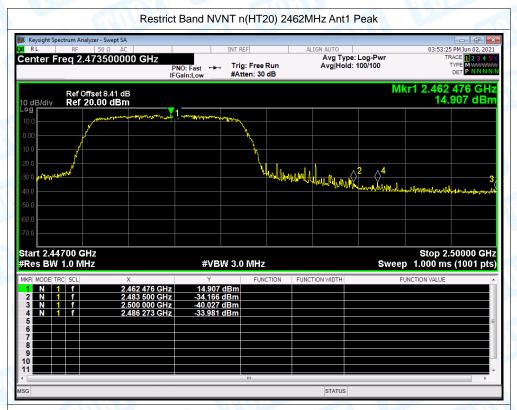


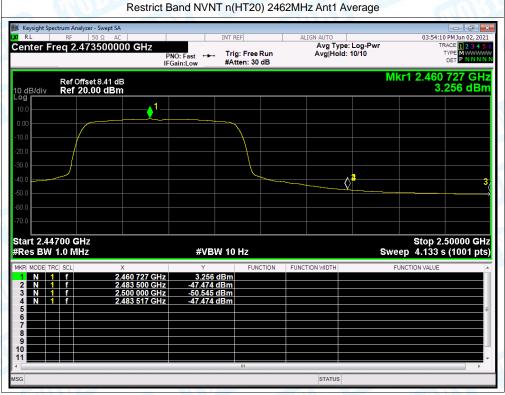


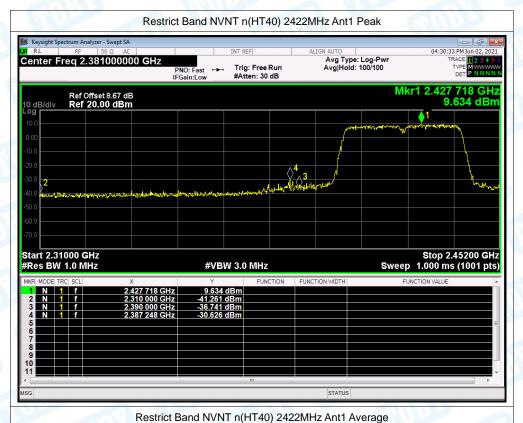


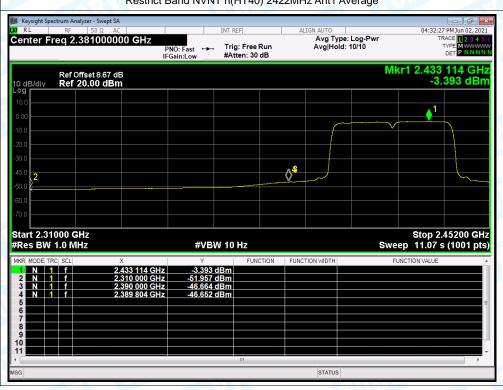


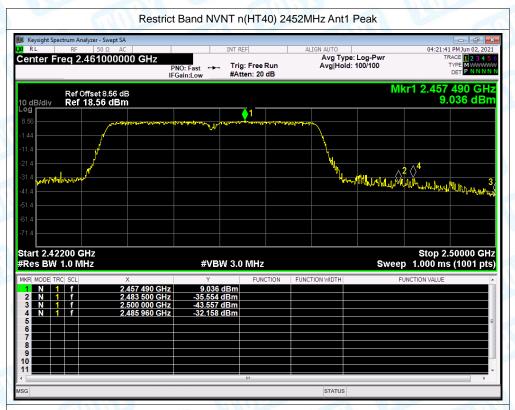


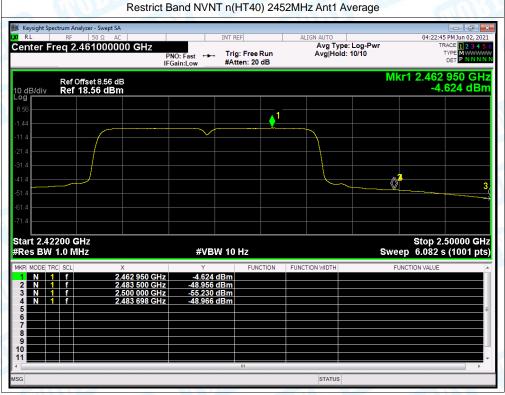

STATUS

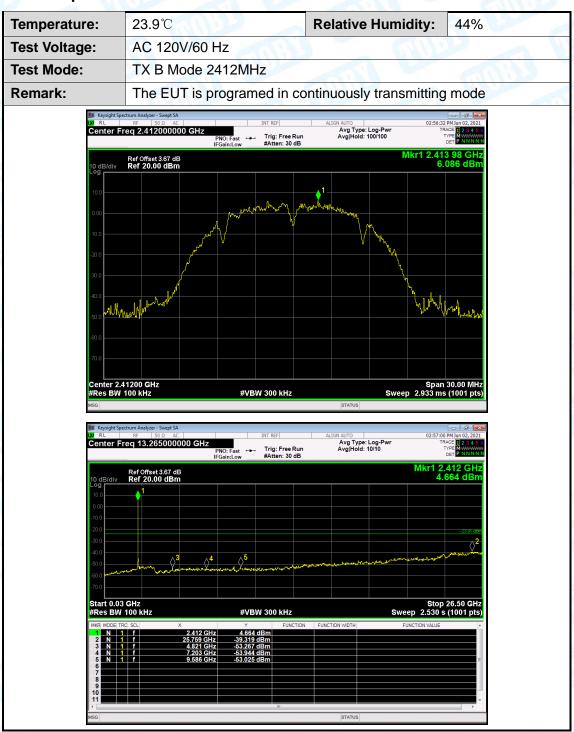


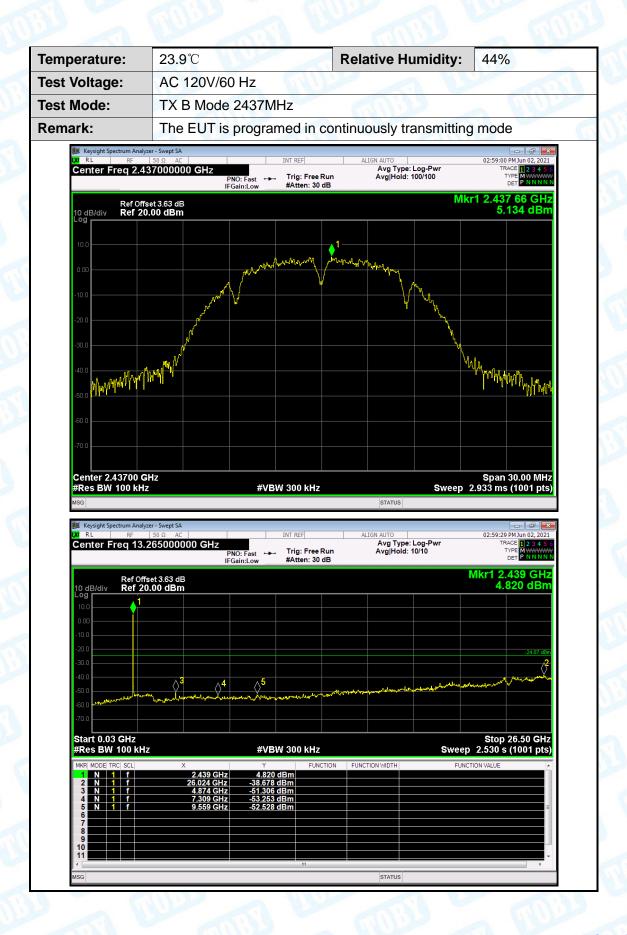












Attachment D-- Conducted Spurious Emissions and Band Edges Test

RF Conducted Spurious Emissions

