RF TEST REPORT

Report No.: Q190826S004-FCC-R2

Supersede Report No.: N/A

<u> </u>		
Applicant	Cedar Kingdom Corporation	n Limited
Product Name	Mobile Phone	
Model No.	V505c	
Serial No.	N/A	
Test Standard	FCC Part 15.247, ANSI C6	3.10: 2013
Test Date	Sep 2 to 25, 2019	
Issue Date	Sep 27, 2019	
Test Result	Pass Fail	
Equipment compli	ied with the specification	V
Equipment did no	t comply with the specification	on 🗆
Aor	ron Liong	David Huang
A	aron Liang	David Huang
Те	est Engineer	Checked By
	This tost report may be re	poroduced in full only

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong China 518108

Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	Q190826S004-FCC-R2
Page	2 of 52

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	Q190826S004-FCC-R2
Page	3 of 52

This page has been left blank intentionally.

Test Report	Q190826S004-FCC-R2
Page	4 of 52

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
6.1	ANTENNA REQUIREMENT	9
6.2	CHANNEL SEPARATION	10
6.3	20DB BANDWIDTH	14
6.4	PEAK OUTPUT POWER	18
6.5	NUMBER OF HOPPING CHANNEL	23
6.6	TIME OF OCCUPANCY (DWELL TIME)	25
6.7	BAND EDGE & RESTRICTED BAND	31
6.8	AC POWER LINE CONDUCTED EMISSIONS	34
6.9	RADIATED EMISSIONS & RESTRICTED BAND	38
ANN	NEX A. TEST INSTRUMENT	46
ANN	NEX B. TEST SETUP AND SUPPORTING EQUIPMENT	48
	NEX C. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST/ DECLARATION OF	52

Test Report	Q190826S004-FCC-R2
Page	5 of 52

1. Report Revision History

Report No.	Report Version	Description	Issue Date
Q190826S004-FCC-R2	NONE	Original	Sep 27, 2019

2. Customer information

Applicant Name	Cedar Kingdom Corporation Limited
Applicant Add	Flat/Rm 05, 14/F, Lucky Centre, 165-171 Wanchai Road, Wanchai, Hong Kong
Manufacturer	Cedar Kingdom Corporation Limited
Manufacturer Add	Flat/Rm 05, 14/F, Lucky Centre, 165-171 Wanchai Road, Wanchai, Hong Kong

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
Lab Address	South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong China
	518108
FCC Test Site No.	535293
IC Test Site No.	4842E-1
Test Software	Radiated Emission Program-To Shenzhen v2.0

Test Report	Q190826S004-FCC-R2
Page	6 of 52

4. Equipment under Test (EUT) Information

Main Model: V505c

Serial Model: N/A

Date EUT received: Aug 28, 2019

Test Date(s): Sep 2 to 25, 2019

Equipment Category : DSS

GSM850: -0.7dBi

PCS1900: 0.4dBi

UMTS-FDD Band V: 0.4dBi Antenna Gain:

UMTS-FDD Band II: -0.6dBi

WIFI: 0.8dBi

Bluetooth/BLE: 0.9dBi

Antenna Type: FPC Antenna

GSM / GPRS: GMSK

EGPRS: GMSK

UMTS-FDD: QPSK

Type of Modulation: 802.11b/g/n: DSSS, OFDM

Bluetooth: GFSK, π /4DQPSK, 8DPSK

BLE: GFSK GPS:BPSK

Test Report	Q190826S004-FCC-R2
Page	7 of 52

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz

PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz

UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz

UMTS-FDD Band II TX:1852.4 ~ 1907.6 MHz;

RF Operating Frequency (ies): RX: 1932.4 ~ 1987.6 MHz

WIFI: 802.11b/g/n(20M): 2412-2462 MHz WIFI: 802.11n(40M): 2422-2452 MHz Bluetooth& BLE: 2402-2480 MHz

GPS: 1575.42 MHz

Max. Output Power: 2.78 dBm

GSM 850: 124CH PCS1900: 299CH

UMTS-FDD Band V: 102CH UMTS-FDD Band II: 277CH

Number of Channels: WIFI:802.11b/g/n(20M): 11CH

WIFI:802.11n(40M): 7CH

Bluetooth: 79CH BLE: 40CH GPS:1CH

Port: Please refer to the user's manual

Adapter :

Model: V505c

Input: AC100-240V~50/60Hz,150mA

Output: DC 5.0V, 1A

Input Power:

Battery : Model: S13

Spec: 3.8V, 2500mAh/9.50Wh Limited charge voltage: 4.35V

Trade Name: VIRZO

FCC ID: 2AKQUVZCKV505C

Test Report	Q190826S004-FCC-R2
Page	8 of 52

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247(a)(1)	Channel Separation	Compliance
§15.247(a)(1)	20 dB Bandwidth	Compliance
§15.247(b)(1)	Peak Output Power	Compliance
§15.247(a)(1)(iii)	Number of Hopping Channel	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(d)	Band Edge& Restricted Band	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Emissions& Restricted Band	Compliance

Measurement Uncertainty

Emissions			
Test Item	Description	Uncertainty	
Band Edge& Restricted Band and Radiated Emissions& Restricted Band	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB	
-	-	-	

Test Report	Q190826S004-FCC-R2
Page	9 of 52

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 2 antennas:

A permanently attached FPC antenna for Bluetooth/BLE/WIF/GPS, the gain is 0.9dBi for Bluetooth/BLE, the gain is 0.8dBi for WIFI.

A permanently attached FPC antenna for GSM/PCS/UMTS, the gain is -0.7dBi for GSM850, 0.4dBi for PCS1900, 0.4dBi for UMTS-FDD Band V, -0.6dBi for UMTS-FDD Band II.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

Test Report	Q190826S004-FCC-R2
Page	10 of 52

6.2 Channel Separation

Temperature	24°C
Relative Humidity	75%
Atmospheric Pressure	1010mbar
Test date :	Sep 6 , 2019
Tested By:	Aaron Liang

Requirement(s):			
Spec	Item	Requirement	Applicable
§ 15.247(a)(1)	a)	Channel Separation < 20dB BW and 20dB BW < 25KHz; Channel Separation Limit=25KHz Chanel Separation < 20dB BW and 20dB BW > 25kHz; Channel Separation Limit=2/3 20dB BW	V
Test Setup		Spectrum Analyzer EUT	
Test Procedure		est follows FCC Public Notice DA 00-705 Measurement the following spectrum analyzer settings: The EUT must have its hopping function enabled Span = wide enough to capture the peaks of two adjact channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-delta function determine the separation between the peaks of the adjachannels. The limit is specified in one of the subparage	on to

Test Report	Q190826S004-FCC-R2
Page	11 of 52

Rema	rk				
Resul	lt	Pass	Fail		
Test Data	Yes	3	□ _{N/A}		
Test Plot	Ye	s (See below)	□ _{N/A}		

Channel Separation measurement result

Type/ Modulation	СН	CH Frequency (MHz)	CH Separation (MHz)	Limit (MHz)	Result
	Low Channel	2402	1.002	0.948	Pass
	Adjacency Channel	2403	1.002	0.946	Fa55
CH Separation	Mid Channel	2440	1.002	0.954	Pass
GFSK	Adjacency Channel	2441	1.002	0.954	Pass
	High Channel	2480	1.002	0.049	Doos
	Adjacency Channel	2479	1.002	0.948	Pass
	Low Channel	2402	1.002	0.844	Doos
	Adjacency Channel	2403	1.002	0.044	Pass
CH Separation	Mid Channel	2440	4.000	0.844	Dees
π /4 DQPSK	Adjacency Channel	2441	1.002	0.844	Pass
	High Channel	2480	1.002	0.844	Pass
	Adjacency Channel	2479	1.002	0.044	Pass
	Low Channel	2402	4.000	0.040	Dees
	Adjacency Channel	2403	1.002	0.842	Pass
CH Separation	Mid Channel	2440	1.000	0.046	Dess
8DPSK	Adjacency Channel	2441	1.002	0.846	Pass
	High Channel	2480	4.000	0.044	Dess
	Adjacency Channel	2479	1.002	0.844	Pass

NOTE: The minimum limit is two-third 20dB bandwidth.

Test Report	Q190826S004-FCC-R2
Page	12 of 52

Test Plots

Channel Separation measurement result

GFSK - Low Channel

GFSK - High Channel

 π /4 DPSK - Low Channel

π /4 DQPSK - Middle Channel

 π /4 DQPSK - High Channel

Test Report	Q190826S004-FCC-R2
Page	13 of 52

8DPSK - Low Channel

8DPSK - High Channel

8DPSK - Middle Channel

Test Report	Q190826S004-FCC-R2
Page	14 of 52

6.3 20dB Bandwidth

Temperature	23°C
Relative Humidity	66%
Atmospheric Pressure	1013mbar
Test date :	Sep 17 , 2019
Tested By:	Aaron Liang

Requirement(s):						
Spec	Item	Requirement	Applicable			
		Frequency hopping systems shall have hopping				
§15.247(a)	a)	channel carrier frequencies separated by a minimum	V			
(1)	(a)	of 25 kHz or the 20 dB bandwidth of the hopping				
		channel, whichever is greater.				
Test Setup						
		Spectrum Analyzer EUT				
	The te	st follows FCC Public Notice DA 00-705 Measurement Gu	uidelines.			
	Use the following spectrum analyzer settings:					
	-	Span = approximately 2 to 3 times the 20 dB bandwidth,	centered on			
	a hopping channel					
	-	- RBW ≥ 1% of the 20 dB bandwidth				
	- VBW ≥ RBW					
Test	- Sweep = auto					
Procedure	- Detector function = peak					
1 TOOCGGIC	- Trace = max hold.					
	- The EUT should be transmitting at its maximum data rate. Allow the					
	trace to stabilize. Use the marker-to-peak function to set the marker					
	to the peak of the emission. Use the marker-delta function to					
	measure 20 dB down one side of the emission. Reset the marker-					
		delta function, and move the marker to the other side of the	he			
		emission, until it is (as close as possible to) even with the	reference			

Test Report	Q190826S004-FCC-R2
Page	15 of 52

		marker le	evel. The marker-delta reading at this point is the 20 dB		
		bandwidth of the emission. If this value varies with different modes of			
		operation	(e.g., data rate, modulation format, etc.), repeat this test for		
		each vari	ation. The limit is specified in one of the subparagraphs of		
		this Secti	on. Submit this plot(s).		
Remark					
Result		Pass	Fail		
	_				
Test Data	V	´es	□ _{N/A}		
Test Plot	V	es (See helow)	N/A		

Measurement result

Modulation	СН	CH Frequency (MHz)	20dB Bandwidth (MHz)
	Low	2402	0.948
GFSK	Mid	2441	0.954
	High	2480	0.948
π /4 DQPSK	Low	2402	1.266
	Mid	2441	1.266
	High	2480	1.266
8-DPSK	Low	2402	1.263
	Mid	2441	1.269
	High	2480	1.266

Test Report	Q190826S004-FCC-R2
Page	16 of 52

Test Plots

20dB Bandwidth measurement result

GFSK - Low Channel

GFSK - High Channel

π /4 DPSK - Low Channel

π /4 DQPSK - Middle Channel

 π /4 DQPSK - High Channel

Test Report	Q190826S004-FCC-R2
Page	17 of 52

8DPSK - Low Channel

8DPSK - High Channel

8DPSK - Middle Channel

Test Report	Q190826S004-FCC-R2
Page	18 of 52

6.4 Peak Output Power

Temperature	24°C
Relative Humidity	75%
Atmospheric Pressure	1010mbar
Test date :	Sep 6 , 2019
Tested By:	Aaron Liang

Requirement(s):

Item	Requirement	Applicable	
a)	FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤ 1	V	
	Watt		
b)	FHSS in 5725-5850MHz: ≤ 1 Watt		
-\	For all other FHSS in the 2400-2483.5MHz band:		
<u> </u>	≤ 0.125 Watt.	~	
d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt		
٥)	FHSS in 902-928MHz with ≥ 25 & <50 channels:		
е)	≤ 0.25 Watt		
f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt		
	Spectrum Analyzer EUT		
The test follows FCC Public Notice DA 00-705 Measurement Guidelines.			
Use the following spectrum analyzer settings:			
-	Span = approximately 5 times the 20 dB bandwidth, center	ered on a	
	hopping channel		
- RBW > the 20 dB bandwidth of the emission being measured			
- VBW ≥ RBW			
- Sweep = auto			
- Detector function = peak			
- Trace = max hold			
- Allow the trace to stabilize.			
	a) b) c) d) e) f) The tes Use th	a) FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤ 1 Watt b) FHSS in 5725-5850MHz: ≤ 1 Watt c) For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125 Watt. d) FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤ 0.25 Watt f) DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt The test follows FCC Public Notice DA 00-705 Measurement Gu Use the following spectrum analyzer settings: - Span = approximately 5 times the 20 dB bandwidth, centender thopping channel - RBW > the 20 dB bandwidth of the emission being measured between the composition of the composition of the emission being measured between the composition of the emission being measured between the composition of the	

Test Report	Q190826S004-FCC-R2
Page	19 of 52

	- Use the marker-to-peak function to set the marker to the peak of the					
	emission. The indicated level is the peak output power (see the note					
	above regarding external attenuation and cable loss). The limit is					
	specified in one of the subparagraphs of this Section. Submit this					
	plot. A peak responding power meter may be used instead of a					
	spectrum analyzer.					
Remark						
Result	Pass Fail					
Tost Data	OS N/A					

Peak Output Power measurement result

Test Plot

Yes (See below)

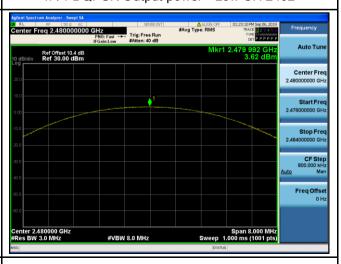
Туре	Modulation	СН	Conducte d Power (dBm)	Conducted Power (mW)	Limit (mW)	Result
		Low	4.44	2.78	1000	Pass
	GFSK	Mid	4.41	2.761	1000	Pass
		High	3.94	2.477	1000	Pass
Out to ut	π /4 DQPSK 8-DPSK	Low	4.23	2.649	125	Pass
Output power		Mid	4.17	2.612	125	Pass
		High	3.62	2.301	125	Pass
		Low	4.29	2.685	125	Pass
		Mid	4.23	2.649	125	Pass
		High	3.76	2.377	125	Pass

Test Report	Q190826S004-FCC-R2
Page	20 of 52


Test Plots

Output Power measurement result

GFSK Output power - Low CH 2402


GFSK Output power - Mid CH 2441

GFSK Output power - High CH 2480

 π /4 DQPSK Output power - Low CH 2402

 π /4 DQPSK Output power - Mid CH 2441

 π /4 DQPSK Output power - High CH 2480

Test Report	Q190826S004-FCC-R2
Page	21 of 52

8DPSK Output power - Low CH 2402

8DPSK Output power - High CH 2480

Test Report	Q190826S004-FCC-R2
Page	22 of 52

Average OUTPUT POWER(FOR REFERENCE)

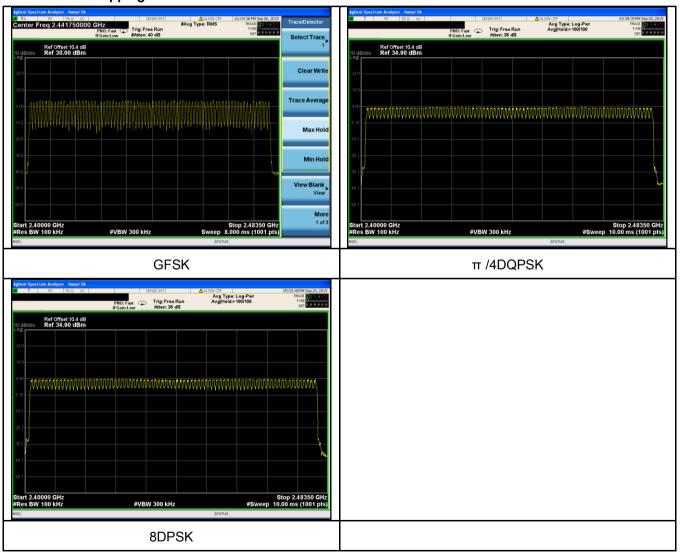
Modulation	СН	Frequency (MHz)	Reading (dBm)	Duty cycle factor (dB)	Average Power (dBm)	Average Power (mW)
	Low	2402	1.95	1.14	3.09	2.037
GFSK	Mid	2441	2.17	1.14	3.31	2.143
	High	2480	2.56	1.14	3.70	2.344
- /4	Low	2402	-0.22	1.14	0.92	1.236
π /4 DQPSK	Mid	2441	-0.11	1.14	1.03	1.268
	High	2480	0.1	1.14	1.24	1.33
8-DPSK	Low	2402	-0.31	1.14	0.83	1.211
	Mid	2441	-0.18	1.14	0.96	1.247
	High	2480	-0.05	1.14	1.09	1.285

Test Report	Q190826S004-FCC-R2
Page	23 of 52

6.5 Number of Hopping Channel

Temperature	24°C
Relative Humidity	75%
Atmospheric Pressure	1010mbar
Test date :	Sep 6 , 2019
Tested By:	Aaron Liang

Requirement(s):						
Spec	Item	Requirement	Applicable			
§15.247(a)	a)	FHSS in 2400-2483.5MHz ≥ 15 channels	\			
(1)(iii)	α,	11100 III 2400 2400.0WI IZ = 10 GHAIIII CIS				
Test Setup		Spectrum Analyzer EUT				
	The to	st follows FCC Public Notice DA 00-705 Measurement Gu	uidolinos			
			iideiii ies.			
		e following spectrum analyzer settings:				
		JT must have its hopping function enabled.				
	- Span = the frequency band of operation					
	- RBW ≥ 1% of the span					
Test	- VBW ≥ RBW					
Procedure	- Sweep = auto					
Frocedure	- Detector function = peak					
	- Trace = max hold					
	- Allow trace to fully stabilize.					
	- It may prove necessary to break the span up to sections, in order to					
	clearly show all of the hopping frequencies. The limit is specified in					
	one of the subparagraphs of this Section. Submit this plot(s).					
Remark						
Result	Pas	s Fail				
Test Data	Yes	N/A				
Test Plot	Yes (See	below) N/A				


Test Report	Q190826S004-FCC-R2
Page	24 of 52

Number of Hopping Channel measurement result

Туре	Modulation	Frequency Range	Number of Hopping Channel	Limit
Number of Hopping Channel	GFSK	2400-2483.5	79	15
	π /4 DQPSK	2400-2483.5	79	15
	8-DPSK	2400-2483.5	79	15

Test Plots

Number of Hopping Channels measurement result

Test Report	Q190826S004-FCC-R2
Page	25 of 52

6.6 Time of Occupancy (Dwell Time)

Temperature	23°C
Relative Humidity	66%
Atmospheric Pressure	1013mbar
Test date :	Sep 17 , 2019
Tested By:	Aaron Liang

Requirement(s):

Spec	Item	Requirement	Applicable						
§15.247(a) (1)(iii)	a)	Dwell Time < 0.4s	V						
Test Setup		Spectrum Analyzer EUT							
		The test follows FCC Public Notice DA 00-705 Measurement Guidelines.							
Test Procedure	- -	e following spectrum analyzer Span = zero span, centered on a hopping channel RBW = 1 MHz VBW ≥ RBW Sweep = as necessary to capture the entire dwell time p	er hopping						
	-	channel Detector function = peak Trace = max hold use the marker-delta function to determine the dwell time	e						
Remark									
Result	Pas	s Fail							

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report	Q190826S004-FCC-R2
Page	26 of 52

Dwell Time measurement result

GFSK

Mode	Number of Hopping Channel	period(channel n sweep period time		me in a in a		Length of transmissio n time (msec)	Result (msec)	Limit (msec)	PASS / FAIL
DH1	79	31.6	3.16	32	320	0.3765	120.48	400	PASS
DH3	79	31.6	3.16	17	170	1.632	277.44	400	PASS
DH5	79	31.6	3.16	7	70	2.880	201.6	400	PASS

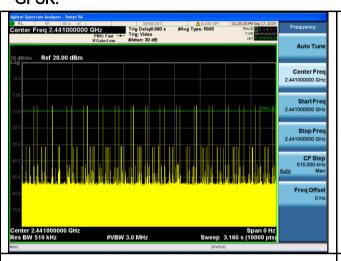
π /4 DQPSK

	Number		Number of transmission in a Length of beriod(channel number*0.4 sec) transmissi Result				Posult	Limit	PASS
Mode	Hopping Channel	period (sec)	sweep time (sec)	times in a sweep	times in a period	on time (msec)	Result (msec)	(mse c)	/ FAIL
2DH1	79	31.6	3.16	32	320	0.3829	122.528	400	PASS
2DH3	79	31.6	3.16	17	170	1.636	278.12	400	PASS
2DH5	79	31.6	3.16	7	70	2.883	201.81	400	PASS

Test Report	Q190826S004-FCC-R2
Page	27 of 52

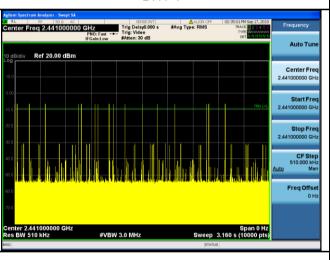
8-DPSK

	Number	Number of transmission in a period(channel number*0.4 sec			Length of	Popult	Limit	PASS	
Mode	Hopping Channel	period (sec)	sweep time (sec)	times in a sweep	times in a period	on time (msec)	Result (msec)	(mse c)	/ FAIL
3DH1	79	31.6	3.16	32	320	0.3851	123.232	400	PASS
3DH3	79	31.6	3.16	17	170	1.634	277.78	400	PASS
3DH5	79	31.6	3.16	11	110	2.884	317.24	400	PASS

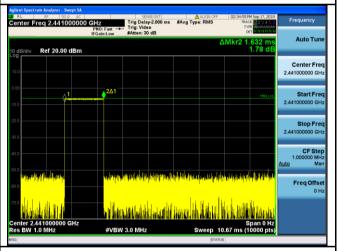


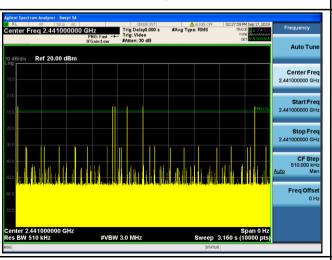
Test Report	Q190826S004-FCC-R2
Page	28 of 52

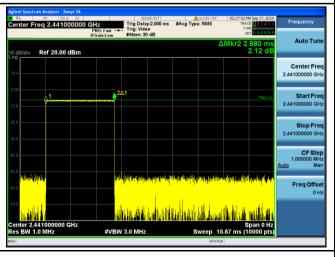
Test Plots


Dwell Time measurement result

GFSK:

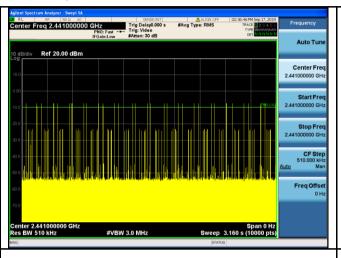



DH1-1

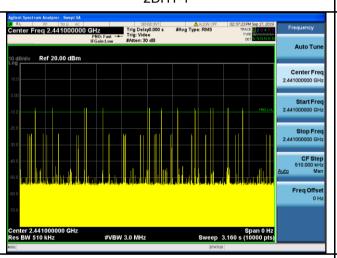

DH1-2

DH3-1

DH3-2

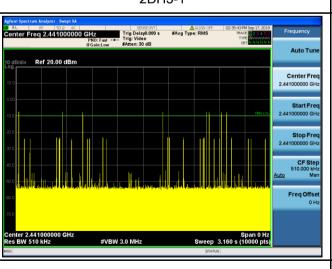

DH5-1

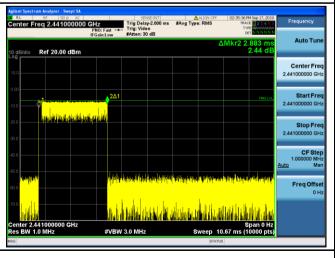
DH5-2


Test Report	Q190826S004-FCC-R2
Page	29 of 52

π /4 DQPSK

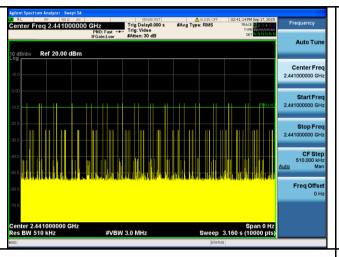



2DH1-1

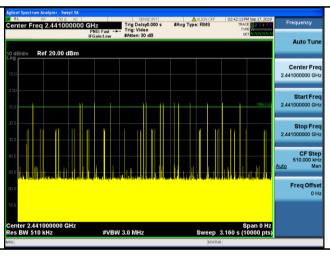

2DH1-2

2DH3-1

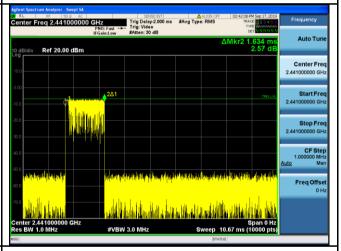
2DH3-2

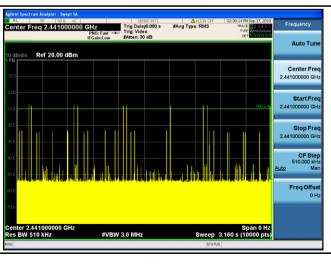

2DH5-1

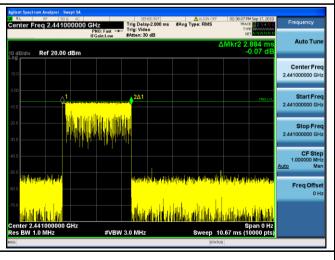
2DH5-2


Test Report	Q190826S004-FCC-R2
Page	30 of 52

8-DPSK




3DH1-1


3DH1-2

3DH3-1

3DH3-2

3DH5-1

3DH5-2

Test Report	Q190826S004-FCC-R2
Page	31 of 52

6.7 Band Edge & Restricted Band

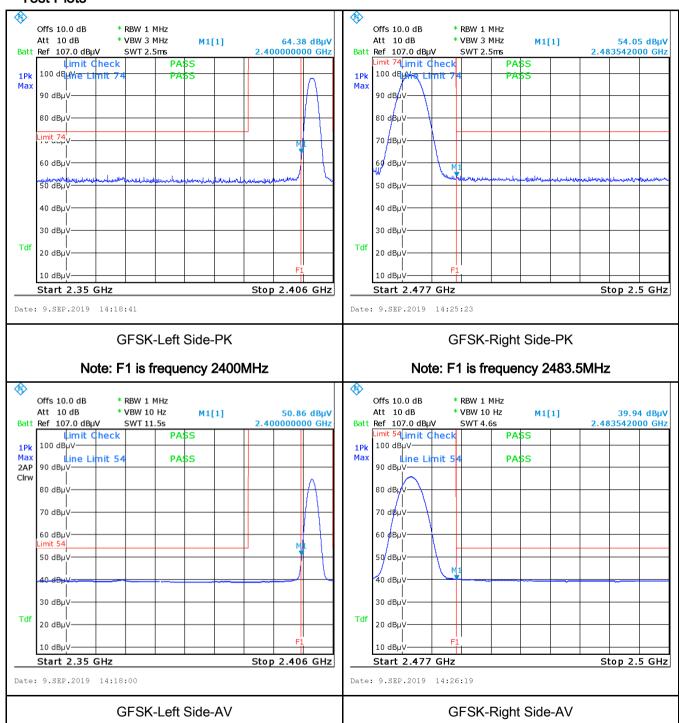
Temperature	25°C
Relative Humidity	75%
Atmospheric Pressure	1011mbar
Test date :	Sep 9 , 2019
Tested By:	Aaron Liang

Requirement(s):

Spec	Item	Requirement Applicable	
§15.247(a) (1)(iii)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.	
Test Setup		Support Units Turn Table Ground Plane Test Receiver	
Test Procedure	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Radiated Method Only - 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range,		

Test Report	Q190826S004-FCC-R2
Page	32 of 52

	and make sure the instrument is operated in its linear range.
	- 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a
	convenient frequency span including 100kHz bandwidth from band edge, check
	the emission of EUT, if pass then set Spectrum Analyzer as below:
	a. The resolution bandwidth and video bandwidth of test receiver/spectrum
	analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.
	b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and
	video bandwidth is 3MHz with Peak detection for Peak measurement at
	frequency above 1GHz.
	c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the
	video bandwidth is 10Hz with Peak detection for Average Measurement as
	below at frequency above 1GHz.
	- 4. Measure the highest amplitude appearing on spectral display and set it as a
	reference level. Plot the graph with marking the highest point and edge
	frequency.
	- 5. Repeat above procedures until all measured frequencies were complete.
Remark	
Result	Pass Fail
Test Data	Yes N/A
Test Plot	Yes (See below) N/A



Test Report	Q190826S004-FCC-R2
Page	33 of 52

Worst Case Data:

GFSK Mode & Antenna polarization: Horizontal

Test Plots

Note: 1, Both Horizontal and vertical polarities were investigated. The results above show only the worst case.

2. GFSK, π /4 DQPSK, 8-DPSK modes were investigated. The results above show only the worst case.

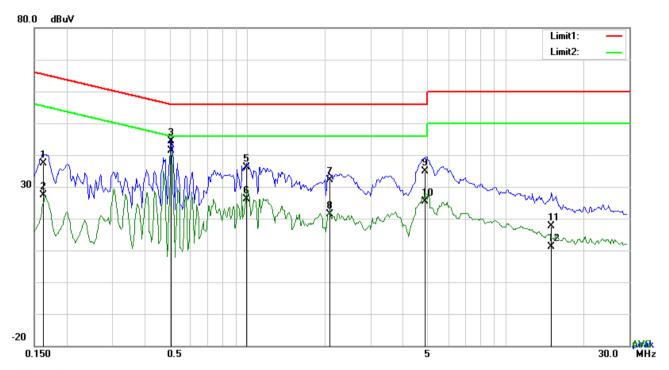
Test Report	Q190826S004-FCC-R2
Page	34 of 52

6.8 AC Power Line Conducted Emissions

Temperature	24°C	
Relative Humidity	64%	
Atmospheric Pressure	1017mbar	
Test date :	Sep 10 , 2019	
Tested By:	Aaron Liang	

Requirement(s):

Spec	Item	Requirement Applicable		Applicable
47CFR§15. 207, RSS210 (A8.1)	a)	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu]H/50 ohms line impedance stabilization network (LISN). The		
Test Setup	Vertical Ground Reference Plane EUT Test Receiver			
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss 			

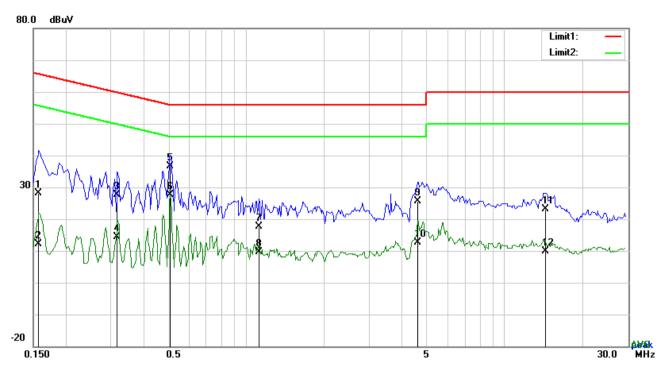

Test Report	Q190826S004-FCC-R2
Page	35 of 52

	_
	coaxial cable.
	4. All other supporting equipment were powered separately from another main supply.
	5. The EUT was switched on and allowed to warm up to its normal operating condition.
	6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)
	over the required frequency range using an EMI test receiver.
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the
	selected frequencies and the necessary measurements made with a receiver bandwidth
	setting of 10 kHz.
	8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).
Remark	
Result	Pass Fail
Tool Data	Yes N/A
Test Data	Yes IN/A
Test Plot	Yes (See below) N/A

Test Report	Q190826S004-FCC-R2
Page	36 of 52

Test Mode:	Bluetooth Mode
------------	----------------

Test Data


Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)	
1	L1	0.1624	27.18	QP	10.12	37.30	65.34	-28.04	
2	L1	0.1624	17.28	AVG	10.12	27.40	55.34	-27.94	
3	L1	0.5088	34.26	QP	10.10	44.36	56.00	-11.64	
4	L1	0.5088	31.29	AVG	10.10	41.39	46.00	-4.61	
5	L1	0.9924	26.03	QP	10.13	36.16	56.00	-19.84	
6	L1	0.9924	16.00	AVG	10.13	26.13	46.00	-19.87	
7	L1	2.0805	22.04	QP	10.15	32.19	56.00	-23.81	
8	L1	2.0805	11.16	AVG	10.15	21.31	46.00	-24.69	
9	L1	4.8681	24.80	QP	10.20	35.00	56.00	-21.00	
10	L1	4.8681	15.12	AVG	10.20	25.32	46.00	-20.68	
11	L1	14.9925	7.33	QP	10.33	17.66	60.00	-42.34	
12	L1	14.9925	0.89	AVG	10.33	11.22	50.00	-38.78	

Test Report	Q190826S004-FCC-R2
Page	37 of 52

Test Mode:	Bluetooth Mode

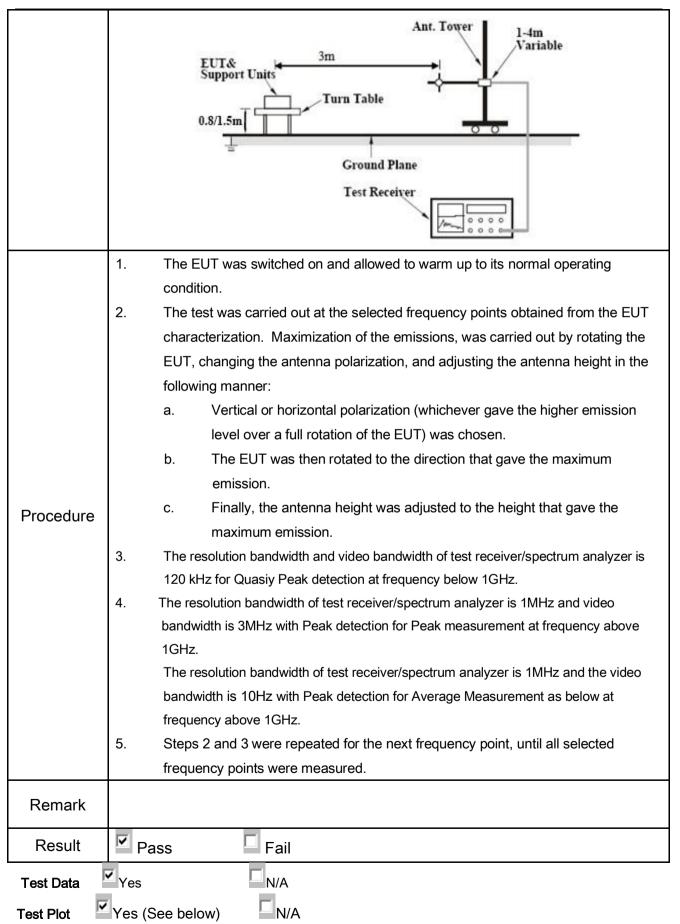
Test Data

Phase Neutral Plot at 120Vac, 60Hz

	•							
No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	N	0.1578	17.89	QP	10.14	28.03	65.58	-37.55
2	N	0.1578	2.07	AVG	10.14	12.21	55.58	-43.37
3	N	0.3177	17.44	QP	10.13	27.57	59.77	-32.20
4	N	0.3177	4.27	AVG	10.13	14.40	49.77	-35.37
5	N	0.5088	26.44	QP	10.12	36.56	56.00	-19.44
6	Ν	0.5088	17.50	AVG	10.12	27.62	46.00	-18.38
7	N	1.1211	7.52	QP	10.15	17.67	56.00	-38.33
8	N	1.1211	-0.47	AVG	10.15	9.68	46.00	-36.32
9	N	4.6185	15.43	QP	10.20	25.63	56.00	-30.37
10	N	4.6185	2.49	AVG	10.20	12.69	46.00	-33.31
11	N	14.3061	12.87	QP	10.31	23.18	60.00	-36.82
12	N	14.3061	-0.33	AVG	10.31	9.98	50.00	-40.02

Test Report	Q190826S004-FCC-R2
Page	38 of 52

6.9 Radiated Emissions & Restricted Band


Temperature	24°C
Relative Humidity	64%
Atmospheric Pressure	1017mbar
Test date :	Sep 10 , 2019
Tested By:	Aaron Liang

Requirement(s):

Spec	Item	Requirement Applicable					
47CFR§15. 205,		Except higher limit as specified else emissions from the low-power radio exceed the field strength levels specified the level of any unwanted emissions the fundamental emission. The tight edges Frequency range (MHz)					
§15.209,	a)	0.009~0.490	2400/F(KHz)	V			
§15.247(d)		0.490~1.705	24000/F(KHz)				
		1.705~30.0	30				
		30 – 88	100				
		88 – 216	150				
		216 960	200				
		Above 960	500				
Test Setup		EUT 0.8m	3 meter RF Tes Receiv	nana t			

Test Report	Q190826S004-FCC-R2
Page	39 of 52

Test Report	Q190826S004-FCC-R2
Page	40 of 52

Test Result:

Test Mode: Transmitting Mode

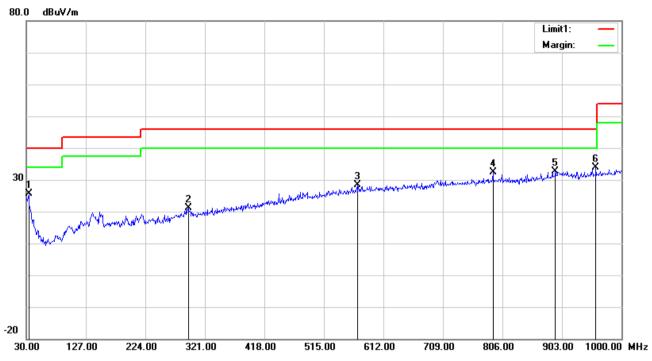
Frequency range: 9KHz - 30MHz

Freq.	Detection	Factor	Reading	Result	Limit@3m	Margin
(MHz)	value	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
						>20
						>20

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);


Limit line = specific limits(dBuv) + distance extrapolation factor.

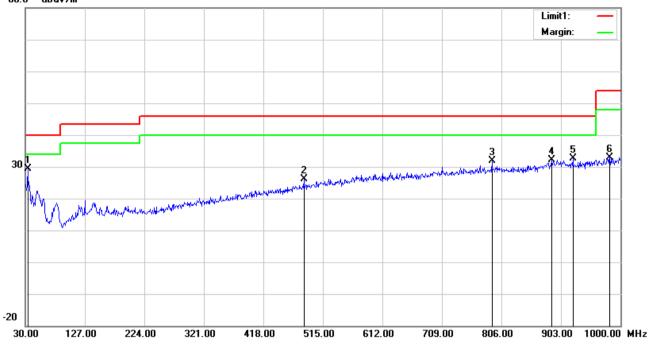
Test Report	-	Q190826S004-FCC-R2
Page		41 of 52

Test Mode: Bluetooth Mode

30MHz -1GHz

Test Data

Horizontal Polarity Plot @3m


No.	P/L	Frequency	Readin	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr
		(MHz)	g (dBuV/	(dB/m)	(dD)	(dD)	(dBuV/m)	(dBuV/m)	(dD)	(om)	ee
		(MITZ)	m)	(db/III)	(dB)	(dB)	(abuv/iii)	(ubuv/iii)	(dB)	(cm)	(°)
1	Η	33.8800	30.15	17.62	22.26	0.15	25.66	40.00	-14.34	100	336
2	Ι	293.8400	28.07	13.55	22.29	1.71	21.04	46.00	-24.96	100	51
3	I	570.2900	27.89	19.95	21.65	2.29	28.48	46.00	-17.52	100	269
4	I	790.4800	28.89	22.11	21.17	2.54	32.37	46.00	-13.63	100	356
5	Н	892.3300	27.30	23.56	20.90	2.64	32.60	46.00	-13.40	100	206
6	Н	958.2900	28.25	23.70	20.77	2.71	33.89	46.00	-12.11	100	27

Test Report	Q190826S004-FCC-R2
Page	42 of 52

30MHz -1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Reading	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr
		(MHz)	(dBuV/m)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	ee (°)
1	>	33.8800	33.76	17.62	22.26	0.15	29.27	40.00	-10.73	100	297
2	>	483.9600	27.31	18.51	21.84	2.09	26.07	46.00	-19.93	100	359
3	٧	790.4800	28.41	22.11	21.17	2.54	31.89	46.00	-14.11	100	348
4	٧	887.4800	27.16	23.35	20.91	2.64	32.24	46.00	-13.76	100	83
5	V	922.4000	27.26	23.45	20.84	2.67	32.54	46.00	-13.46	100	249
6	٧	982.5400	27.07	23.91	20.72	2.74	33.00	54.00	-21.00	100	324

Test Report	Q190826S004-FCC-R2
Page	43 of 52

Above 1GHz

Test Mode:	Transmitting Mode
------------	-------------------

Low Channel: GFSK Mode (Worst Case) (2402 MHz)

			311G1111011 C		`	<i>,</i> ,	,	
	ANTENNA POLARITY & test distance: HORIZONTAL at 3 m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2400	64.38 PK	74	-9.62	318	72	78.03	-13.65
2	2400	50.86	54	-3.14	244	156	64.51	-13.65
3	2402	97.92 PK			226	156	111.89	-13.97
4	2402	84.43			364	11	98.4	-13.97
5	4804	52.08 PK	74	-21.84	220	284	65.91	-13.75
6	4804	37.03 AV	54	-16.85	116	49	50.9	-13.75
		AN	TENNA POI	_ARITY & te	st distance: \	Vertical at 3	m	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2400	63.14 PK	74	-10.86	365	358	76.79	-13.65
2	2400	48.95 AV	54	-5.05	339	117	62.6	-13.65
3	2402	97.8 PK			130	263	111.77	-13.97
4	2402	84.14 AV			220	49	98.11	-13.97
	4804	52.08 PK	74	-21.92	100	250	65.83	-13.75
	4804	37.03 AV	54	-16.97	381	253	50.78	-13.75

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)-Preamplifier Gain.
- 3. Only emissions significantly above equipment noise floor are reported.
- 4. Margin value = Emission level Limit value.
- 5. The testing has been conformed to 10*2402MHz=24,020MHz
- 6. X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

Test Report	Q190826S004-FCC-R2
Page	44 of 52

Middle Channel: π /4DQPSK Mode (Worst Case) (2440 MHz)

	ANTENNA POLARITY & test distance: HORIZONTAL at 3 m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2998.5	40.25 PK	74	-21.68	197	169	66.07	-13.75
2	2998.5	31.22 AV	54	-16.56	372	223	51.19	-13.75
3	2441	98.24 PK			159	335	111.26	-13.02
4	2441	84.11 AV			286	147	97.13	-13.02
5	4882	52.32 PK	74	-21.68	316	12	66.07	-13.75
6	4882	37.44 AV	54	-16.56	121	10	51.19	-13.75
		AN	TENNA POI	_ARITY & te	st distance: \	Vertical at 3	m	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	3014.2	41.89 PK	74	-32.11	152	249	56	-14.11
2	3014.2	32.33 AV	54	-21.67	399	9	46.44	-14.11
3	2441	97.51 PK			332	121	110.53	-13.02
4	2441	83.71 AV			118	3	96.73	-13.02
5	4882	52.01 PK	74	-21.99	274	90	65.76	-13.75
6	4882	36.84 AV	54	-17.16	202	97	50.59	-13.75

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)-Preamplifier Gain.
- 3. Only emissions significantly above equipment noise floor are reported.
- 4. Margin value = Emission level Limit value.
- 5. The testing has been conformed to 10*2440MHz=24,400MHz
- 6. X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

Test Report	Q190826S004-FCC-R2
Page	45 of 52

High Channel: 8DPSK Mode (Worst Case) (2480 MHz)

	ANTENNA POLARITY & test distance: HORIZONTAL at 3 m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2483.54	54.05 PK	74	-19.95	138	63	67.7	-13.65
2	2483.54	39.94 AV	54	-14.06	217	271	53.59	-13.65
3	2480	98.83 PK			146	143	112.8	-13.97
4	2480	85.61 AV			190	246	99.58	-13.97
5	4960	52.79 PK	74	-21.21	185	16	66.54	-13.75
6	4960	37.58 AV	54	-16.42	227	70	51.33	-13.75
		AN	TENNA POI	_ARITY & te	st distance: \	Vertical at 3	m	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2483.5	53.44 PK	74	-20.56	397	158	67.09	-13.65
2	2483.5	38.85 AV	54	-15.15	131	260	52.5	-13.65
3	2480	97.63 PK			303	63	111.6	-13.97
4	2480	84.77 AV			193	294	98.74	-13.97
5	4960	52.11 PK	74	-21.89	252	302	65.86	-13.75
6	4960	37.26 AV	54	-16.74	266	158	51.01	-13.75

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)-Preamplifier Gain.
- 3. Only emissions significantly above equipment noise floor are reported.
- 4. Margin value = Emission level Limit value.
- 5. The testing has been conformed to 10*2462MHz=24,620MHz
- 6, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

Test Report	Q190826S004-FCC-R2
Page	46 of 52

Annex A. TEST INSTRUMENT

RE& RSE

Frequency Range Below 1GHz

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESL6	1300.5001K06 -100262-eQ	Apr. 04, 19	Apr. 03, 20
Bilog Antenna	Sunol Sciences	JB6	A110712	Apr. 08, 19	Apr. 07, 20
Active Antenna	CMO-POWER	AL-130	121031	Mar. 27, 19	Mar. 26, 20
Signal Amplifier	HP	8447E	443008	Mar. 28, 19	Mar. 27, 20
3m Semi-anechoic Chamber	SAEMC	9m*6m*6m	N/A	Oct. 18,18	Oct. 17,21
Test Software	EZ-EMC	ICP-03A1	N/A	N/A	N/A

RE& RSE

Frequency Range Above 1GHz

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum	Agilent	E4446A	MY46180622	8-May-19	7-May-20
MXA signal analyzer	Agilent	N9020A	MY49100060	Mar. 28, 19	Mar. 27, 20
Horn Antenna	COM-POWER	HAH-118	71259	Mar. 22, 19	Mar. 21, 20
Horn Antenna	COM-POWER	HAH-118	71283	Mar. 20, 19	Mar. 19, 20
SHF-EHF Horn	Schwarzbeck	BBHA9170	BBHA9170147	Jun. 30, 19	Jun. 29, 20
SHF-EHF Horn	Schwarzbeck	BBHA9170	BBHA9170242	Jun. 30, 19	Jun. 29, 20
AMPLIFIER	EM Electornic Corporation	EM01G26G	60613	Mar. 28, 19	Mar. 27, 20

Test Report	Q190826S004-FCC-R2
Page	47 of 52

AMPLIFIER	Emc Instruments Corporation	Emc012645	980077	Jan. 04, 19	Jan. 03,20
3m Semi- anechoic	SAEMC	9m*6m*6m	N/A	Oct. 18,18	Oct. 17,21
Test Software	EZ-EMC	ICP-03A1	N/A	N/A	N/A

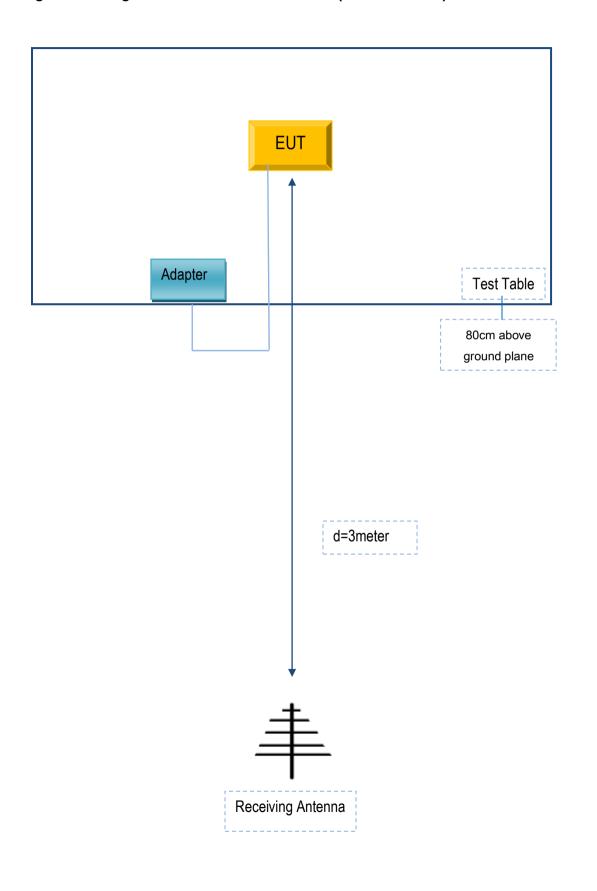
Antenna Port Conducted RF measurement

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Wireless Connectivity	R&S	CMW270	1201.0002K75	Nov. 29, 18	Nov. 28, 19
MXA VEXTOR SIGNAL	Agilent	n5182a	MY50140530	Mar. 28,19	Mar. 27,20
MXA signal analyzer	Agilent	n9020a	MY49100060	Mar. 28,19	Mar. 27,20
RF Control Unit	Tonscend	JS0806-2	188060112	Mar. 28,19	Mar. 27,20
Signal Generation	Agilent	E4421B	US40051152	Nov. 29, 18	Nov. 28, 19
DC Power Supply	Agilent	E3640A	MY40004013	Mar. 28,19	Mar. 27,20
Programmable Temperature &	Hongjin	HYC-TH- 225DH	DG-180746	Mar. 28,19	Mar. 27,20
Test System	Tonscend	JS 1120-	N/A	N/A	N/A
Power Splitter	Weinschel	1580-1	TL177	Mar. 20,19	Mar. 19,20
Universal Radio Communication	ROHDE&SCHWARZ	CMU200	112012	Mar. 28,19	Mar. 27,20
Universal Radio Communication	ROHDE&SCHWARZ	CMU200	121393	Mar. 28,19	Mar. 27,20
Wireless Communication Test Set	ROHDE&SCHWARZ	CMW500	1201.0002K500- 155842-Gd	Aug. 06, 19	Aug. 05, 20

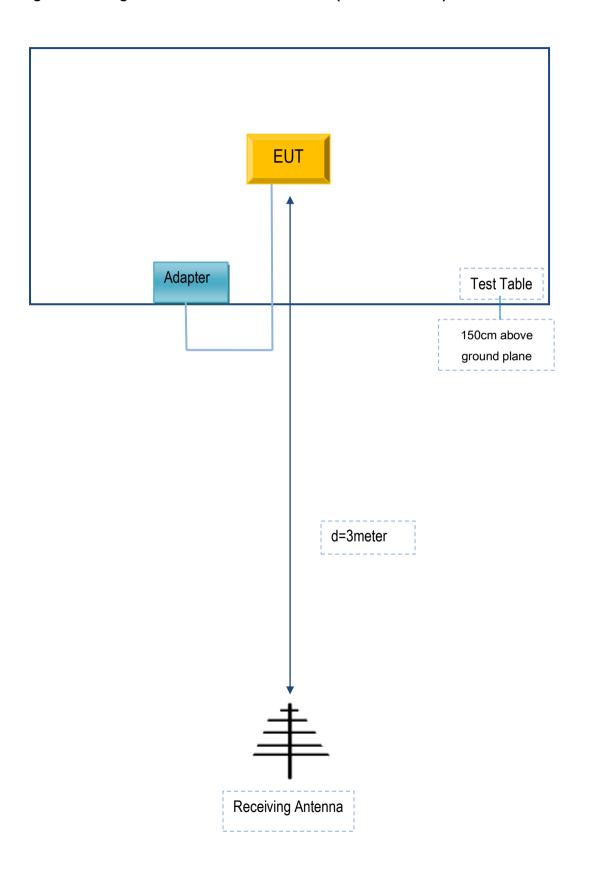
Test Report	Q190826S004-FCC-R2
Page	48 of 52

Annex B. TEST SETUP AND SUPPORTING EQUIPMENT

Annex B.i. TEST SET UP BLOCK


Block Configuration Diagram for AC Line Conducted Emissions

Test Report	Q190826S004-FCC-R2
Page	49 of 52


Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report	Q190826S004-FCC-R2
Page	50 of 52

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Test Report	Q190826S004-FCC-R2
Page	51 of 52

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
N/A	N/A	N/A	N/A

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
N/A	N/A	N/A	N/A	N/A

Test Report	Q190826S004-FCC-R2
Page	52 of 52

Annex C. User Manual / Block Diagram / Schematics / Partlist/ DECLARATION OF SIMILARITY

Please see the attachment