



# COMPLIANCE WORLDWIDE INC. TEST REPORT 433-19

In Accordance with the Requirements of

FCC PART 15.247, SUBPART C
Class II Permissive Change
Innovation, Science and Economic Development Canada
RSS-247, Issue 2

Low Power License-Exempt Radio Communication Devices Intentional Radiators

Issued to

iZotope, Inc. 60 Hampshire Street Cambridge, MA 02139 617-577-7799

for the

iZotope Spire Studio (Tonos Product)
Model: SP121
802.11b/g/n Transmitter

FCC ID: 2AKPU1DX IC: 23446-PU1DX

Report Issued on November 22, 2019

Tested by

Brian F. Breault

Reviewed by

This test report shall not be reproduced, except in full, without written permission from Compliance Worldwide, Inc.



Test Number: 433-19



Issue Date: 11/22/2016

# **Table of Contents**

| 1. Scope                                                        | 3  |
|-----------------------------------------------------------------|----|
| 2 .Product Details                                              |    |
| 2.1 Manufacturer                                                |    |
| 2.3 Serial Number                                               |    |
| 2.4 Description                                                 |    |
| 2.5 Power Source                                                |    |
| 2.6 Hardware Revision                                           |    |
| 2.7 Software Revision                                           |    |
| 2.8 Modulation Type                                             | 3  |
| 2.9 Operating Frequency                                         |    |
| 2.10 EMC Modifications                                          |    |
| 3. Product Configuration                                        | 3  |
| 3.1 Operational Characteristics & Software                      |    |
| 3.2 EUT Hardware                                                | 3  |
| 3.3 EUT Cables/Transducers                                      |    |
| 3.4 Support Equipment                                           | 4  |
| 3.5 Block Diagram                                               | 4  |
| 4. Measurements Parameters                                      | 4  |
| 4.1 Measurement Equipment Used to Perform Test                  |    |
| 4.2 Measurement Software                                        |    |
| 4.3 Measurement & Equipment Setup                               |    |
| 4.4 Measurement Procedure                                       |    |
| 4.5 Measurement Uncertainty                                     |    |
| 5. Choice of Equipment for Test Suits                           |    |
| 5.1 Choice of Model                                             |    |
| 5.2 Presentation                                                |    |
| 5.3 Choice of Operating Frequencies                             | 6  |
| 5.4 Modes of Operation                                          |    |
| 6. Measurement Summary                                          |    |
| 7. Measurement Data                                             | 8  |
| 7.1 Antenna Requirement                                         |    |
| 7.2 Minimum DTS Bandwidth                                       |    |
| 7.3 Maximum Peak Conducted Output Power                         | 13 |
| 7.4 Operation with directional antenna gains greater than 6 dBi | 22 |
| 7.5 Transmitter Spurious Radiated Emissions                     |    |
| 7.6 Band Edge Measurements                                      | 25 |
| 7.7 Emissions in Non-restricted Frequency Bands                 |    |
| 7.8 Peak Power Spectral Density                                 |    |
| 7.9 Conducted Emissions                                         |    |
| 7.10 Duty Cycle                                                 | 30 |
| 7.11 Public Exposure to Radio Frequency Energy Levels           | 32 |
| 8. Test Setup Photographs                                       |    |
| 9. Test Site Description                                        |    |
| Appendix A - Transmitter Spurious Radiated Emissions Test Data  | 43 |
| Appendix B – 100 kHz Out of Band Emissions Test Data            | 67 |





Issue Date: 11/22/2016

### 1. Scope

This test report certifies that the iZotope Spire Studio (Tonos Product) 802.11b/g/n Transmitter, as tested, meets the FCC Part 15, Subpart C and ISED Canada RSS-247, Issue 2 requirements. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required.

#### 2. Product Details

2.1. Manufacturer: iZotope, Inc.2.2. Model Number: Spire Studio

**2.3. Serial Number:** HA-389 (including HA-414 CPU, HA-426 UI, and HA-401 Audio) **2.4. Description:** "Spire Capture Pro": wireless internet enabled audio recording device.

**2.5. Power Source:** DC 5 Volts @ 2 Amps. (Wall adapter)

**2.6. Hardware Revision:** Tonos\_Rev2

**2.7. Software Revision:** Bare Modus 2.2.0.15384

2.8. Modulation Type: OFDM

2.9. Operating Frequency: 2.4 GHz Nominal

2.10. EMC Modifications: None

### 3. Product Configuration

#### 3.1. Operational Characteristics & Software

First, make sure to plug the device in and let it charge for at least two hours. Turn the device on by pressing and holding the power button on the rear for at least two seconds. The LED panel will display a boot-up animation with white LEDs. After a few seconds, the device will enter testing mode and the LED panel will display one yellow and nine purple segments. The device will initially be in an idle, non-transmitting state.

For 802.11g testing, the device has four test modes:

| Test Mode | Tx Mode | Channel | Data Rate |
|-----------|---------|---------|-----------|
| 1         | ldle    | -       | •         |
| 2         | 802.11g | 1       | 6 Mbps    |
| 3         | 802.11g | 6       | 6 Mbps    |
| 4         | 802.11g | 11      | 6 Mbps    |

### 3.2. EUT Hardware

| Manufacturer  | Model/Part # /<br>Options | Serial Number | Input<br>Voltage | Freq<br>(Hz) | Description/Function |
|---------------|---------------------------|---------------|------------------|--------------|----------------------|
| iZotope, Inc. | Spire Studio              | None          | 5                | DC           |                      |

#### 3.3. EUT Cables/Transducers

| Cable Type    | Length  | Shield | From          | То                   |
|---------------|---------|--------|---------------|----------------------|
| Power         | 1 Meter | No     | Power Adapter | Equipment under test |
| Mic/Line In 1 | 1 Meter | Yes    | Unterminated  | Equipment under test |
| Mic/Line In 2 | 1 Meter | Yes    | Unterminated  | Equipment under test |
| Headphones    | 1 Meter | Yes    | Headphones    | Equipment under test |





Issue Date: 11/22/2016

# 3. Product Configuration (continued)

## 3.4. Support Equipment

| Device | Manufacturer | Model | Serial No. | Comment |
|--------|--------------|-------|------------|---------|
| None   |              |       |            |         |

#### 3.5. Block Diagram Cables



### 4. Measurements Parameters

## 4.1 Measurement Equipment Used to Perform Test

| Device                                           | Manufacturer                | Model No. | Serial No. | Cal Due   | Interval |
|--------------------------------------------------|-----------------------------|-----------|------------|-----------|----------|
| EMI Test Receiver, 9kHz - 7GHz <sup>1</sup>      | Rohde & Schwarz             | ESR7      | 101156     | 9/10/2020 | 2 Years  |
| EMI Test Receiver, 10 Hz - 7GHz <sup>1</sup>     | Rohde & Schwarz             | ESR7      | 101770     | 10/3/2020 | 2 Years  |
| Spectrum Analyzer, 2 Hz to 26.5 GHz <sup>2</sup> | Rohde & Schwarz             | FSW26     | 102057     | 9/13/2020 | 2 Years  |
| Spectrum Analyzer, 9 kHz to 40 GHz <sup>3</sup>  | Rohde & Schwarz             | FSV40     | 100899     | 9/10/2020 | 2 Years  |
| EMI Receiver 9 kHz - 1 GHz                       | Hewlett Packard             | 8546A     | 3650A00360 | 9/11/2020 | 2 Years  |
| Loop Antenna 9 kHz - 30 MHz                      | EMCO                        | 6512      | 9309-1139  | 1/28/2022 | 3 Years  |
| Biconilog Antenna, 30 MHz to 2 GHz               | Sunol Sciences Corp         | JB1       | A050913    | 6/5/2022  | 2 Years  |
| Horn Antenna, 960 MHz to 18 GHz                  | Electro-Metrics             | EM-6961   | 6337       | 10/3/2020 | 2 Years  |
| Horn Antenna, 18 GHz to 40 GHz                   | Com-Power                   | AH-840    | 03075      | 1/7/2021  | 2 Years  |
| Preamplifier, 1 GHz to 26.5 GHz                  | Hewlett Packard             | 8449B     | 3008A01323 | 9/11/2020 | 2 Years  |
| Digital Barometer                                | Control Company             | 4195      | ID236      | 4/3/2020  | 2 Years  |
| Temperature Chamber                              | Associated<br>Environmental | SD-308    | 10782      | CNR       |          |

<sup>&</sup>lt;sup>1</sup> ESR7 Firmware revision: V3.46 SP1, Date installed: 12/22/2018 FSW26 Firmware revision: V4.30 SP1, Date installed: 02/22/2019 FSV40 Firmware revision: V2.30 SP4, Date installed: 05/04/2016

#### 4.2. Measurement Software

| Manufacturer         | Software<br>Description            | Title or<br>Model #      | Rev. | Report Sections           |
|----------------------|------------------------------------|--------------------------|------|---------------------------|
| Compliance Worldwide | Test Report<br>Generation Software | Test Report<br>Generator | 1.0  | 7.10. Conducted Emissions |

Previous V3.36 SP2, installed 12/5/2018. Previous V3.36 SP2, installed 10/26/2018. Previous V2.30 SP1, installed 10/22/2014.



#### 4. Measurements Parameters

#### 4.3. Measurement & Equipment Setup

Test Dates: November 6<sup>th</sup> to November 15<sup>th</sup>

Test Engineers: Brian Breault

Normal Site Temperature (15 - 35°C): 21.7 Relative Humidity (20 -75%RH): 32%

Frequency Range: 30 kHz to 25 GHz

Measurement Distance: 3 Meters

EMI Receiver IF Bandwidth: 9 kHz – 150 kHz to 30 MHz

120 kHz – 30 MHz to 1 GHz 1 MHz – Above 1 GHz

EMI Receiver Avg Bandwidth: 30 kHz – 150 kHz to 30 MHz

300 kHz – 30 MHz to 1 GHz 3 MHz – Above 1 GHz

Detector Function: Peak, QP - 150 kHz to 1 GHz

Peak, Avg - Above 1 GHz Unless otherwise specified.

#### 4.4. Measurement Procedures

Test measurements were made in accordance FCC Part 15.247: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5850 MHz, and 24.0 - 24.25 GHz.

The measurement procedures in this report are in accordance with ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. FCC OET Publication Number KDB 558074 D01 v05r02, Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS), Frequency Hopping Spread Spectrum Systems, and Hybrid System Devices Operating Under §15.247, dated April 2, 2019, was also referenced for the test procedures used to generate the data in this report. All references to these publications refer to this versions and dates detailed in this paragraph.





### 4. Measurements Parameters (continued)

#### 4.5. Measurement Uncertainty

The following uncertainties are expressed for an expansion/coverage factor of K=2.

| RF Frequency                     | ± 1x10 <sup>-8</sup> |
|----------------------------------|----------------------|
| Radiated Emission of Transmitter | ± 4.55 dB            |
| Radiated Emission of Receiver    | ± 4.55 dB            |
| Temperature                      | ± 0.91° C            |
| Humidity                         | ± 5%                 |

### 5. Choice of Equipment for Test Suits

#### 5.1 Choice of Model

This test report is based on the test samples supplied by the manufacturer and are reported by the manufacturer to be equivalent to the production units.

#### 5.2 Presentation

This test sample was tested complete with all required ancillary equipment. Refer to Section 3 of this report for product equipment configuration.

#### 5.3 Choice of Operating Frequencies

The Izotope Spire Studio, as tested, operates on 11 channels, from channels 1 to 11 in the 2.4 GHz band.

In accordance with ANSI C63.10-2013, section 5.6, and FCC Part 15.31 (m), the choice of operating frequencies selected for the testing detailed in this report are outlined in the following table:

| Channel | Frequency<br>(MHz) | 802.11g    |
|---------|--------------------|------------|
| 1       | 2412               | Tested     |
| 2       | 2417               |            |
| 3       | 2422               | Not Tested |
| 4       | 2427               | Not rested |
| 5       | 2432               |            |
| 6       | 2437               | Tested     |
| 7       | 2442               |            |
| 8       | 2447               | Not Tooted |
| 9       | 2452               | Not Tested |
| 10      | 2457               |            |
| 11      | 2462               | Tested     |



# 5. Choice of Equipment for Test Suits (continued)

## 5.4 Modes of Operation

802.11/g and a data rate of 6 Mbps was selected as worst case for testing the Izotope Spire Studio 802.11b/g/n transmitter because it provided the worst case combination of amplitude and bandwidth.

TESTING CERT #1673.01

#### 2.4 GHz Test Modes

| Mode    | Modulation | Data Rate |
|---------|------------|-----------|
| 802.11g | OFDM       | 6 Mbps    |

## **6. Measurement Summary**

| Test Requirement                                            | FCC<br>Rule<br>Reference | Test<br>Report<br>Section | Result    |
|-------------------------------------------------------------|--------------------------|---------------------------|-----------|
| Antenna Requirement                                         | 15.203                   | 7.1                       | Compliant |
| Minimum DTS Bandwidth                                       | 15.247 (a) (2)           | 7.2                       | Compliant |
| Occupied Bandwidth                                          | 15.247 (b) (1)           | 7.3                       | Compliant |
| Maximum Peak Conducted Output Power                         | 15.247 (b) (1)           | 7.4                       | Compliant |
| Operation with directional antenna gains greater than 6 dBi | 15.247 (b) (4)           | 7.5                       | Compliant |
| Transmitter Spurious Radiated Emissions                     | 15.247 (d)               | 7.0                       | Compliant |
| Spurious Radiated Emissions (> GHz) - Harmonic Measurements | 15.247 (d)               | 7.6                       | Compliant |
| Band Edge and Out of Band Measurements                      | 15.247 (d)               | 7.7                       | Compliant |
| Emissions in Non-restricted Frequency Bands                 | 15.247(e)                | 7.8                       | Compliant |
| Peak Power Spectral Density                                 | 15.247(e)                | 7.9                       | Compliant |
| Conducted Emissions                                         | 15.207                   | 7.10                      | Compliant |
| Duty Cycle                                                  | 15.207                   | 7.11                      | Compliant |
| Public Exposure to Radio Frequency Energy Levels            | 1.1307 (b) (1)           | 7.12                      | Compliant |





Issue Date: 11/22/2016

# 7. Measurement Data

Conclusion:

### 7.1. Antenna Requirement (15.203)

Requirement: An intentional radiator shall be designed to ensure that no antenna

other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be

The Izotope Spire Studio utilizes an internal chip antenna which is not

considered sufficient to comply with the provisions of this Section.

user accessible.





### 7.2. Minimum DTS Bandwidth

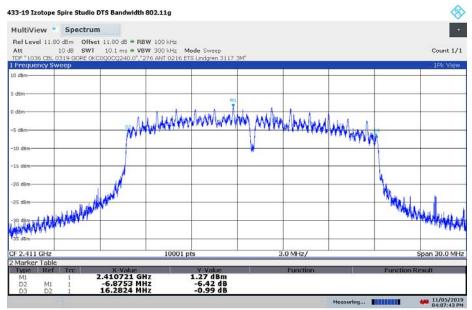
Requirement: (15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The

minimum 6 dB bandwidth shall be at least 500 kHz.

Procedure: This test was performed in accordance with the procedure detailed in

Subclause 11.8 of ANSI C63.10, DTS Bandwidth.


Conclusion: The device under test meets the minimum 500 kHz DTS (6 dB)

bandwidth requirement.

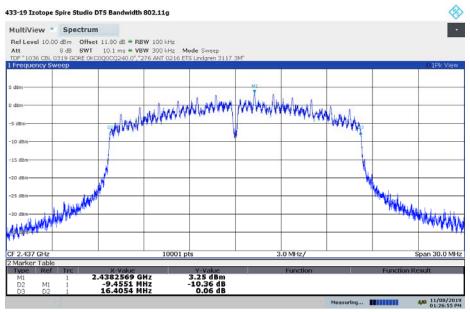
#### Measurement Results

| 802.11g<br>Mode<br>Channel | Frequency<br>(MHz) | -6 dB<br>Bandwidth<br>(kHz) | Minimum<br>-6 dB<br>Bandwidth<br>(kHz) | Result    |
|----------------------------|--------------------|-----------------------------|----------------------------------------|-----------|
| Low                        | 2412               | 16282.4                     | >500                                   | Compliant |
| Middle                     | 2437               | 16405.4                     | >500                                   | Compliant |
| High                       | 2462               | 16276.4                     | >500                                   | Compliant |

#### 7.2.1. 802.11g: Low Channel – 1, 2412 MHz

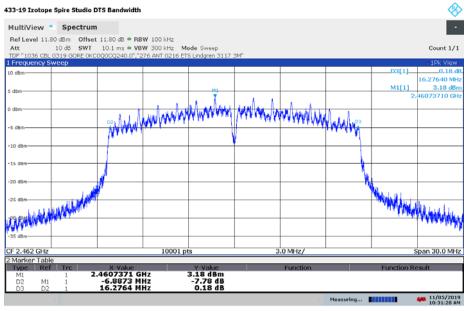


04:07:43 PM 11/05/2019






#### 7. Measurement Data


### 7.2. Minimum DTS Bandwidth (15.247 (a) (2)) (continued)

7.2.2. 802.11g Middle Channel - 6, 2437 MHz



01:26:56 PM 11/08/2019

#### 7.2.3. 802.11g: High Channel - 11, 2462 MHz



10:31:28 AM 11/05/2019





#### 7. Measurement Data

### 7.3. Occupied Bandwidth (ISED RSS 210, RSS-GEN 4.6.1)

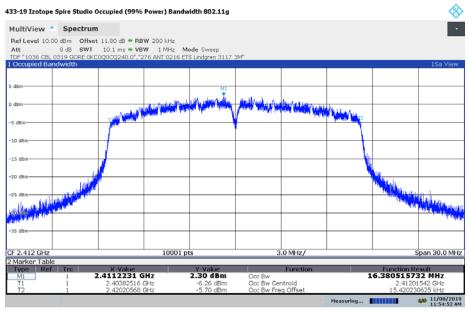
Requirement: The occupied bandwidth or the "99% emission bandwidth" is defined as

the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the

specified bandwidth required in the applicable RSSs.

Procedure: This test was performed in accordance with the procedure detailed in

Subclause 6.7 of ISED RSS-GEN.


Conclusion: The device under test meets the minimum 500 kHz DTS (6 dB)

bandwidth requirement.

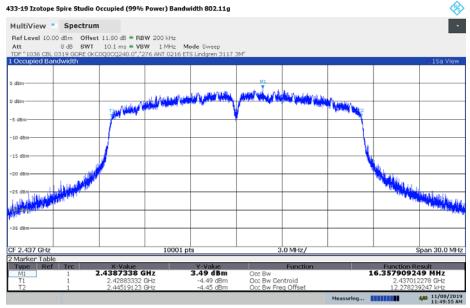
#### Measurement Results

| 802.11g<br>Mode<br>Channel | Channel<br>Frequency<br>(MHz) | 99% Power<br>BW (MHz) |
|----------------------------|-------------------------------|-----------------------|
| Low                        | 2412                          | 16.381                |
| Middle                     | 2437                          | 16.358                |
| High                       | 2462                          | 16.401                |

#### 7.2.1. 802.11g: Low Channel - 1, 2412 MHz

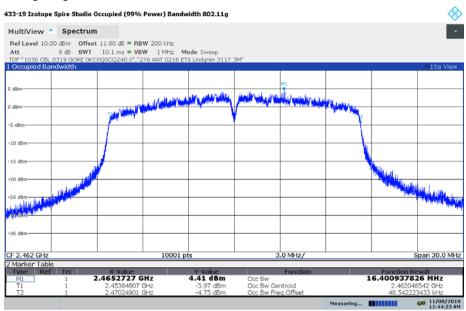


11:54:53 AM 11/08/2019






#### 7. Measurement Data


### 7.3. Occupied Bandwidth (ISED RSS 210, RSS-GEN 4.6.1)

7.3.2. 802.11g Middle Channel - 6, 2437 MHz



11:49:55 AM 11/08/2019

#### 7.3.3. 802.11g: High Channel - 11, 2462 MHz



11:44:24 AM 11/08/2019





Test Number: 433-19

## 7. Measurement Data (continued)

### 7.4. Maximum Peak Conducted Output Power

Requirement: (15.247 (b) (3))

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1

Watt (+30 dBm).

Procedure: The equipment under test did not have an RF connector to provide the

capability of making a conducted mode measurement. The EIRP was calculated from the field strength measurement using the formula

detailed in Annex G ANSI C63.10 and provided below.

EIRP = 
$$p_t \times g_t = (E \times d)^2 / 30$$
 (G.1)

pt transmitter output power in watts

gt numeric gain of the transmitting antenna (dimensionless)

E electric field strength in V/m

D measurement distance in meters (m)

Conclusion: The device under test meets the required maximum peak conducted

output power level of 1 Watt (+30 dBm).

#### Measurement Results

| Channel | Frequency | Maximum<br>Peak Field<br>Strength | Effective<br>Isotropically<br>Radiated<br>Power (EIRP) | Peak<br>Limit | Margin | Result    |
|---------|-----------|-----------------------------------|--------------------------------------------------------|---------------|--------|-----------|
|         | (MHz)     | (dBµV/m)                          | (dBm)                                                  | (dBm)         | (dBm)  |           |
| Low     | 2412      | 113.50                            | 18.27                                                  | 30.00         | -11.73 | Compliant |
| Middle  | 2437      | 115.99                            | 20.76                                                  | 30.00         | -9.24  | Compliant |
| High    | 2462      | 116.04                            | 20.81                                                  | 30.00         | -9.19  | Compliant |






#### 7. Measurement Data

### 7.3. Maximum Peak Conducted Output Power (continued)

7.4.1. 802.11g: Low Channel - 1, 2412 MHz

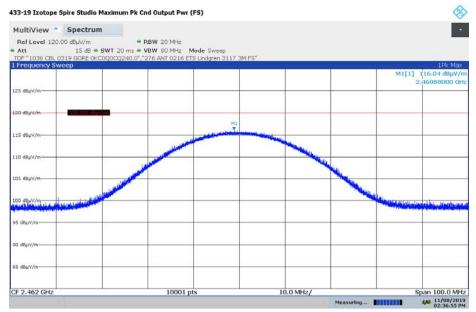


02:46:35 PM 11/08/2019

#### 7.4.2. 802.11g: Middle Channel - 6, 2437 MHz



02:53:22 PM 11/08/2019






#### 7. Measurement Data

# 7.3. Maximum Peak Conducted Output Power (continued)

7.4.3. 802.11g: High Channel - 11, 2462 MHz



02:36:55 PM 11/08/2019



TESTING CERT #1673.01 Test Number: 433-19 Issue Date: 11/22/2016

### 7. Measurement Data (continued)

### 7.5. Operation with directional antenna gains greater than 6 dBi (15.247 (b)(4))

Requirement: If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3)

of FCC Part 15.247, as appropriate, by the amount in dB that the

directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400 - 2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725 - 5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Procedure: Not applicable for the device under test.

**EUT Status:** The EUT utilizes a Johanson Technology antenna, part number

2450AT18D0100, which provides 1.5 dBi peak gain from 2.4 GHz to 2.8

GHz and therefore is exempt from this requirement.





### 7. Measurement Data (continued)

### 7.6. Transmitter Spurious Radiated Emissions (30 kHz to 25 GHz)

7.6.1 Transmitter Spurious Radiated Emissions

Requirement: (15.209) The Emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency Range<br>(MHz) | Distance<br>(Meters) | Limit<br>(dBµV/m)¹ |
|--------------------------|----------------------|--------------------|
| 0.009 to 0.490           | 3                    | 128.5 to 93.8      |
| 0.490 to 1.705           | 3                    | 73.8 to 63.0       |
| 1.705 to 30              | 3                    | 69.5               |
| 30 to 88                 | 3                    | 40.0               |
| 88 to 216                | 3                    | 43.5               |
| 216 to 960               | 3                    | 46.0               |
| >960                     | 3                    | 54.0               |

<sup>&</sup>lt;sup>1</sup>Measurements in the 9 to 90 kHz, 110 to 490 kHz and above 1000 MHz ranges employ an average detector. Otherwise a quasi-peak detector is used.

Procedure:

This test was performed in accordance with the procedure detailed in FCC OET publication number 558074, Section 12.0: Emissions in restricted frequency bands and FCC 47CFRPart 15.209: Radiated Emission Limits; General Requirements.

The test methods used to generate the data in this test report is in accordance with ANSI C63.10:2013, American National Standard for Testing Unlicensed Wireless Devices.

Test Notes:

Measurements were made from the lowest oscillator frequency stated by the manufacturer (32.768 kHz) to the 10<sup>th</sup> harmonic of the highest transmitter frequency or 40 MHz, whichever is lower.

Reference FCC Part 15.33(a) and FCC Part 15.33(a)(1).

Each of the test modes documented within the test report were evaluated and the worst case of each of the test modes is detailed in this section. A full set of measurement scans are presented in Appendix A of this test report.

Conclusion:

The Emissions from the DUT did not exceed the field strength levels specified in the above table.

| Frequency Range       | Worst-Case<br>Measured<br>Frequency | Field<br>Strength | FCC<br>Part 15.209<br>Limit | Margin | Screen<br>Plot | Channel | Receive<br>Antenna<br>Polarity |
|-----------------------|-------------------------------------|-------------------|-----------------------------|--------|----------------|---------|--------------------------------|
|                       | (MHz)                               | (dBµV/m)          | (dBµV/m)                    | (dB)   | Reference      | 1/6/11  | (H/V)                          |
| 10 kHz - 150 kHz      | 0.0158                              | 78.60             | 123.61                      | -45.01 | A.1.1.3        | 1       | Gnd Par                        |
| .150 kHz - 30 MHz     | 0.5595                              | 56.53             | 72.65                       | -16.12 | A.1.2.6        | 6       | Gnd Par                        |
| 30 MHz - 1000 MHz     | 954.57                              | 38.74             | 46.00                       | -7.26  | A.1.3.5        | 11      | Н                              |
| 1000 MHz - 2400 MHz   | 1992.01                             | 45.88             | 54.00                       | -8.12  | A.1.4.6        | 11      | V                              |
| 2483.5 MHz - 7000 MHz | 6909.00                             | 43.89             | 54.00                       | -10.11 | A.1.5.3        | 6       | Н                              |
| 7000 MHz - 18000 MHz  | 17822.40                            | 48.03             | 54.00                       | -6.24  | A.1.6.1        | 1       | Н                              |
| 18000 MHz - 25000 MHz | 23911.26                            | 44.60             | 54.00                       | -6.56  | A.1.7.2        | 1       | V                              |





## 7. Measurement Data (continued)

### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 40 GHz)

7.6.2. Transmitter Spurious Radiated Emissions (Harmonic Meas.) Test Results Note: Worst case measurements of Harmonics that fall into the restricted bands. 7.6.2.1. 2.4 GHz, 802.11g

| 802.11b<br>Freq. | Field Strength<br>(dBµV/m)¹ |         | _    | Limit<br>(dBµV/m) |        | Margin<br>(dBμV/m) |          | Result    |
|------------------|-----------------------------|---------|------|-------------------|--------|--------------------|----------|-----------|
| (MHz)            | Peak                        | Average | Peak | Average           | Peak   | Average            | (H/V)    |           |
| 4824             | 50.01                       | 35.79   | 74   | 54                | -23.99 | -18.21             | Η        | Compliant |
| 4874             | 50.49                       | 36.29   | 74   | 54                | -23.51 | -17.71             | V        | Compliant |
| 4924             | 49.19                       | 35.92   | 74   | 54                | -24.81 | -18.08             | <b>V</b> | Compliant |
| 7311             | 52.63                       | 39.56   | 74   | 54                | -21.37 | -14.44             | <b>V</b> | Compliant |
| 7386             | 54.55                       | 42.39   | 74   | 54                | -19.45 | -11.61             | >        | Compliant |
| 12060            | 60.11                       | 46.23   | 74   | 54                | -13.89 | -7.77              | Н        | Compliant |
| 12185            | 60.62                       | 46.59   | 74   | 54                | -13.38 | -7.41              | V        | Compliant |
| 12310            | 60.82                       | 46.89   | 74   | 54                | -13.18 | -7.11              | V        | Compliant |
| 14472            | 62.32                       | 48.15   | 74   | 54                | -11.68 | -5.85              | Н        | Compliant |
| 19296            | 61.78                       | 47.78   | 74   | 54                | -12.22 | -6.22              | V        | Compliant |
| 19496            | 62.03                       | 47.90   | 74   | 54                | -11.97 | -6.10              | Н        | Compliant |
| 19696            | 60.93                       | 47.26   | 74   | 54                | -13.07 | -6.74              | Н        | Compliant |
| 22158            | 91.91                       | 48.35   | 74   | 54                | 17.91  | -5.65              | Н        | Compliant |

<sup>&</sup>lt;sup>1</sup> All correction factors are stored in the spectrum analyzer and applied to this column entry.



WORLDWIDE TESTING CERT #1673.01
Test Number: 433-19 Issue Date: 11/22/2016

### 7. Measurement Data (continued)

## 7.7. Band Edge and Out of Band Measurements

Requirement: 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits

specified in Section 15.209(a) (see Section 15.205(c)).

Procedure: For the lower band edge, this test was performed in accordance with

the procedure detailed in ANSI C63.10, Section 6.10.4: Authorized-

band band-edge measurements (relative method).

For the upper band edge, this test was performed in accordance with the procedure detailed in ANSI C63.10, Section 6.10.5: Restricted-band

band-edge measurements.

Test Note: The radiated band edge and worst case out of band measurements in

this report represent the measurements made with the worst case

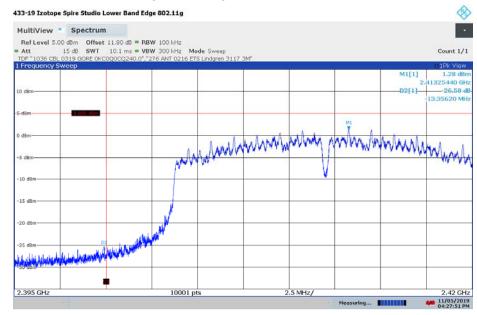
receive antenna polarity.

Conclusion: The EUT met the 20 dB requirement at the lower band edge and the

Part 15.209 requirements at the upper band edge.






### 7. Measurement Data (continued)

### 7.7. Band Edge and Out of Band Measurements (continued)

### 7.7.1. Lower Band Edge

| Fr | and Edge<br>requency<br>(MHz) | Mode of<br>Operation | Lowest<br>Transmitter<br>Frequency<br>(MHz) | Maximum<br>PSD (100<br>kHz)<br>(dBm) | Band Edge<br>PSD (100<br>kHz)<br>(dBm) | Offset | Minimum<br>Required<br>Offset | Result    |
|----|-------------------------------|----------------------|---------------------------------------------|--------------------------------------|----------------------------------------|--------|-------------------------------|-----------|
|    | 2400                          | 802.11g              | 2412                                        | 1.28                                 | -25.3                                  | -26.58 | -20 dB                        | Compliant |

### 7.7.1.1. Lower Band Edge, 802.11g

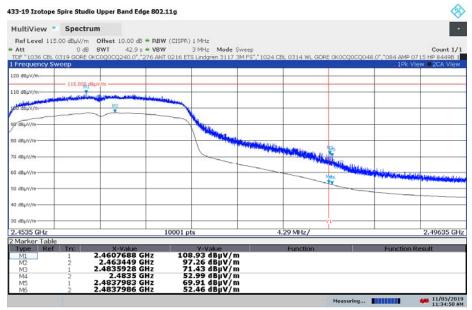






## 7. Measurement Data (continued)

### 7.7. Band Edge and Out of Band Measurements (continued)


7.7.2. Upper Band Edge and Worst Case Out of Band Upper Band Edge

| Mode of Operation | Freq. Field St |       |         |      | Limit<br>(dBµV/m) |       | Margin<br>(dBµV/m) |           |
|-------------------|----------------|-------|---------|------|-------------------|-------|--------------------|-----------|
| оролишен.         | (              | Peak  | Average | Peak | Average           | Peak  | Average            |           |
| 802.11g           | 2483.50        | 71.43 | 52.99   | 74   | 54                | -2.57 | -1.01              | Compliant |

#### Worst Case Out of Band

| Mode of Freq. |          | Field Strength<br>(dBµV/m) |         | Limit<br>(dBµV/m) |         | Margin<br>(dBµV/m) |         | Result    |
|---------------|----------|----------------------------|---------|-------------------|---------|--------------------|---------|-----------|
| Орогалон      | (        | Peak                       | Average | Peak              | Average | Peak               | Average |           |
| 802.11g       | 2483.798 | 69.91                      | 52.46   | 74                | 54      | -4.09              | -1.54   | Compliant |

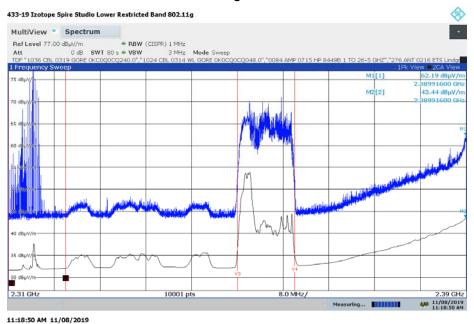
#### 7.7.2.1. Upper Band Edge & Worst Case Out of Band, 802.11g



11:34:50 AM 11/05/2019






### 7. Measurement Data (continued)

### 7.7. Band Edge and Out of Band Measurements (continued)

7.7.3. Lower Restricted Band, 2.310 MHz to 2390 MHz

|     | Mode of Freq. Operation (MHz) |          | Field Strength<br>(dBµV/m) |         | Limit<br>(dBµV/m) |         | Margin<br>(dBµV/m) |         | Result    |
|-----|-------------------------------|----------|----------------------------|---------|-------------------|---------|--------------------|---------|-----------|
|     |                               | (        | Peak                       | Average | Peak              | Average | Peak               | Average |           |
| 802 | 2.11g                         | 2389.916 | 62.19                      | 43.44   | 74                | 54      | -11.81             | -10.56  | Compliant |

#### 7.7.3.1. Lower Restricted Band, 802.11g

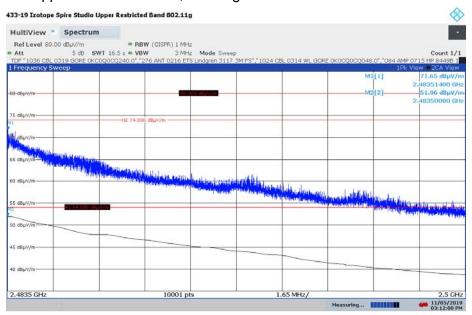


#### Note about the non-EUT transmissions in this band:

The emissions in the lower part of the Lower Restricted Band were due to transmissions in the Wireless Communications Service (WCS) B Block (2310 MHz to 2315 MHz). The emission near the center of the Lower Restricted Band was due to a transmission in the WCS A and B Blocks (2350 MHz to 2360 MHz). A real-time observation of the Lower Restricted Band confirmed that there were no emissions contributed by the EUT in either of these WCS Blocks during the absence of the ambient signals. However, due to the time requirements of the CISPR average detector, this could not be realized on the spectrum analyzer display. Markers 1 and 2 represent the peak and CISPR average values of the worst case emission contributed by the EUT.






## 7. Measurement Data (continued)

### 7.7. Band Edge and Out of Band Measurements (continued)

7.7.4. Upper Restricted Band, 2483.5 MHz to 2500 MHz

| Mode of Operation | Freq.    | Field Strength<br>(dBµV/m) |         | Limit<br>(dBµV/m) |         | Margin<br>(dBµV/m) |         | Result    |
|-------------------|----------|----------------------------|---------|-------------------|---------|--------------------|---------|-----------|
| Орогишон          | (        | Peak                       | Average | Peak              | Average | Peak               | Average |           |
| 802.11g           | 2483.510 | 71.65                      | 51.96   | 74                | 54      | -2.35              | -2.04   | Compliant |

## 7.7.4.1. Upper Restricted Band, 802.11g



03:12:01 PM 11/05/2019





### 7. Measurement Data (continued)

#### 7.8. Emissions in Non-restricted Frequency Bands

Requirement: 15.247(d) In any 100 kHz bandwidth outside the frequency band in

which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted

power limits.

Test Notes: The tabled measurement represent the measurement made with the

worst case receive antenna polarity and turntable azimuth.

The peak measurement was taken at the time the DTS bandwidth measurement was made. This value was used as the reference level for

the following measurement. Refer to section 7.2 of this report.

Screen captures for the emissions in the non-restricted frequency bands

are located in Appendix B of this test report.

Conclusion: The DUT met the 20 dB requirement emission level delta requirement in

the non restricted frequency bands.

### Emissions in Non-restricted Frequency Bands

| Mode of<br>Operation | (100 kHz) | Worst Case<br>Out-of-Band<br>Frequency<br>(MHz) | PSI    | Delta to<br>Maximum<br>PSD<br>(dB) | Minimum<br>Required<br>Delta | Margin | Result    |
|----------------------|-----------|-------------------------------------------------|--------|------------------------------------|------------------------------|--------|-----------|
| 802.11g              | 4.41      | 989.750                                         | -29.56 | -33.97                             | -20.00                       | -13.97 | Compliant |

<sup>&</sup>lt;sup>1</sup>Taken from Section 7.2 - DTS Bandwidth





### 7. Measurement Data (continued)

## 7.9. Peak Power Spectral Density (15.247(e))

Requirement: For digitally modulated systems, the power spectral density conducted

from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of FCC Part 15.247. The same method of determining the conducted output power shall be

used to determine the power spectral density.

Procedure: ANSI C63.10, Section 11.10.2: Method PKPSD (peak PSD).


Conclusion: The DUT passed the required power spectral density limit at the tested

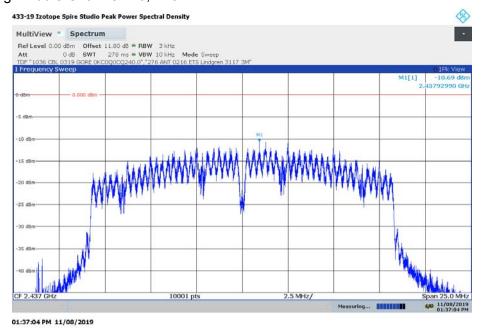
frequencies.

#### Measurement Results in 2400 MHz to 2483.5 MHz Band

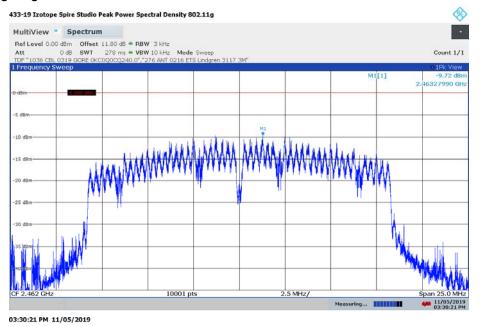
| 802.11g<br>Mode<br>Channel | Mode Channel |           | Maximum Power Spectral Density | Limit | Margin | Result    |
|----------------------------|--------------|-----------|--------------------------------|-------|--------|-----------|
|                            | (MHz)        | (MHz)     | (dBm)                          | (dBm) | (dBm)  |           |
| Low                        | 2412         | 2413.2698 | -13.04                         | 8.00  | -21.04 | Compliant |
| Middle                     | 2437         | 2437.9299 | -10.69                         | 8.00  | -18.69 | Compliant |
| High                       | 2462         | 2463.2799 | -9.72                          | 8.00  | -17.72 | Compliant |

#### 7.9.1. 802.11g: Low Channel 1, 2412






WORLDWIDE
Test Number: 433-19
Test Number: 433-19
Test Number: 433-19
Test Number: 433-19


## 7. Measurement Data (continued)

# 7.9. Peak Power Spectral Density (15.247(e)) (continued)

7.9.2. 802.11g: Middle Channel - 6, 2437 MHz



## 7.9.3. 802.11g: High Channel - 11, 2462 MHz



Page 26 of 75





# 7. Measurement Data (continued)

#### 7.10. Conducted Emissions

Regulatory Limit: FCC Part 15.207

| Frequency Range<br>(MHz)                         | Limits<br>(dΒμV) |           |  |  |  |  |
|--------------------------------------------------|------------------|-----------|--|--|--|--|
| (111112)                                         | Quasi-Peak       | Average   |  |  |  |  |
| 0.15 to 0.50                                     | 66 to 56*        | 56 to 46* |  |  |  |  |
| 0.50 to 5.0                                      | 56               | 46        |  |  |  |  |
| 5.0 to 30.0 60 50                                |                  |           |  |  |  |  |
| * Decreases with the logarithm of the frequency. |                  |           |  |  |  |  |

#### Measurement Equipment and Software Used to Perform Test

| Device       | Manufacturer    | Model No. | Serial No. | Cal Due   |
|--------------|-----------------|-----------|------------|-----------|
| LISN         | EMCO            | 3825/2    | 9109-1860  | 9/10/2019 |
| EMI Receiver | Hewlett Packard | 8546A     | 3330A00115 | 9/12/2020 |
| EMI Receiver | Rohde & Schwarz | ESR7      | 101156     | 9/10/2020 |

| Manufacturer            | Software Description            | Title/Model #            | Rev. |
|-------------------------|---------------------------------|--------------------------|------|
| Compliance<br>Worldwide | Test Report Generation Software | Test Report<br>Generator | 1.0  |

#### **Measurement & Equipment Setup**

Test Date: 11/8/2019

Test Engineer: Sean Defelice

Site Temperature (°C): 21

Relative Humidity (%RH): 37

Frequency Range: 0.15 MHz to 30 MHz

EMI Receiver IF Bandwidth: 9 kHz

EMI Receiver Avg Bandwidth: 30 kHz

Detector Functions: Peak, Quasi-Peak & Average

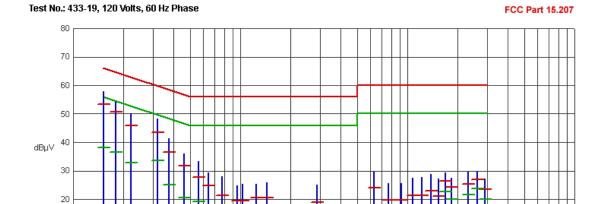
#### **Test Procedure**

Test measurements were made in accordance with ANSI C63.10-2013, Section 6.2: Standard test method for ac power-line conducted emissions from unlicensed wireless devices





100.


Test Number: 433-19 Issue Date: 11/22/2016

# 7. Measurement Data (continued)

### 7.10. Conducted Emissions

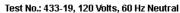
10

7.10.1. 120 Volts, 60 Hz Phase

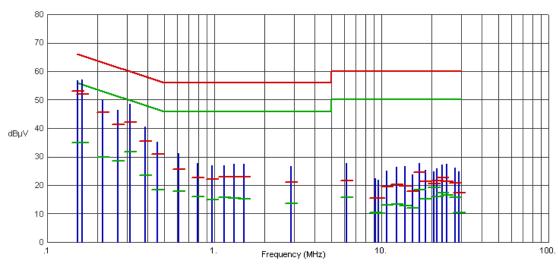


Frequency (MHz)

| Frequency<br>(MHz) | Pk Amp<br>(dBµV) | QP<br>Amp<br>(dBµV) | QP<br>Limit<br>(dBµV) | QP<br>Margin<br>(dB) | Avg<br>Amp<br>(dBµV) | Avg<br>Limit<br>(dBµV) | Avg<br>Margin<br>(dB) | Comments |
|--------------------|------------------|---------------------|-----------------------|----------------------|----------------------|------------------------|-----------------------|----------|
| .1523              | 57.95            | 53.29               | 65.87                 | -12.58               | 38.08                | 55.87                  | -17.79                |          |
| .1793              | 54.13            | 50.68               | 64.52                 | -13.84               | 36.61                | 54.52                  | -17.91                |          |
| .2220              | 50.04            | 45.93               | 62.74                 | -16.81               | 32.86                | 52.74                  | -19.88                |          |
| .3210              | 48.24            | 43.37               | 59.68                 | -16.31               | 33.71                | 49.68                  | -15.97                |          |
| .3750              | 41.42            | 36.49               | 58.39                 | -21.90               | 25.02                | 48.39                  | -23.37                |          |
| .4628              | 35.92            | 31.67               | 56.64                 | -24.97               | 20.56                | 46.64                  | -26.08                |          |
| .5595              | 33.32            | 27.65               | 56.00                 | -28.35               | 19.31                | 46.00                  | -26.69                |          |
| .6450              | 29.45            | 24.79               | 56.00                 | -31.21               | 16.78                | 46.00                  | -29.22                |          |
| .7800              | 27.96            | 21.42               | 56.00                 | -34.58               | 15.15                | 46.00                  | -30.85                |          |
| .9623              | 24.78            | 19.38               | 56.00                 | -36.62               | 11.94                | 46.00                  | -34.06                |          |
| 1.0298             | 25.21            | 19.55               | 56.00                 | -36.45               | 13.49                | 46.00                  | -32.51                |          |
| 1.2458             | 25.41            | 20.48               | 56.00                 | -35.52               | 12.36                | 46.00                  | -33.64                |          |
| 1.4370             | 25.91            | 20.63               | 56.00                 | -35.37               | 11.65                | 46.00                  | -34.35                |          |
| 2.8703             | 25.16            | 19.01               | 56.00                 | -36.99               | 11.64                | 46.00                  | -34.36                |          |
| 6.2948             | 29.47            | 24.09               | 60.00                 | -35.91               | 16.32                | 50.00                  | -33.68                |          |
| 7.6808             | 25.54            | 19.66               | 60.00                 | -40.34               | 11.07                | 50.00                  | -38.93                |          |
| 9.2153             | 25.71            | 19.86               | 60.00                 | -40.14               | 13.03                | 50.00                  | -36.97                |          |
| 10.7475            | 27.47            | 21.40               | 60.00                 | -38.60               | 13.76                | 50.00                  | -36.24                |          |
| 12.2573            | 27.76            | 21.25               | 60.00                 | -38.75               | 12.40                | 50.00                  | -37.60                |          |
| 13.8255            | 28.91            | 22.97               | 60.00                 | -37.03               | 15.26                | 50.00                  | -34.74                |          |
| 15.3578            | 27.10            | 21.07               | 60.00                 | -38.93               | 14.09                | 50.00                  | -35.91                |          |
| 16.8945            | 29.26            | 26.51               | 60.00                 | -33.49               | 22.67                | 50.00                  | -27.33                |          |
| 18.4313            | 27.47            | 24.18               | 60.00                 | -35.82               | 20.09                | 50.00                  | -29.91                |          |
| 23.0393            | 29.59            | 25.23               | 60.00                 | -34.77               | 21.49                | 50.00                  | -28.51                |          |
| 26.1105            | 29.77            | 26.87               | 60.00                 | -33.13               | 23.74                | 50.00                  | -26.26                |          |
| 29.0850            | 27.09            | 23.53               | 60.00                 | -36.47               | 20.12                | 50.00                  | -29.88                |          |







# 7. Measurement Data (continued)

#### 7.10. Conducted Emissions

7.10.2. 120 Volts, 60 Hz Neutral







| Frequency | Pk Amp | QP<br>Amp | QP<br>Limit | QP<br>Margin | Avg<br>Amp | Avg<br>Limit | Avg<br>Margin | Comments |
|-----------|--------|-----------|-------------|--------------|------------|--------------|---------------|----------|
| (MHz)     | (dBµV) | (dBµV)    | (dBµV)      | (dB)         | (dBµV)     | (dBµV)       | (dB)          |          |
| .1523     | 56.76  | 52.98     | 65.87       | -12.89       | 34.94      | 55.87        | -20.93        |          |
| .1613     | 57.11  | 52.07     | 65.40       | -13.33       | 34.84      | 55.40        | -20.56        |          |
| .2153     | 49.82  | 45.61     | 63.00       | -17.39       | 30.00      | 53.00        | -23.00        |          |
| .2648     | 46.51  | 41.37     | 61.28       | -19.91       | 28.43      | 51.28        | -22.85        |          |
| .3120     | 48.60  | 42.22     | 59.92       | -17.70       | 31.78      | 49.92        | -18.14        |          |
| .3840     | 40.40  | 35.55     | 58.19       | -22.64       | 23.51      | 48.19        | -24.68        |          |
| .4538     | 35.20  | 30.89     | 56.81       | -25.92       | 18.44      | 46.81        | -28.37        |          |
| .6090     | 31.22  | 25.69     | 56.00       | -30.31       | 17.90      | 46.00        | -28.10        |          |
| .7913     | 27.70  | 22.64     | 56.00       | -33.36       | 15.97      | 46.00        | -30.03        |          |
| .9645     | 26.95  | 22.11     | 56.00       | -33.89       | 14.88      | 46.00        | -31.12        |          |
| 1.1423    | 26.94  | 22.98     | 56.00       | -33.02       | 15.80      | 46.00        | -30.20        |          |
| 1.3178    | 27.41  | 22.91     | 56.00       | -33.09       | 15.56      | 46.00        | -30.44        |          |
| 1.5023    | 27.58  | 22.87     | 56.00       | -33.13       | 15.16      | 46.00        | -30.84        |          |
| 2.8815    | 26.75  | 21.16     | 56.00       | -34.84       | 13.72      | 46.00        | -32.28        |          |
| 6.1958    | 27.60  | 21.55     | 60.00       | -38.45       | 15.62      | 50.00        | -34.38        |          |
| 9.2198    | 22.36  | 15.52     | 60.00       | -44.48       | 10.47      | 50.00        | -39.53        |          |
| 9.5820    | 21.97  | 15.37     | 60.00       | -44.63       | 10.16      | 50.00        | -39.84        |          |
| 10.7520   | 24.97  | 19.44     | 60.00       | -40.56       | 13.16      | 50.00        | -36.84        |          |
| 12.2888   | 26.32  | 20.30     | 60.00       | -39.70       | 13.38      | 50.00        | -36.62        |          |
| 13.8233   | 26.79  | 19.62     | 60.00       | -40.38       | 12.75      | 50.00        | -37.25        |          |
| 15.3578   | 23.65  | 17.86     | 60.00       | -42.14       | 11.99      | 50.00        | -38.01        |          |
| 16.8945   | 27.71  | 24.45     | 60.00       | -35.55       | 18.35      | 50.00        | -31.65        |          |
| 18.4290   | 25.45  | 21.26     | 60.00       | -38.74       | 15.16      | 50.00        | -34.84        |          |
| 20.6858   | 24.72  | 20.59     | 60.00       | -39.41       | 19.30      | 50.00        | -30.70        |          |
| 21.5025   | 25.92  | 21.72     | 60.00       | -38.28       | 16.12      | 50.00        | -33.88        |          |
| 23.0393   | 27.17  | 22.73     | 60.00       | -37.27       | 17.27      | 50.00        | -32.73        |          |
| 24.5738   | 27.43  | 21.36     | 60.00       | -38.64       | 16.64      | 50.00        | -33.36        |          |
| 27.6450   | 26.22  | 20.75     | 60.00       | -39.25       | 15.64      | 50.00        | -34.36        |          |
| 29.1818   | 24.80  | 17.33     | 60.00       | -42.67       | 10.48      | 50.00        | -39.52        |          |





## 7. Measurement Data (continued)

### 7.11. Duty Cycle

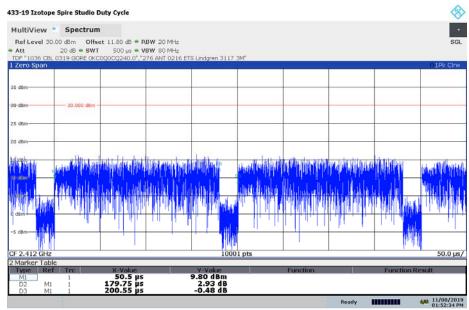
Requirement: Preferably, all measurements of maximum conducted (average) output

power will be performed with the EUT transmitting continuously (i.e.,

with a duty cycle of greater than or equal to 98%).

Procedure: Duty cycle measurements were made according to the procedure

detailed ANSI C63.10-2013, Section 11.6(b)


Results: Duty cycle measurements are listed in the following table.

All power and power spectral density measurements for this report are peak mode measurements. Ample peak hold time was provided to

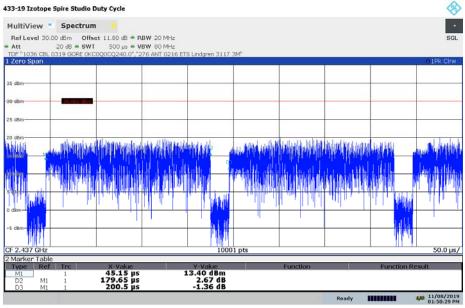
ensure maximum peak measurements.

| Frequency | Ton Ttotal |        | Duty<br>Cycle |  |  |
|-----------|------------|--------|---------------|--|--|
| (MHz)     | (μS)       | (µS)   | (%)           |  |  |
| 2412      | 179.75     | 200.55 | 89.63%        |  |  |
| 2437      | 179.65     | 200.50 | 89.60%        |  |  |
| 2462      | 179.50     | 200.60 | 89.48%        |  |  |

#### 7.11.1. 802.11g: Low Channel – 1, 2412 MHz

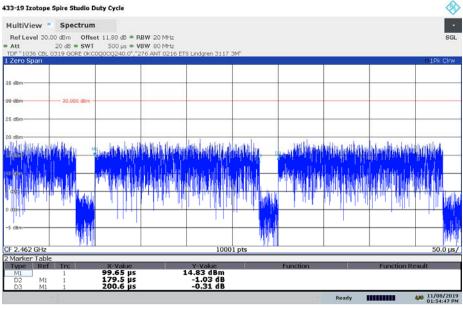


01:52:34 PM 11/08/2019






## 7. Measurement Data (continued)


# 7.11. Duty Cycle (continued)

7.11.2. 802.11g: Middle Channel - 6, 2437 MHz



01:50:30 PM 11/08/2019

#### 7.11.3. 2.4 GHz 802.11g: High Channel – 11, 2462 MHz



01:54:47 PM 11/08/2019



### 7. Measurement Data (continued)

### 7.12. Public Exposure to Radio Frequency Energy Levels

Requirement: (FCC Part 15.247(i))

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. Devices are subject to the radio frequency radiation exposure requirements specified in 47CFR 1.1307(b), FCC 47 CFR 2.1091 and 47 CFR 2.1093, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment.

TESTING CERT #1673.01

#### RSS 102, Section 2.5.2

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

At or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10-2 f0.6834 W (adjusted for tune-up tolerance), where f is in MHz.

#### Conclusion: (FCC Par

(FCC Part 15.247(i))

The device under test meets the radio frequency radiation exposure requirements specified in 47CFR 1.1307(b), § 2.1091, § 2.1093.

## RSS 102, Section 2.5.2

The device under test meets the radio frequency radiation exposure requirements specified in RSS 102, Section 2.5.2.

Measurement Results (Column references are on the following page)

| Frequency | MPE<br>Distance | DUT<br>Output<br>Power | DUT<br>Antenna<br>Gain | Power                | Power Density FCC |          | ISED<br>Limit<br>(W/m²) | Result    |
|-----------|-----------------|------------------------|------------------------|----------------------|-------------------|----------|-------------------------|-----------|
| (MHz)     | (cm)            | (dBm)                  | (dBi)                  | IBi) (mW/cm²) (W/m²) |                   | (mW/cm²) | (VV/III-)               |           |
|           | (1)             | (2)                    | (3)                    | (4)                  |                   | (5)      | (6)                     |           |
| 2412      | 20              | 18.27                  | 1.5                    | 0.0133577 0.13357653 |                   | 1.00     | 5.35                    | Compliant |
| 2437      | 20              | 20.76                  | 1.5                    | 0.0236990 0.23699007 |                   | 1.00     | 5.41                    | Compliant |
| 2462      | 20              | 20.81                  | 1.5                    | 0.0239734            | 0.23973428        | 1.00     | 5.47                    | Compliant |



TESTING CERT #1673.01
Issue Date: 11/22/2016

# 7. Measurement Data (continued)

### 7.12. Public Exposure to Radio Frequency Energy Levels

- Reference 47 CFR 2.1093(b): For purposes of this section, a portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the installer. All other mobile and unlicensed transmitting devices are categorically excluded from routine environmental evaluation for RF exposure prior to equipment authorization or use, except as specified in sections 1.1307(c) and 1.1307(d) of 47 CFR, Chapter 1.
- 2. Section 7.4 of this test report.
- 3. Antenna gain data supplied by the client and factored into the EUT peak output power.
- 4. Peak power density is calculated from peak EIRP:

$$PD = \frac{OP + AG}{(4 \times \pi \times d^2)}$$

PD = Power Density W/m<sup>2</sup>
OP = DUT Output Power dBm
AG = Antenna Gain dBi
d = MPE Distance cm

- 5. Reference CFR 1.1310, Table 1: Limits for Maximum Permissible Exposure (MPE), Section (B): Limits for General Population/Uncontrolled Exposure.
- Reference IC RSS-102 Section 4 Table 4 General Pulbic (Uncontrolled Environment) for equipment operating from 300 to 6000 MHz, the W/m² limit is determined by the formula 0.02619 \* F (MHz)<sup>0.6834</sup>



# 8. Test Setup Photographs

8.1. Radiated measurements 10 kHz to 1 GHz - Front





# 8. Test Setup Photographs

8.2. Radiated measurements 10 kHz to 30 MHz - Rear





# 8. Test Setup Photographs

8.3. Radiated measurements 30 MHz to 1 GHz - Rear





# 8. Test Setup Photographs


8.4. Radiated Emissions above 1 GHz - Front





# 8. Test Setup Photographs

8.5. Radiated Emissions 1 to 18 GHz - Rear





# 8. Test Setup Photographs

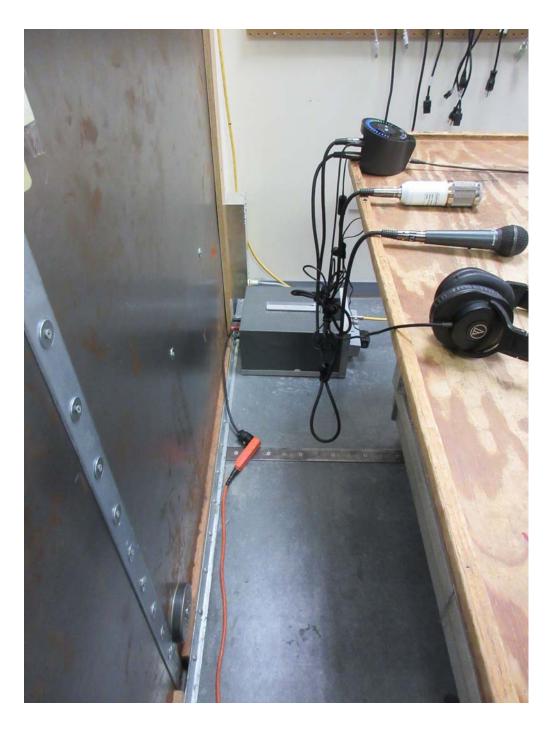
8.6. Harmonic Radiated Emissions above 18 GHz- Rear





WORLDWIDE
Test Number: 433-19
Issue Date: 11/22/2016

# 8. Test Setup Photographs


8.7. Power Line Conducted Emissions – Front





# 8. Test Setup Photographs

8.8. Power Line Conducted Emissions – Rear





Test Number: 433-19



Issue Date: 11/22/2016

### 9. Test Site Description

Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with the Federal Communications Commission (FCC) and Industry Canada standards. Through our American Association for Laboratory Accreditation (A2LA) ISO Guide 17025 Accreditation our test sites are designated with the FCC (designation number **US1091**), Industry Canada (file number **IC 3023A-1)** and VCCI (Member number 3168) under registration number A-0274.

Compliance Worldwide is also designated as a Phase 1 CAB under APEC-MRA (US0132) for Australia/New Zealand AS/NZS CISPR 32, Chinese-Taipei (Taiwan) BSMI CNS 13438 and Korea (RRA) KN 11, KN 13, KN 14-1, KN 22, KN 32, KN 61000-6-3, KN 61000-6-4.

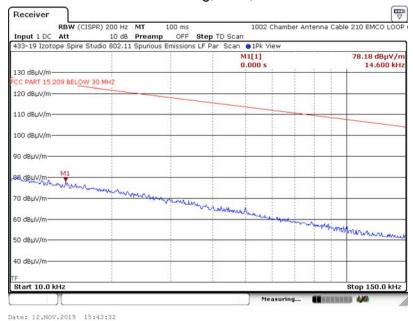
The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

The conducted emissions site is part of a 16'  $\times$  20'  $\times$  12' ferrite tile chamber and uses one of the walls for the vertical ground plane. A second conducted emissions site is also located in the basement of the OATS site with a 2.3  $\times$  2.5 meter ground plane and a 2.4  $\times$  2.4 meter vertical wall.

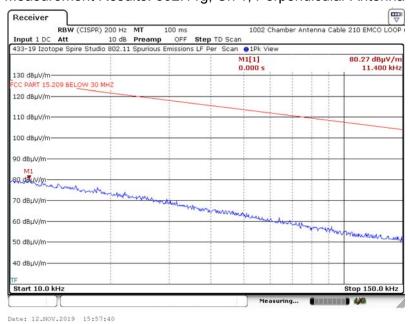
Both sites are designed to test products or systems 1.5 meters W x 1.5 meters L x 2.0 meters H, floor standing or table top.






Issue Date: 11/22/2016

### Appendix A


#### A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz)

A1.1. Spurious Radiated Emissions (10 kHz – 150 kHz) Test Results

A1.1.1. Measurement Results: 802.11g, Ch 1, Parallel Antenna

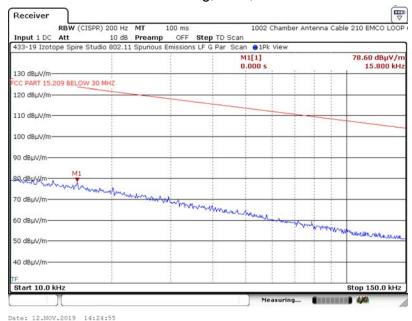


A1.1.2. Measurement Results: 802.11g, Ch 1, Perpendicular Antenna

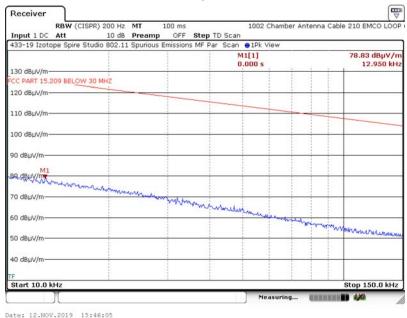


Page 43 of 75






# Appendix A


### A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.1. Spurious Radiated Emissions (10 kHz – 150 kHz) Test Results (continued)

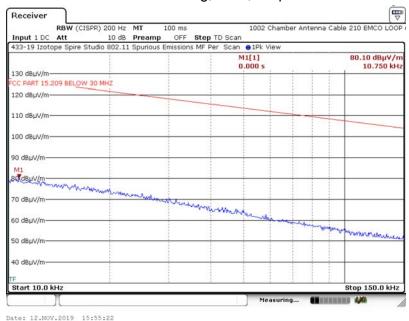
A1.1.3. Measurement Results: 802.11g, Ch 1, Ground Parallel Antenna



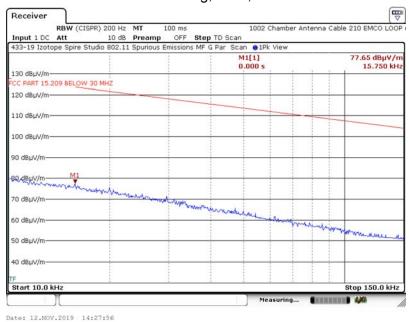
A1.1.4. Measurement Results: 802.11g, Ch 6, Parallel Antenna








# Appendix A


#### A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz)

A1.1. Spurious Radiated Emissions (10 kHz – 150 kHz) Test Results (continued)

A1.1.5. Measurement Results: 802.11g, Ch 6, Perpendicular Antenna

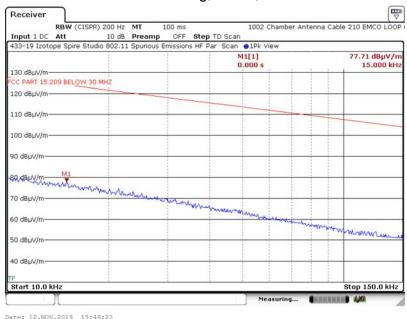


A1.1.6. Measurement Results: 802.11g, Ch 6, Ground Parallel Antenna

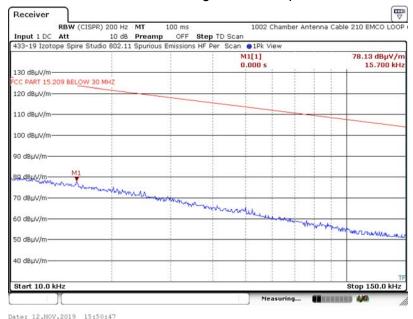


Page 45 of 75






### Appendix A


### A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.1. Spurious Radiated Emissions (10 kHz – 150 kHz) Test Results (continued)

A1.1.7. Measurement Results: 802.11g, Ch 11, Parallel Antenna

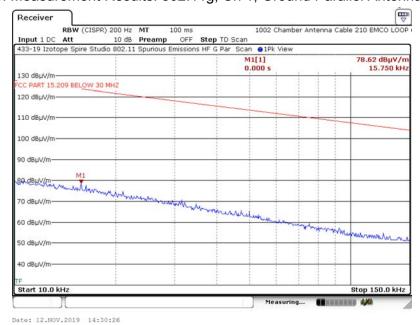


A1.1.8. Measurement Results: 802.11g, Ch 11, Perpendicular Antenna



Page 46 of 75




ACCREDITED
TESTING CERT #1673.01

Issue Date: 11/22/2016

### Appendix A

#### A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.1. Spurious Radiated Emissions (10 kHz – 150 kHz) Test Results (continued) A1.1.6. Measurement Results: 802.11g, Ch 1, Ground Parallel Antenna



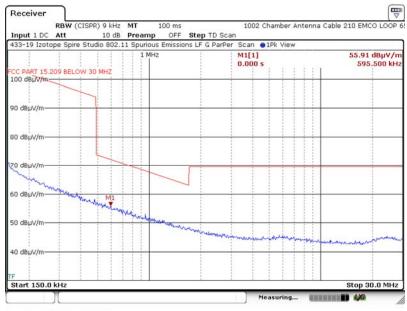
A1.2. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results (continued) A1.2.1. Measurement Results: 802.11g, Ch 1, Parallel Antenna








### Appendix A


# A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A1.2.2. Measurement Results: 802.11g, Ch 1, Perpendicular Antenna



A1.2.3. Measurement Results: 802.11g, Ch 1, Ground Parallel Antenna



Date: 12.NOV.2019 13:29:04





Issue Date: 11/22/2016

### Appendix A


# A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.2. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results (continued)

A1.2.4. Measurement Results: 802.11g, Ch 6, Parallel Antenna



A1.2.5. Measurement Results: 802.11g, Ch 6, Perpendicular



Page 49 of 75





### Appendix A

# A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.2. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results (continued)

A1.2.6. Measurement Results: 802.11b, Ch 6, Ground Parallel Antenna

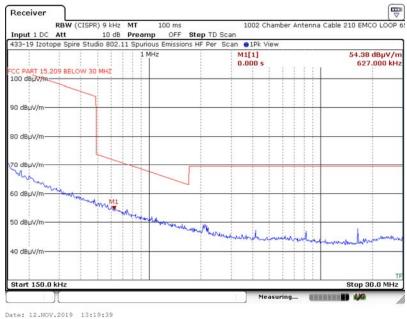


Date: 12.NOV.2019 13:33:49

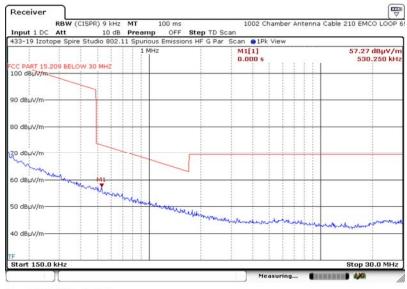
#### A1.2.7. Measurement Results: 802.11g, Ch 11, Parallel Antenna








### Appendix A


# A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.2. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results (continued)

A1.2.8. Measurement Results: 802.11g, Ch 11, Perpendicular Antenna



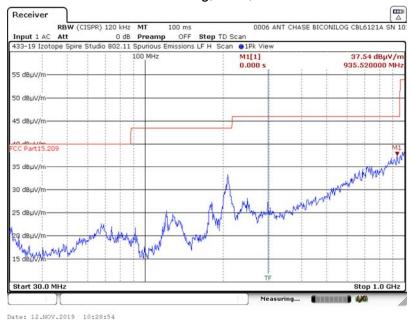
A1.2.9. Measurement Results: 802.11g, Ch 11, Ground Parallel Antenna



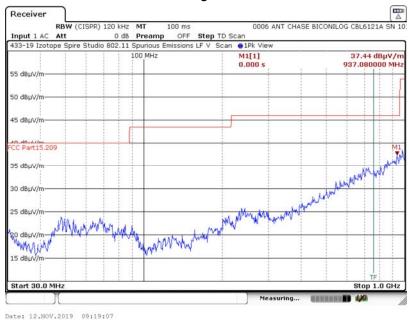
Date: 12.NOV.2019 13:36:27






Issue Date: 11/22/2016

# Appendix A


# A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.3. Spurious Radiated Emissions (30 MHz – 1 GHz) Test Results

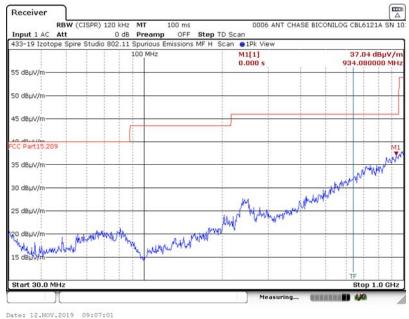
A1.3.1. Measurement Results: 802.11g, Ch 1, Horizontal Antenna



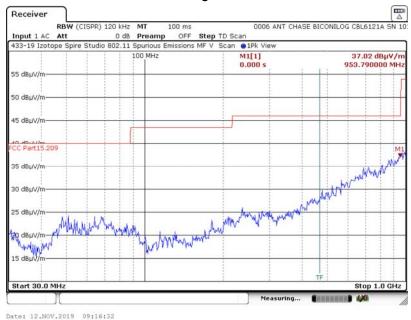
A1.3.2. Measurement Results: 802.11g, Ch 1, Vertical Antenna








#### Appendix A


# A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.3. Spurious Radiated Emissions (30 MHz – 1 GHz) Test Results (continued)

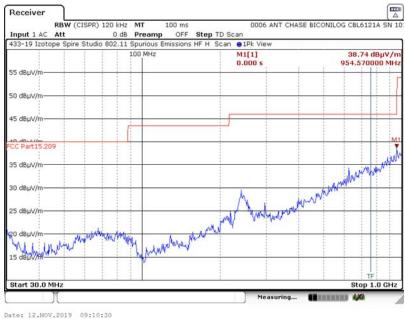
A1.3.3. Measurement Results: 802.11g, Ch 6, Horizontal Antenna



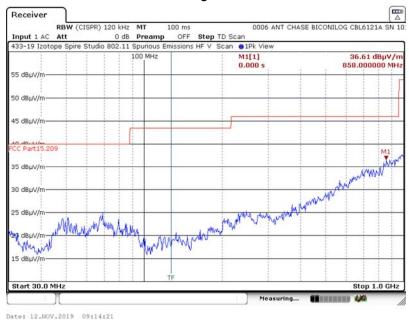
A1.3.4. Measurement Results: 802.11g, Ch 6, Vertical Antenna








#### Appendix A


### A1. Transmitter Spurious Radiated Emissions (30 kHz to 25 GHz) (continued)

A1.3. Spurious Radiated Emissions (30 MHz – 1 GHz) Test Results (continued)

A1.3.5. Measurement Results: 802.11g, Ch 11, Horizontal Antenna

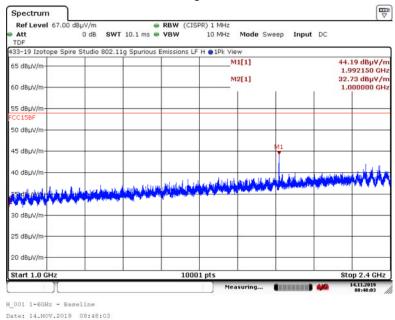


A1.3.6. Measurement Results: 802.11g, Ch 11, Vertical Antenna

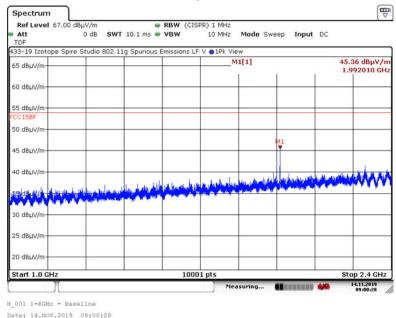







Issue Date: 11/22/2016

### Appendix A


#### A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.4. Spurious Radiated Emissions (1 GHz - 2.4 GHz) Test Results

A1.4.1. Measurement Results: 802.11g, Ch 1, Horizontal Antenna

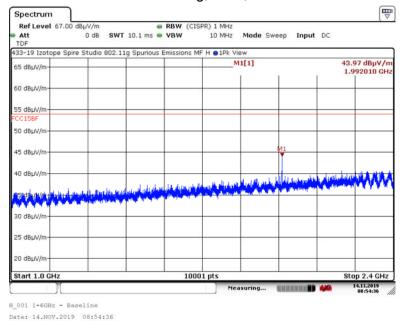


A1.4.2. Measurement Results: 802.11g, Ch 1, Vertical Antenna

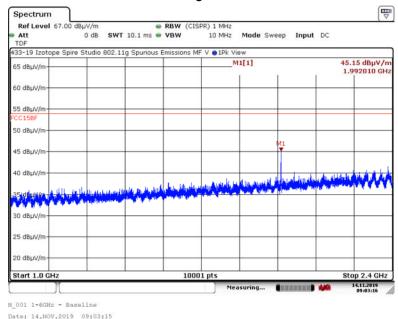


Page 55 of 75






### Appendix A


### A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.4. Spurious Radiated Emissions (1 GHz – 2.4 GHz) Test Results (continued)

A1.4.3. Measurement Results: 802.11g, Ch 6, Horizontal Antenna

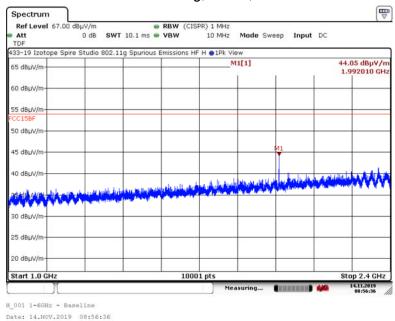


A1.4.4. Measurement Results: 802.11g, Ch 6, Vertical Antenna

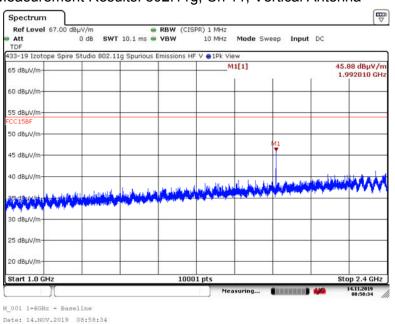


Page 56 of 75






### Appendix A


#### A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

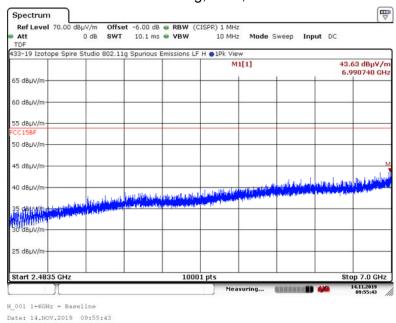
A1.4. Spurious Radiated Emissions (1 GHz – 2.4 GHz) Test Results (continued)

A1.4.5. Measurement Results: 802.11g, Ch 11, Horizontal Antenna

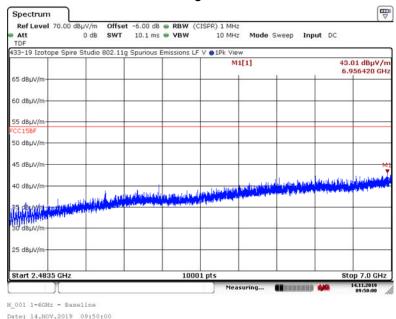


A1.4.6. Measurement Results: 802.11g, Ch 11, Vertical Antenna









### Appendix A

# A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.5. Spurious Radiated Emissions (2483.5 GHz – 7 GHz) Test Results A1.5.1. Measurement Results: 802.11g, Ch 1, Horizontal Antenna

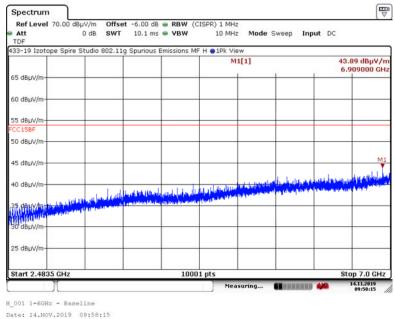


A1.5.2. Measurement Results: 802.11g, Ch 1, Vertical Antenna

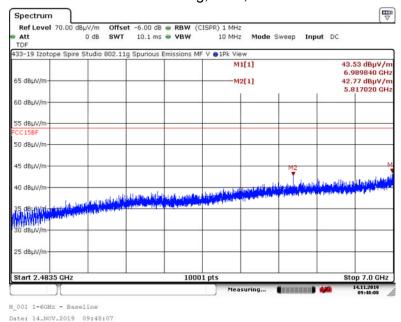


Page 58 of 75






### Appendix A


### A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

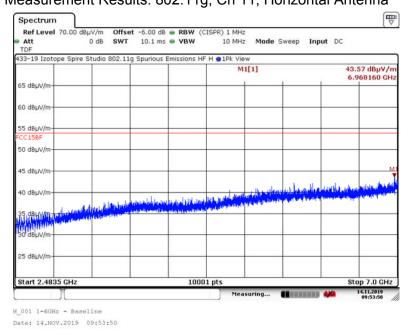
A1.5. Spurious Radiated Emissions (2483.5 GHz – 7 GHz) Test Results (continued)

A1.5.3. Measurement Results: 802.11g, Ch 6, Horizontal Antenna

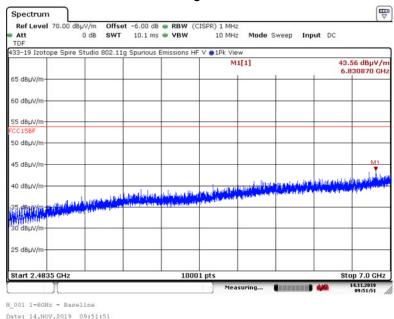


A1.5.4. Measurement Results: 802.11g, Ch 6, Vertical Antenna









### Appendix A

### A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

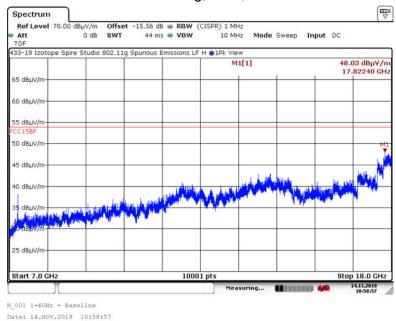
A1.5. Spurious Radiated Emissions (2483.5 GHz – 7 GHz) Test Results (continued) A1.5.5. Measurement Results: 802.11g, Ch 11, Horizontal Antenna



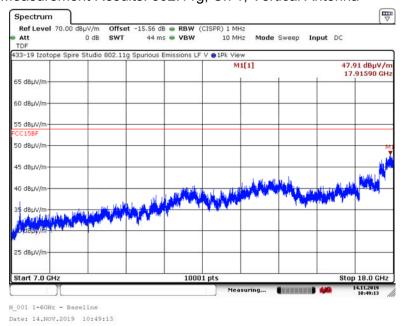
A1.5.6. Measurement Results: 802.11g, Ch 11, Vertical Antenna








# Appendix A


# A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.6. Spurious Radiated Emissions (7 GHz – 18 GHz) Test Results

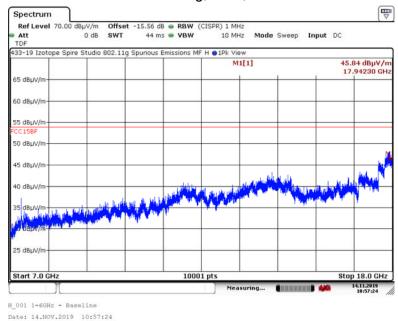
A1.6.1. Measurement Results: 802.11g, Ch 1, Horizontal Antenna



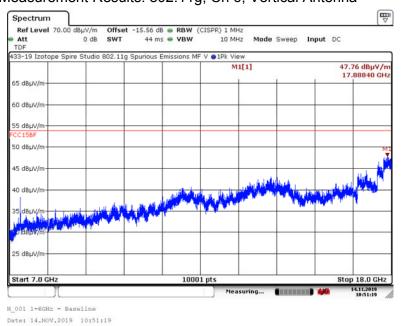
A1.6.2. Measurement Results: 802.11g, Ch 1, Vertical Antenna








# Appendix A


# A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.6. Spurious Radiated Emissions (7 GHz – 18 GHz) Test Results (continued)

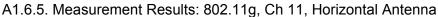
A1.6.3. Measurement Results: 802.11g, Ch 6, Horizontal Antenna

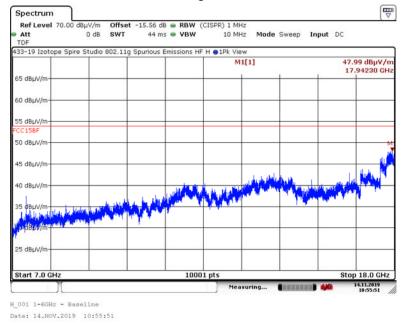


A1.6.4. Measurement Results: 802.11g, Ch 6, Vertical Antenna

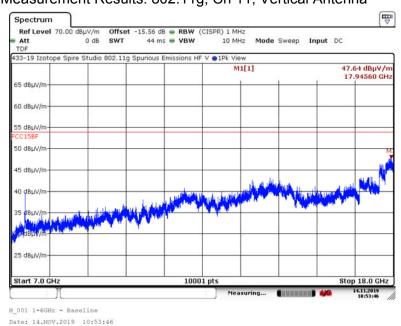


Page 62 of 75




### Appendix A


# A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.6. Spurious Radiated Emissions (7 GHz – 18 GHz) Test Results (continued)

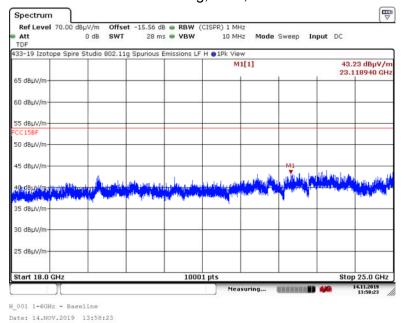




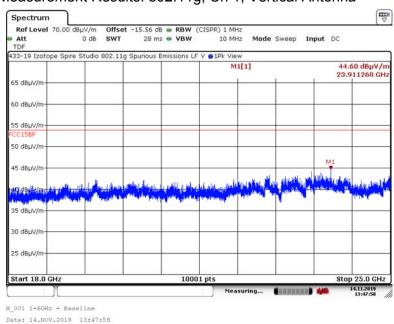
A1.6.6. Measurement Results: 802.11g, Ch 11, Vertical Antenna








### Appendix A


# A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

A1.7. Spurious Radiated Emissions (18 GHz – 25 GHz) Test Results

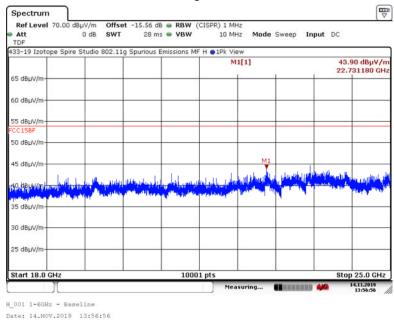
A1.7.1. Measurement Results: 802.11g, Ch 1, Horizontal Antenna



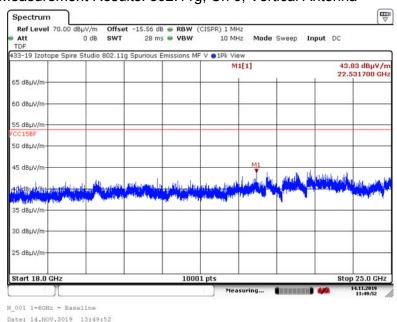
A1.7.2. Measurement Results: 802.11g, Ch 1, Vertical Antenna








### Appendix A


# A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

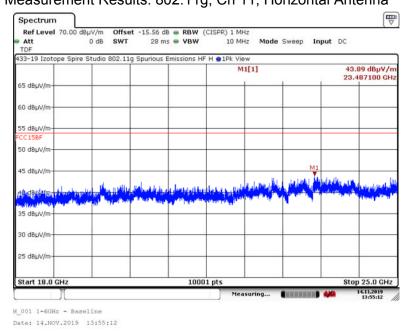
A1.7. Spurious Radiated Emissions (18 GHz – 25 GHz) Test Results (continued)

A1.7.3. Measurement Results: 802.11g, Ch 6, Horizontal Antenna

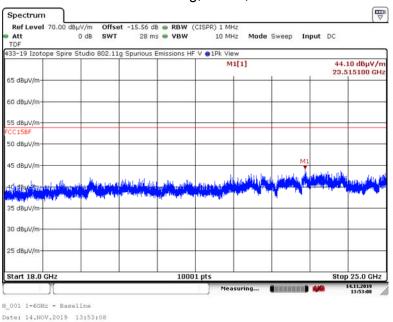


A1.7.4. Measurement Results: 802.11g, Ch 6, Vertical Antenna









### Appendix A

### A1. Transmitter Spurious Radiated Emissions (10 kHz to 25 GHz) (continued)

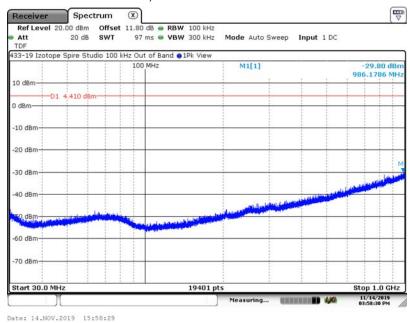
A1.7. Spurious Radiated Emissions (18 GHz – 25 GHz) Test Results (continued) A1.7.5. Measurement Results: 802.11g, Ch 11, Horizontal Antenna



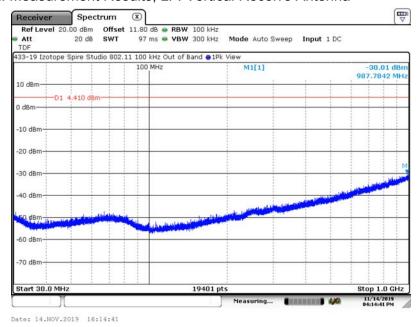
A1.7.6. Measurement Results: 802.11g, Ch 11, Vertical Antenna








# Appendix B


#### B1. Emissions in Non-restricted Frequency Bands (30 MHz to 25 GHz)

B1.1. Emissions in Non-restricted Frequency Bands (30 MHz - 1 GHz) Test Results

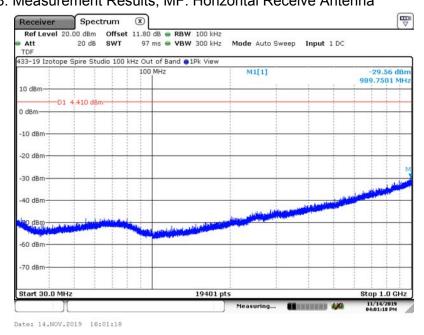
B1.1.1. Measurement Results, LF: Horizontal Receive Antenna



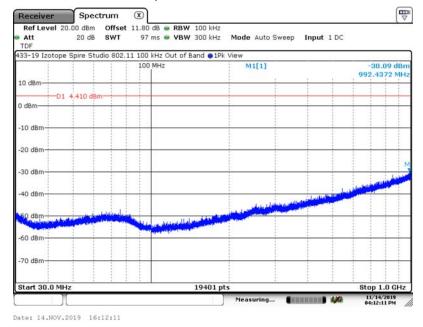
B1.1.2. Measurement Results, LF: Vertical Receive Antenna








3-19 Issue Date: 11/22/2016


### Appendix B

# B1. Emissions in Non-restricted Frequency Bands (30 MHz to 25 GHz) (continued)

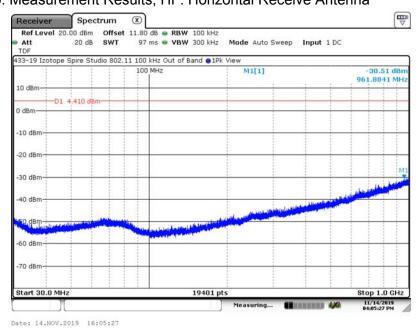
B1.1. Emissions in Non-restricted Frequency Bands (30 MHz – 1 GHz) Test Results B1.1.3. Measurement Results, MF: Horizontal Receive Antenna



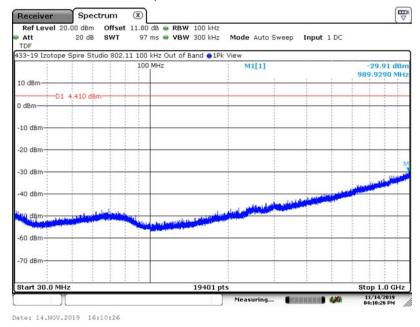
B1.1.4. Measurement Results, MF: Vertical Receive Antenna








Issue Date: 11/22/2016


# Appendix B

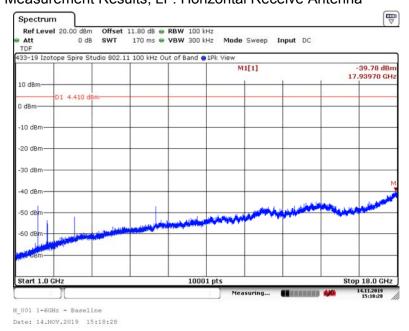
# B1. Emissions in Non-restricted Frequency Bands (30 MHz to 25 GHz) (continued)

B1.1. Emissions in Non-restricted Frequency Bands (30 MHz – 1 GHz) Test Results B1.1.5. Measurement Results, HF: Horizontal Receive Antenna

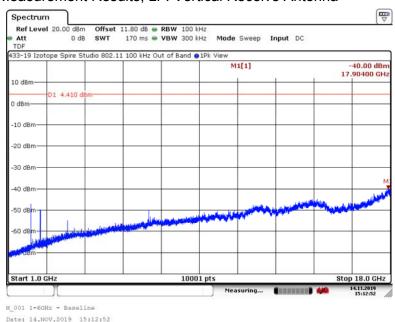


B1.1.6. Measurement Results, HF: Vertical Receive Antenna









### Appendix B

# B1. Emissions in Non-restricted Frequency Bands (30 MHz to 25 GHz) (continued)

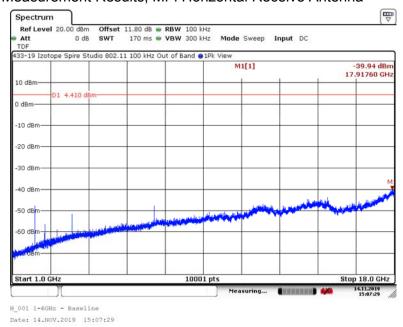
B1.2. Emissions in Non-restricted Frequency Bands (1 GHz – 18 GHz) Test Results B1.2.1. Measurement Results, LF: Horizontal Receive Antenna



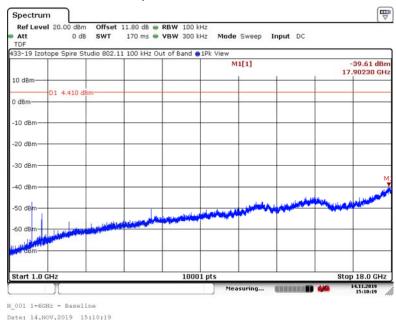
#### B1.2.2. Measurement Results, LF: Vertical Receive Antenna



Page 70 of 75







### Appendix B

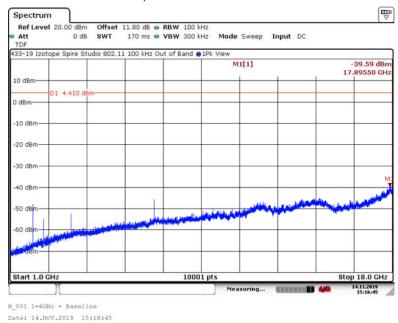
# B1. Emissions in Non-restricted Frequency Bands (30 MHz to 25 GHz) (continued)

B1.2. Emissions in Non-restricted Frequency Bands (1 GHz – 18 GHz) Test Results B1.2.3. Measurement Results, MF: Horizontal Receive Antenna

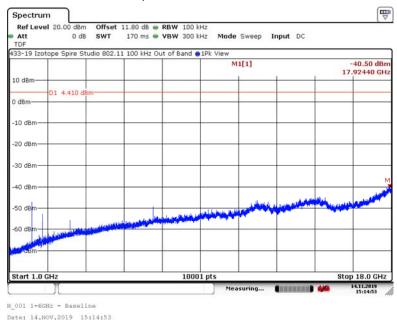


B1.2.4. Measurement Results, MF: Vertical Receive Antenna









# Appendix B

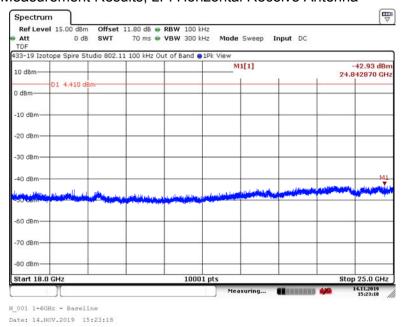
# B1. Emissions in Non-restricted Frequency Bands (30 MHz to 25 GHz) (continued)

B1.2. Emissions in Non-restricted Frequency Bands (1 GHz – 18 GHz) Test Results B1.2.5. Measurement Results, HF: Horizontal Receive Antenna

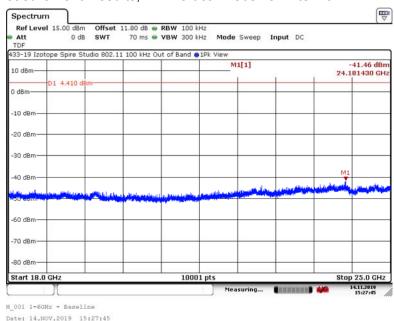


B1.2.6. Measurement Results, HF: Vertical Receive Antenna









# Appendix B

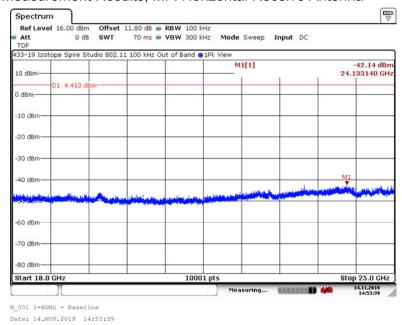
# B1. Emissions in Non-restricted Frequency Bands (30 MHz to 25 GHz) (continued)

B1.3. Emissions in Non-restricted Frequency Bands (18 GHz – 25 GHz) Test Results B1.3.1. Measurement Results, LF: Horizontal Receive Antenna

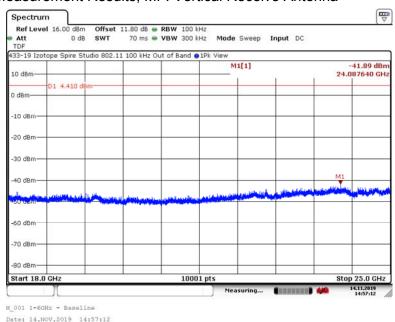


B1.3.2 Measurement Results, LF: Vertical Receive Antenna









### Appendix B

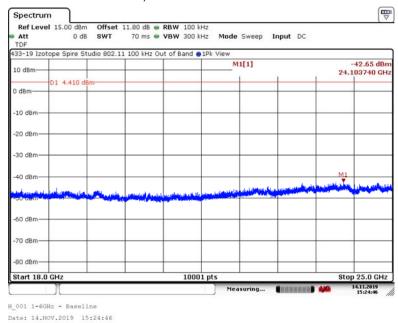
# B1. Emissions in Non-restricted Frequency Bands (30 MHz to 25 GHz) (continued)

B1.3. Emissions in Non-restricted Frequency Bands (18 GHz – 25 GHz) Test Results B1.3.3. Measurement Results, MF: Horizontal Receive Antenna

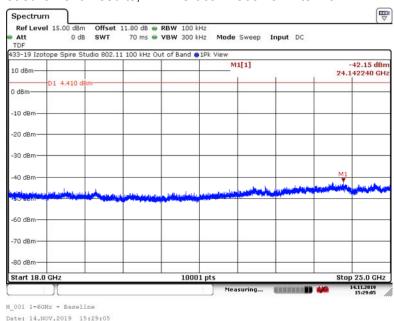


B1.3.4 Measurement Results, MF: Vertical Receive Antenna









### Appendix B

# B1. Emissions in Non-restricted Frequency Bands (30 MHz to 25 GHz) (continued)

B1.3. Emissions in Non-restricted Frequency Bands (18 GHz – 25 GHz) Test Results B1.3.5. Measurement Results, HF: Horizontal Receive Antenna



B1.3.6 Measurement Results, HF: Vertical Receive Antenna

