

Report on the Radio Testing

For

Sound Devices LLC

on

A20-TX

Report no. TRA-061998-47-13A

5th December 2023

RF993 1.0

Report Number: TRA-061998-47-13A
Issue: A

REPORT ON THE RADIO TESTING OF A
Sound Devices LLC
A20-TX
WITH RESPECT TO SPECIFICATION
FCC 47CFR Part 74 Subpart H

TEST DATE: 11th July to 6th September 2023

Tested by: M Else/S Hodgkinson

Written by:

S Hodgkinson
Radio Test Engineer

Approved by:

John Charters
Lab Manager

Date: 5th December 2023

Disclaimers:

- [1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE
- [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

1 Revision Record

<i>Issue Number</i>	<i>Issue Date</i>	<i>Revision History</i>
A	5th December 2023	Original

2 Summary

TEST REPORT NUMBER: TRA-061998-47-13A

WORKS ORDER NUMBER: TRA-061998-00

PURPOSE OF TEST: Certification

TEST SPECIFICATION: 47CFRPart 74 Subpart H

EQUIPMENT UNDER TEST (EUT): A20-TX

FCC IDENTIFIER: 2AKLX-9808

EUT SERIAL NUMBER: SP0223137019

MANUFACTURER/AGENT: Sound Devices LLC

ADDRESS: E7556 State Road 23 and 33
Reedsburg
WI 53959

CLIENT CONTACT: Lee Stone
 lee.stone@audioltd.com

ORDER NUMBER: 73795

TEST DATE: 11th July to 6th September 2023

TESTED BY: M Else/S Hodgkinson
Element

2.1 Test Summary

Test Method and Description	Requirement Clause 47CFR Part 74	Applicable to this equipment	Result / Note
Conducted Power Output	2.1046	<input checked="" type="checkbox"/>	Pass
Spurious Emissions Emission Mask	2.1051	<input checked="" type="checkbox"/>	Pass
Field Strength of Spurious Emissions	2.1053	<input checked="" type="checkbox"/>	Pass
Bandwidth Limitations	2.1049	<input checked="" type="checkbox"/>	Pass
Frequency Stability	2.1055	<input checked="" type="checkbox"/>	Pass

Specific Note:

1. The EUT is a battery powered device

General Notes:

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

The decision rule for compliance is not inherent within this test specification and compliance is based on the customer requesting a simple acceptance rule based on understanding and acceptance of Elements Measurement Uncertainty values.

3 Contents

1	Revision Record	3
2	Summary	4
2.1	Test Summary	5
3	Contents	6
4	Introduction	7
5	Test Specifications	8
5.1	Normative References	8
5.2	Deviations from Test Standards	8
6	Glossary of Terms	9
7	Equipment under Test	10
7.1	EUT Identification	10
7.2	System Equipment.....	10
7.3	EUT Mode of Operation.....	10
7.4	EUT Radio Parameters.....	10
7.4.1	General.....	10
7.4.2	Antennas	10
7.5	EUT Description.....	10
8	Modifications.....	11
9	EUT Test Setup	12
9.1	Block Diagram	12
9.2	General Set-up Photograph.....	13
9.3	Measurement software	13
10	General Technical Parameters	14
10.1	Normal Conditions	14
10.2	Extreme Test Conditions	14
11	Conducted output power.....	15
11.1	Definition.....	15
11.2	Test Parameters	15
11.3	Test Limit.....	16
11.4	Test Method.....	16
11.5	Test Equipment.....	16
11.6	Test Results.....	17
12	Emissions Mask.....	18
12.1	Definition.....	18
12.2	Test Parameters	18
12.3	Test Limit.....	18
12.4	Test Method.....	19
12.5	Test Equipment.....	19
12.6	Test Results.....	20
13	Field strength of Spurious Emissions	23
13.1	Definitions.....	23
13.2	Test Parameters	23
13.3	Test Limits	24
13.4	Test Method.....	25
13.5	Test Equipment.....	26
13.6	Test Results.....	27
14	Bandwidth Limitations.....	30
14.1	Definition.....	30
14.2	Test Parameters	30
14.3	Test Limit.....	30
14.4	Test Method.....	31
14.5	Test Equipment.....	31
14.6	Test Results.....	32
15	Frequency stability.....	33
15.1	Definition.....	33
15.2	Test Parameters	33
15.3	Voltage Conditions (Extreme Environment).....	33
15.4	Test Limit.....	33
15.5	Test Method.....	34
15.6	Test Equipment.....	35
15.7	Test Results.....	35
16	Measurement Uncertainty.....	36

4 Introduction

This report TRA-061998-47-13A presents the results of the Radio testing on a Sound Devices LLC, A20-TX to specification 47CFR74 Experimental Radio, Auxiliary, Special Broadcast and Other Program Distributional services.

The testing was carried out for Sound Devices LLC by Element, at the address detailed below.

<input type="checkbox"/> Element Hull Unit E South Orbital Trading Park Hedon Road Hull HU9 1NJ UK	<input checked="" type="checkbox"/> Element Skelmersdale Unit 1 Pendle Place Skelmersdale West Lancashire WN8 9PN UK	<input type="checkbox"/> Element Surrey Hills Unit 15 B Henley Business Park Pirbright Road Normandy Guildford GU3 2DX UK
--	--	--

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

The test laboratory is accredited for the above sites under the following US-UK MRA, Designation numbers.

Element Hull	UK2007
Element Skelmersdale	UK2020

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

5 Test Specifications

5.1 *Normative References*

- FCC 47 CFR Ch. I – Part 2 - Code of Federal Regulations, Title 47, Part 2, “Frequency allocations and Radio Telemetry Matters; General Rules and Regulations”
- FCC 47 CFR Ch. I – Part 74 - Code of Federal Regulations, Title 47, Part 74 Experimental Radio, Auxiliary, Special Broadcast and Other Program Distributional Services.
- KDB 206256 D01 Wireless Microphone Certification v02r01,
- KDB 971168 D01 Power Meas License Digital Systems v03r01
- ANSI C63.26-2015 American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

5.2 *Deviations from Test Standards*

There were no deviations from the test standard.

6 Glossary of Terms

§	denotes a section reference from the standard, not this document
AC	Alternating Current
ANSI	American National Standards Institute
BW	bandwidth
C	Celsius
CFR	Code of Federal Regulations
CW	Continuous Wave
dB	decibel
dBm	dB relative to 1 milliwatt
DC	Direct Current
DSSS	Direct Sequence Spread Spectrum
EIRP	Equivalent Isotropically Radiated Power
ERP	Effective Radiated Power
EUT	Equipment under Test
FCC	Federal Communications Commission
FHSS	Frequency Hopping Spread Spectrum
Hz	hertz
IC	Industry Canada
ITU	International Telecommunication Union
LBT	Listen before Talk
m	metre
max	maximum
MIMO	Multiple Input and Multiple Output
min	minimum
MRA	Mutual Recognition Agreement
N/A	Not Applicable
PCB	Printed Circuit Board
PDF	Portable Document Format
Pt-mpt	Point-to-multipoint
Pt-pt	Point-to-point
RF	Radio Frequency
RH	Relative Humidity
RMS	Root Mean Square
Rx	receiver
s	second
SVSWR	Site Voltage Standing Wave Ratio
Tx	transmitter
UKAS	United Kingdom Accreditation Service
V	volt
W	watt
Ω	ohm

7 Equipment under Test

7.1 EUT Identification

- Name: A20-TX
- Serial Number: SP0223137019
- Model Number: 9808
- Software Revision: 7.50.8469
- Build Level / Revision Number: 02

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

HP Spectre Laptop

7.3 EUT Mode of Operation

Transmission: The channels were selected using the client supplied test scripts

7.4 EUT Radio Parameters

7.4.1 General

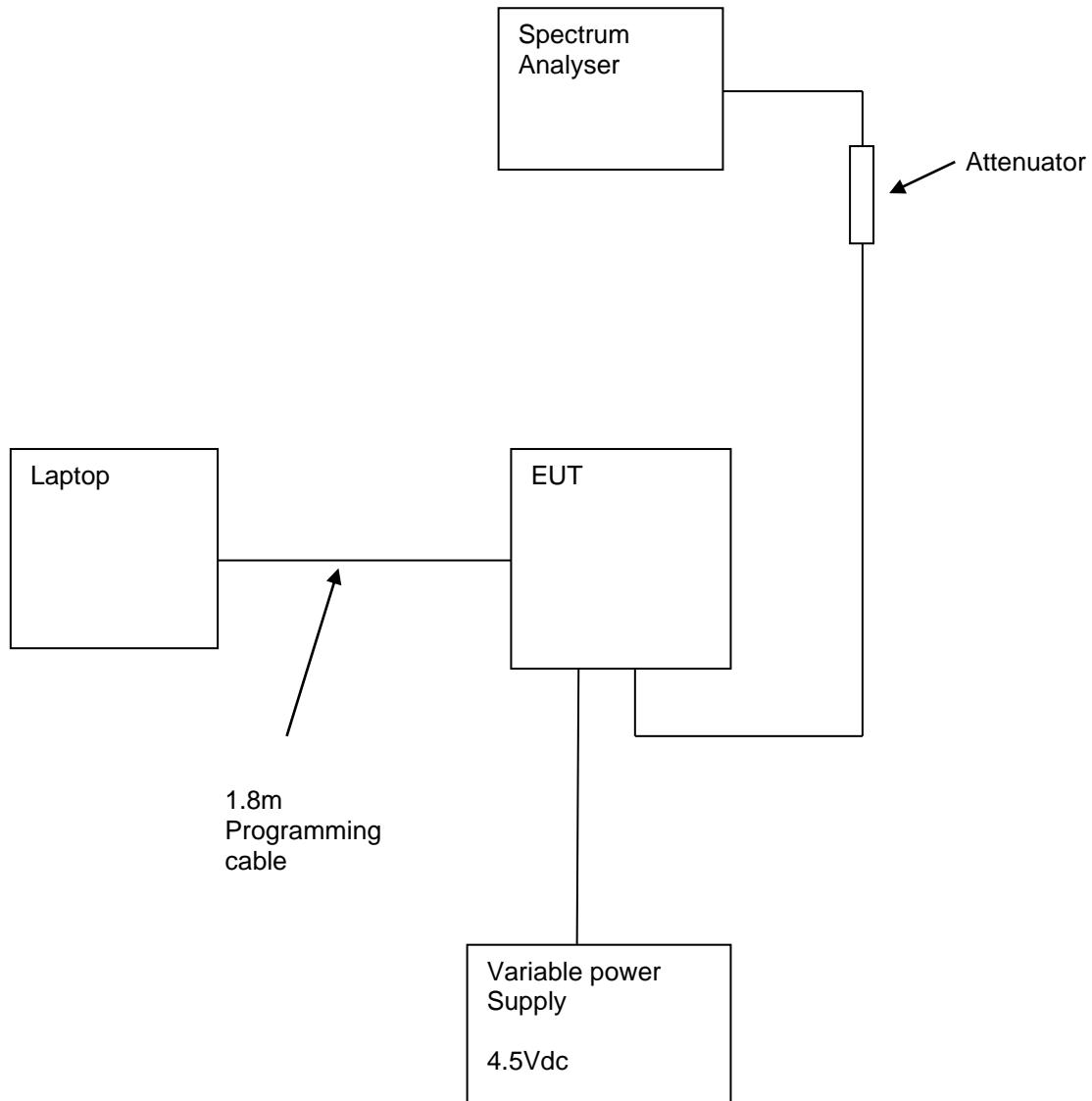
Frequency of operation:	174 MHz - 216 MHz
Modulation type(s):	COFDM
Occupied channel bandwidth(s):	192 kHz
Channel spacing:	200 kHz
ITU emission designator(s):	200KG2E
Rated output power(s):	20 mW
Nominal Supply Voltage:	4.5 Vdc from batteries
Duty cycle:	100%

7.4.2 Antennas

Type:	1/4 Wave whip antenna
Gain:	2.15 dBi

7.5 EUT Description

The EUT is a professional (Body-worn) Wireless Microphone Transmitter, which incorporates the following radios, BTLE, Proprietary LoRa and various frequency bands for the digital Wireless Audio, this report is reporting on the Digital Wireless Audio radio


8 Modifications

No modifications were performed during this assessment.

9 EUT Test Setup

9.1 Block Diagram

The following diagram shows basic EUT interconnections:

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

9.3 Measurement software

Where applicable, the following software was used to perform measurements contained within this report.

Element Emissions R5
Element Transmitter Bench Test
ETS Lindgren EMPower V1.0.4.2

10 General Technical Parameters

10.1 Normal Conditions

The EUT was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was 4.5 Vdc from batteries .

10.2 Extreme Test Conditions

Extreme temperatures and voltages are required to be tested, the following extremes were used:

<i>Voltage</i>	<i>Temperature</i>
Nominal	-30°C to +50°C in 10°C steps
85% Nominal	20°C
100% Nominal	20°C

Extreme voltage range as Per TIA-603-E 1.4.4.5, specified by the manufacturer.

11 Conducted output power

11.1 *Definition*

The conducted carrier power output rating for a transmitter is the power available at the output terminals of the transmitter when the output terminals are connected to the standard transmitter load.

11.2 *Test Parameters*

Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	RSS-210; Annex G (G.1) ETSI EN 300 422-1 Part 74.861(e)(1)(i)
Frequencies Measured:	174.10 MHz / 195.00 MHz/ 215.90 MHz
EUT Channel Bandwidths:	200 kHz
Deviations From Standard:	None
Measurement BW:	1 MHz
Spectrum Analyzer Video BW:	3 MHz
Measurement Detector:	RMS Average

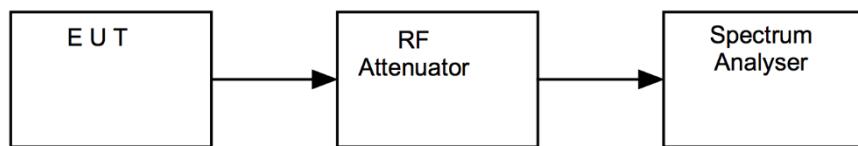
Environmental Conditions (Normal Environment)

Temperature: 20 °C	+15 °C to +35 °C (as declared)
Humidity: 56 % RH	20 % RH to 75 % RH (as declared)

11.3 Test Limit

Part 74.861(e)(1)

(e) For low power auxiliary stations operating in the 600 MHz duplex gap and the bands allocated for TV broadcasting, the following technical requirements apply:

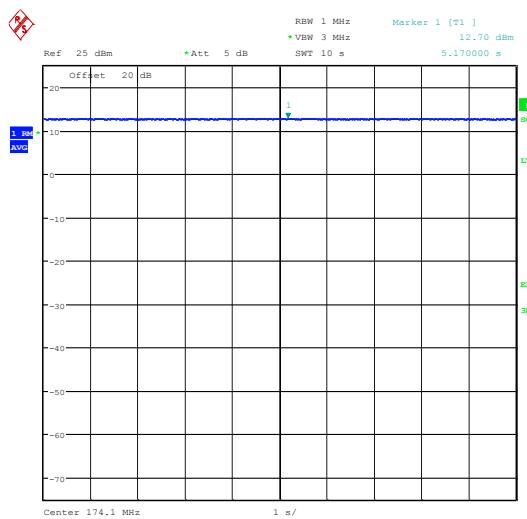

- (1) The power may not exceed the following values.
 - (i) 54–72, 76–88, and 174–216 MHz bands: 50 mW EIRP.
 - (ii) 470–608 and 614–698: 250 mW conducted power.
 - (iii) 600 MHz duplex gap: 20 mW EIRP.

11.4 Test Method

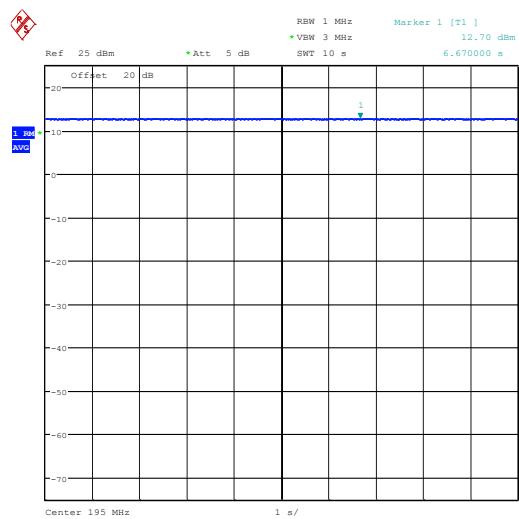
With the EUT setup as per section 9 of this report and connected as per Figure i, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure i Test Setup

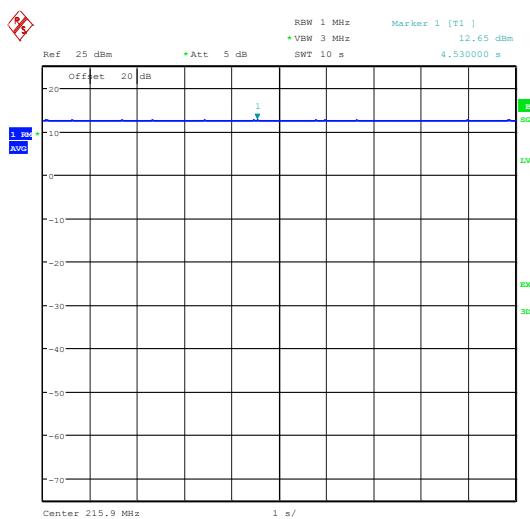

11.5 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
FSU46	R&S	Spectrum Analyser	REF910	2024-01-10
20dB SMA	AtlanTech	Attenuator	U631	Cal in use
SMBV100A	R&S	Signal Generator	U674	2024-05-02
IPS 303A	ISO-Tech	Power Supply	U748	Use REF976
34405a	Agilent	Multimeter	REF976	2024-01-24


11.6 Test Results

Tx RF Output power setting: 13.0dBm: 20.0mW							
Channel Frequency (MHz)	Conducted Carrier Output Power (dBm)	Conducted Carrier Output Power (mW)	Rated Output Power (mW)	Antenna Gain (dBi)	EIRP Result (mW)	EIRP Limit (mW)	Result
174.10	12.70	18.62	20.0	2.15	30.55	50.0	Pass
195.00	12.70	18.62	20.0	2.15	30.55	50.0	Pass
215.90	12.65	18.41	20.0	2.15	30.20	50.0	Pass

174.10 MHz


195.00 MHz

Date: 8.AUG.2023 10:13:49

Date: 8.AUG.2023 10:35:53

215.90 MHz

Date: 8.AUG.2023 10:44:03

12 Emissions Mask

12.1 Definition

Necessary bandwidth. For a given class of emission, the minimum value of the occupied bandwidth sufficient to ensure the transmission of information at the rate and with the quality required for the system employed, under specified conditions. Emissions useful for the good functioning of the receiving equipment, as for example, the emission corresponding to the carrier of reduced carrier systems, shall be included in the necessary bandwidth.

12.2 Test Parameters

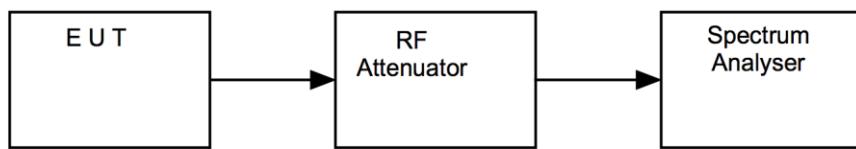
Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	Part 74.861(e)(7)/ ETSI EN 300 422-1 v1.4.2 (2011-08) Clause 8.3.
EUT Channels / Frequencies Measured:	174.1 MHz / 195.0 MHz / 215.9 MHz
EUT Channel Bandwidths:	200 kHz
Deviations from Standard:	None
Measurement BW:	1 kHz
Measurement Detector:	RMS Average/RMS Peak Hold
Measurement Range:	2 MHz

Environmental Conditions (Normal Environment)

Temperature: 20 °C	+15 °C to +35 °C (as declared)
Humidity: 56 % RH	20 % RH to 75 % RH (as declared)
Supply: 4.5 V/dc	

12.3 Test Limit

Part 74.861(e)(7)

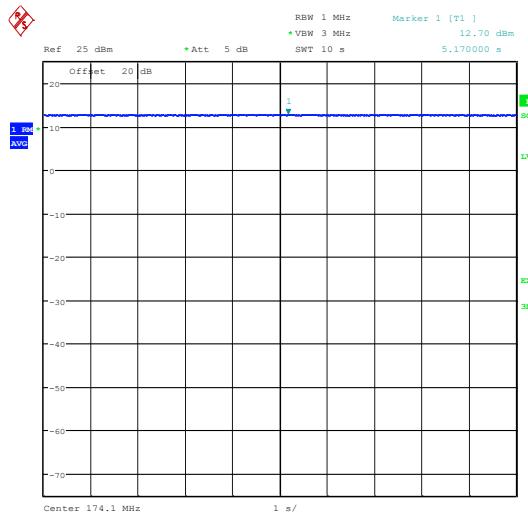

Technical characteristics and methods of measurement. Digital emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in section 8.3.2.2 (Figure 4) of the European Telecommunications Institute Standard ETSI EN 300 422-1 v1.4.2 (2011-08).

12.4 Test Method

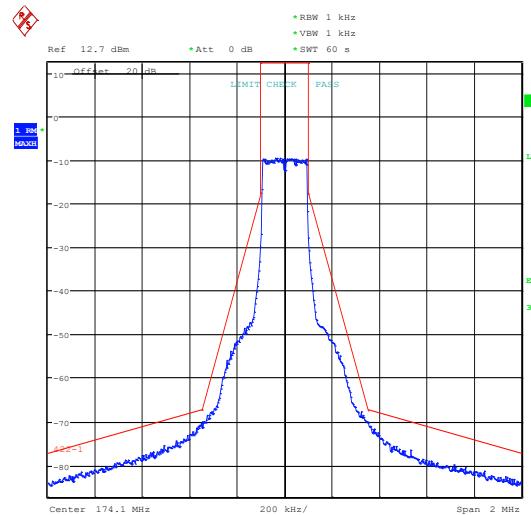
With the EUT setup as per section 9 of this report and connected as per Figure ii, the emissions from the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure ii Test Setup

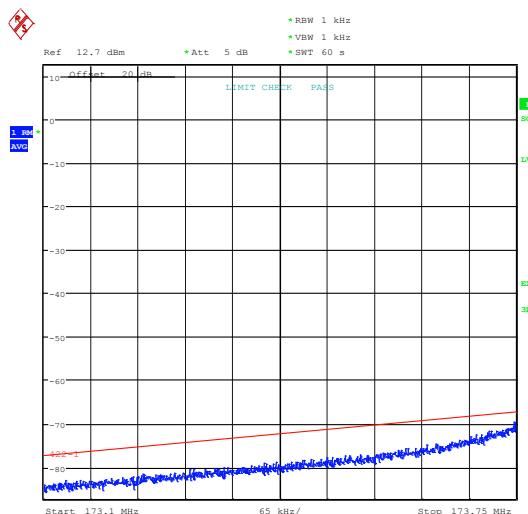

12.5 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
FSU46	R&S	Spectrum Analyser	REF910	2024-01-10
20dB SMA	AtlanTech	Attenuator	U631	Cal in use
SMBV100A	R&S	Signal Generator	U674	2024-05-02
IPS 303A	ISO-Tech	Power Supply	U748	Use REF976
34405a	Agilent	Multimeter	REF976	2024-01-24


12.6 Test Results

174.1 MHz

REF Step1

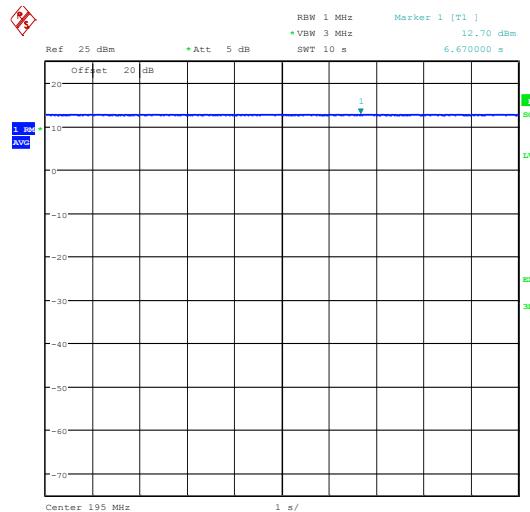

Step 2


Date: 8.AUG.2023 10:13:49

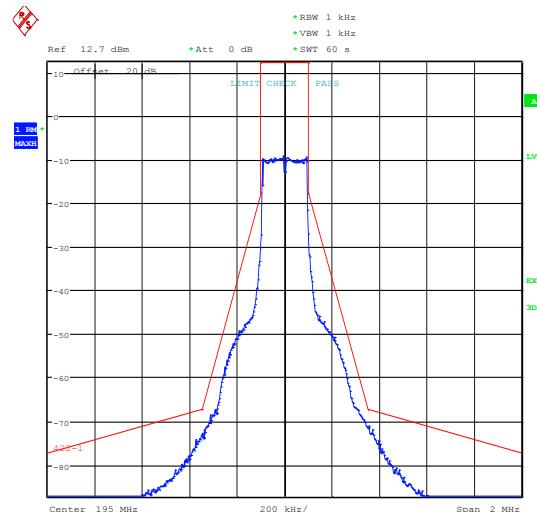
Date: 2.AUG.2023 13:17:38

Step 3 Lower

Step 3 Higher

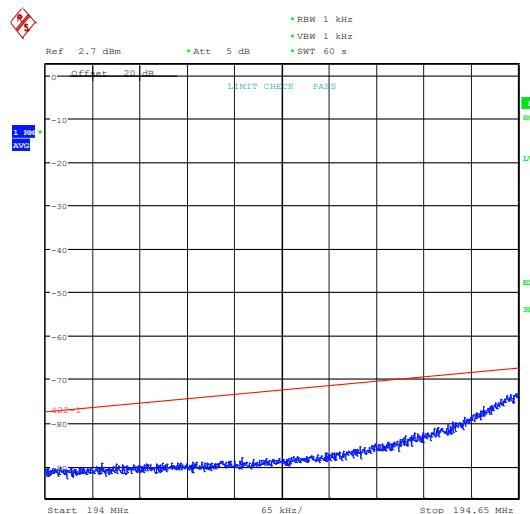


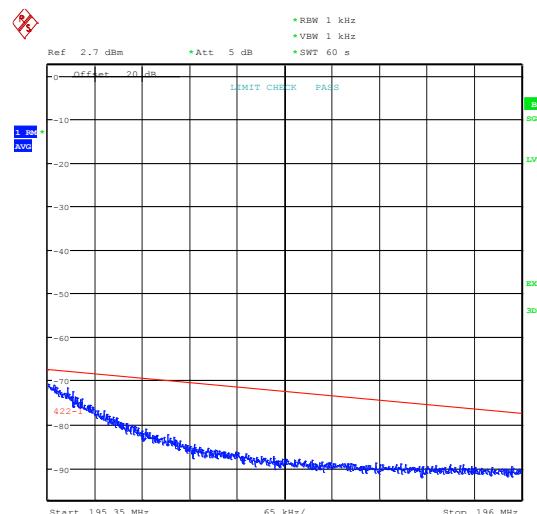
Date: 6.SEP.2023 16:02:50


Date: 6.SEP.2023 16:08:04

195.0 MHz

REF Step1

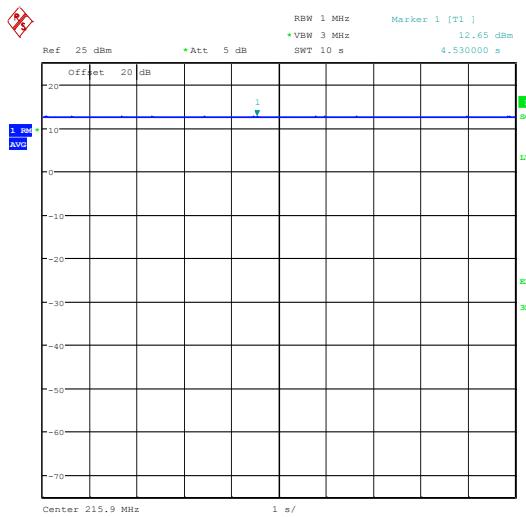

Step 2


Date: 8.AUG.2023 10:35:53

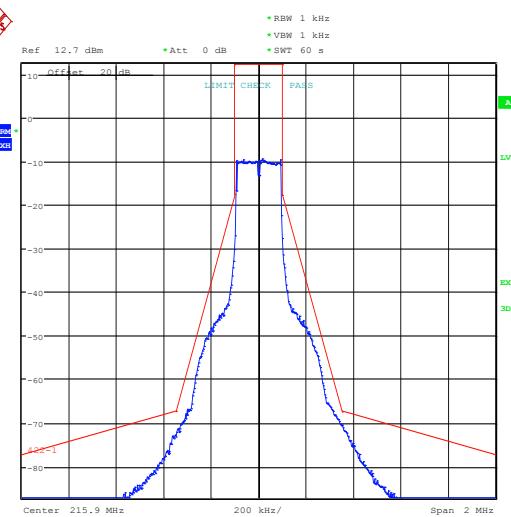
Date: 2.AUG.2023 15:37:01

Step 3 Lower

Step 3 Higher

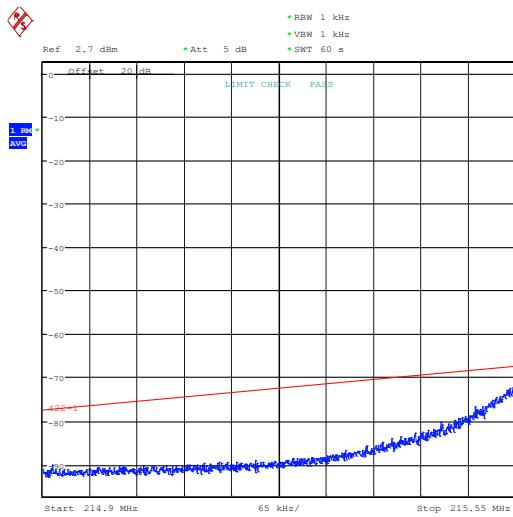


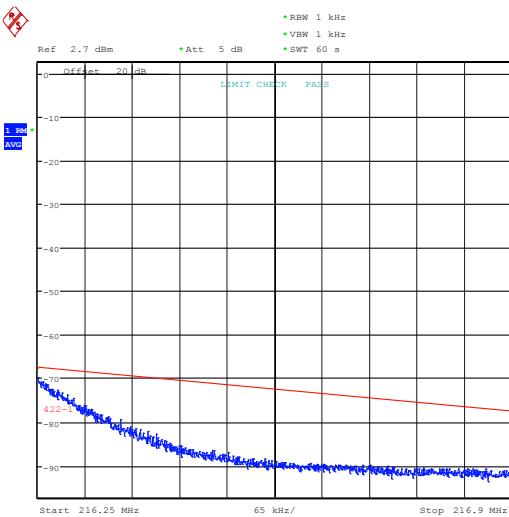
Date: 6.SEP.2023 16:25:12


Date: 6.SEP.2023 16:32:44

215.9 MHz

REF Step1


Step 2


Date: 8.AUG.2023 10:44:03

Date: 2.AUG.2023 16:12:10

Step 3 Lower

Step 3 Higher

Date: 6.SEP.2023 16:40:51

Date: 6.SEP.2023 16:48:11

13 Field strength of Spurious Emissions

13.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

13.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	SK03 Radio Chamber
Test Standards and Clauses:	FCC Part 74.861 Clause (d)(4)(ii); FCC Part 74.861 Clause (e)(7) Referencing ETSI EN 300 422-1 V1.4.2 (2011-08) Clause 8.4
EUT Frequencies Measured:	174.1 MHz, 195.0 MHz & 215.9 MHz
Deviations from Standard:	None
Measurement BW:	30 MHz to 1 GHz: 120 kHz; Above 1 GHz: 1 MHz
Measurement Detector:	Up to 1 GHz: Peak; Above 1 GHz: Peak

Environmental Conditions (Normal Environment)

Temperature: 23 °C	+15 °C to +35 °C (as declared)
Humidity: 49 % RH	20 % RH to 75 % RH (as declared)
Supply: 4.5 Vdc	4.5 Vdc (as declared)

13.3 Test Limits

FCC Part 74.861 (d)(4)(ii)

Microphones in the 25 MHz to 3 GHz frequency range; part 1: Technical characteristics and methods of measurement. Beyond one megahertz below and above the carrier frequency, emissions shall comply with the limits specified in section 8.4 of ETSI EN 300 422-1 v1.4.2.

FCC Part 74.861 (e)(7)

Analog emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in section 8.3.1.2 of the European Telecommunications Institute Standard ETSI EN 300 422-1 v1.4.2 (2011-08), Electromagnetic compatibility and Radio spectrum Matters (ERM); Wireless microphones in the 25 MHz to 3 GHz frequency range; part 1: Technical characteristics and methods of measurement. Digital emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in section 8.3.2.2 (Figure 4) of the European Telecommunications Institute Standard ETSI EN 300 422-1 v1.4.2 (2011-08), Electromagnetic compatibility and Radio spectrum Matters (ERM); Wireless microphones in the 25 MHz to 3 GHz frequency range; part 1: Technical characteristics and methods of measurement. Beyond one megahertz below and above the carrier frequency, emissions shall comply with the limits specified in section 8.4 of ETSI EN 300 422-1 v1.4.2 (2011-08). The requirements of this paragraph (e)(7) shall not apply to applications for certification of equipment in these bands until nine months after release of the Commission's Channel Reassignment Public Notice, as defined in § 73.3700(a)(2) of this chapter.

Limits for spurious emissions EN 300 422-1 V1.4.2 (2011-08)

State	Frequency		
	47 MHz to 74 MHz 87,5 MHz to 137 MHz 174 MHz to 230 MHz 470 MHz to 862 MHz	Other Frequencies below 1 000 MHz	Frequencies above 1 000 MHz
Operation	4 nW	250 nW	1 μ W
Standby	2 nW	2 nW	20 nW

13.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iii, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

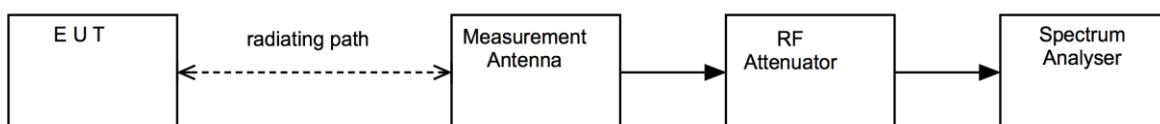
If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in dB μ V/m at the regulatory distance, using:

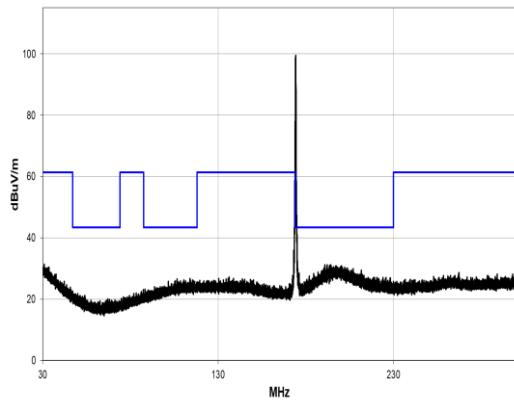
$$FS = PR + CL + AF - PA + DC - CF$$

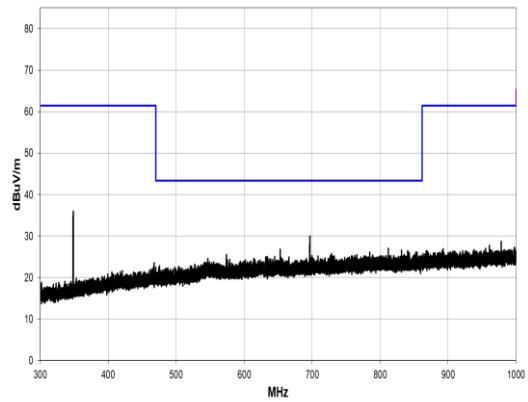

Factor = CL + AF - PA

Where,

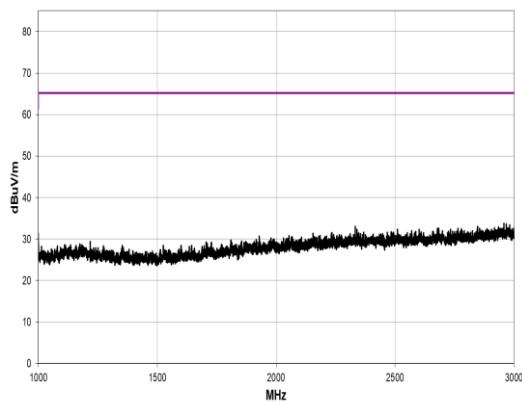
PR is the power recorded on the receiver / spectrum analyzer in dB μ V;
 CL is the cable loss in dB;
 AF is the test antenna factor in dB/m;
 PA is the pre-amplifier gain in dB (where used);
 DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);
 CF is the distance factor in dB (where measurement distance different to limit distance);

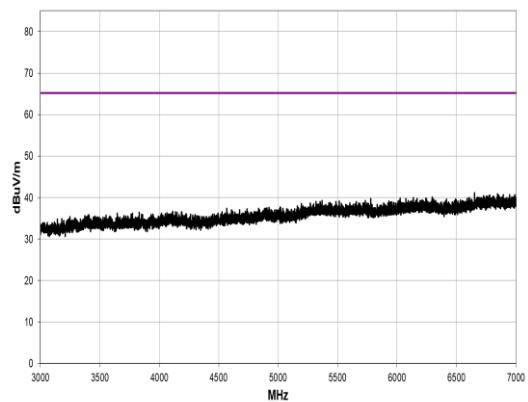
This field strength value is then compared with the regulatory limit.

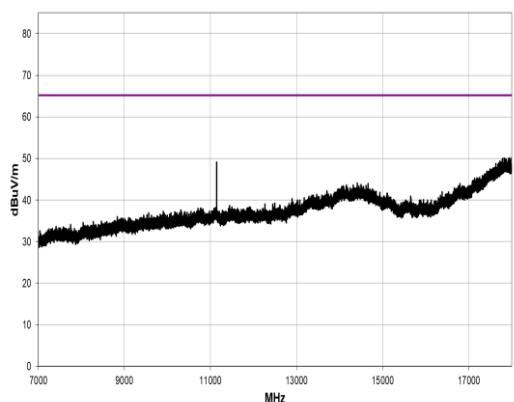

Figure iii Test Setup

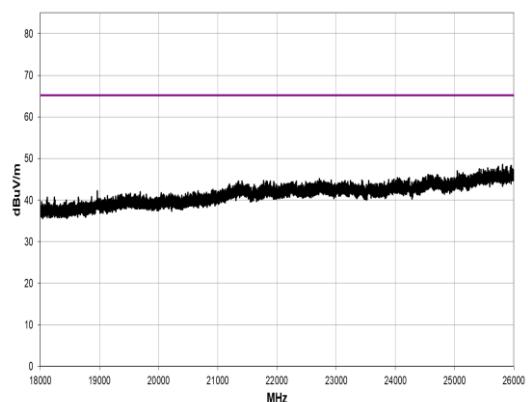

13.5 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
Spectrum Analyser	R&S	FSU26	U405	2024-05-22
Signal Generator	R&S	SMB100A	U677	2024-02-03
Bilog	Chase	CBL611/B	U573	2024-10-14
Log Periodic Ant	Chase	UPA6108	L203	2024-06-15
PreAmp	Watkins Johnson	6201-69	U372	2024-03-07
1-18GHz Horn	EMCO	3115	L139	2024-07-01
Horn 18-26GHz (&U330)	Flann	20240-20	L300	2024-06-30
Horn Antenna	EMCO	3115	L138	2024-05-23
Pre Amp	Agilent	8449B	U457	2024-01-24
High Pass Filter	Mini-Circuits	VHF-1500+	U519	2024-02-08
High Pass Filter	Atlantic Microwave	AFH-07000	U558	2024-02-13
High Pass Filter 1.1-4 GHz	Atlantic Microwave	F-HPC5-730008-S5S5	U719	2024-02-09
High Pass Filter 300-1 GHz	Mini-Circuits	NHP-300	RFG 351-8	Cal In Use
Radiated Test Software	Element	Emissions R5	REF9000	Cal not required
Radio Chamber - PP	Rainford EMC	ATS	REF940	2023-11-06

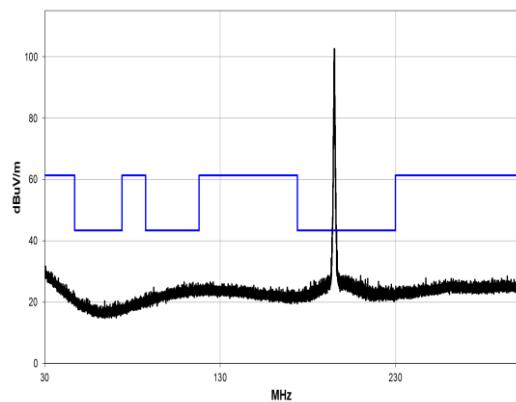

13.6 Test Results


30 MHz to 300 MHz

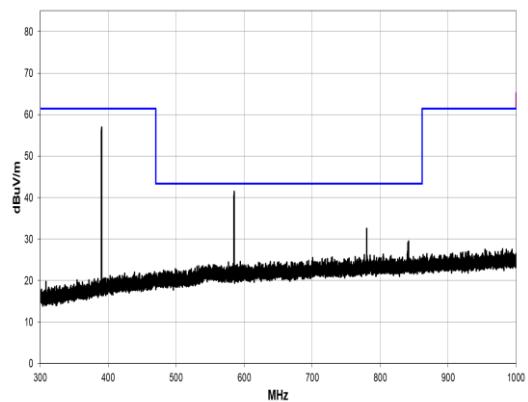

300 MHz to 1 GHz


1 GHz to 3 GHz

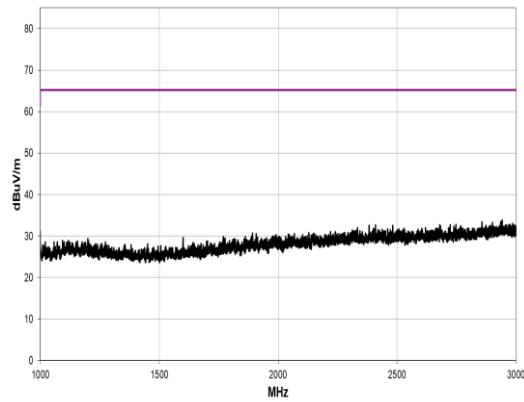
3 GHz to 7 GHz

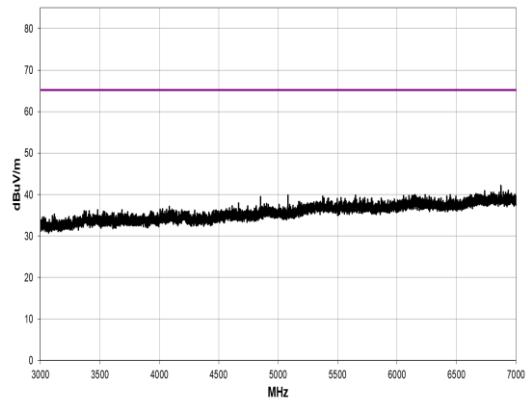


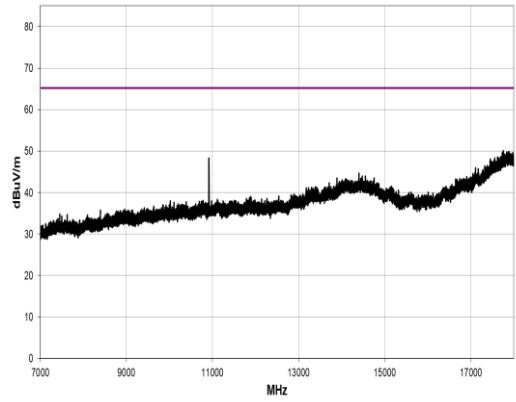
7 GHz to 18 GHz

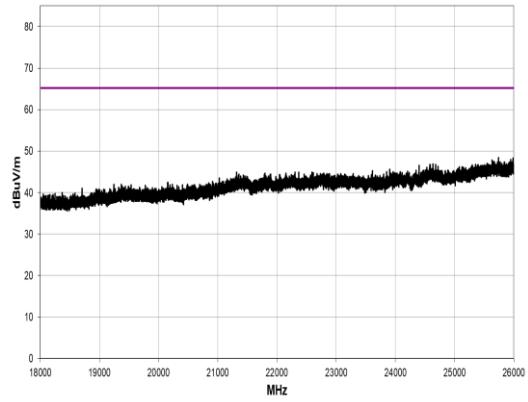


18 GHz to 26 GHz

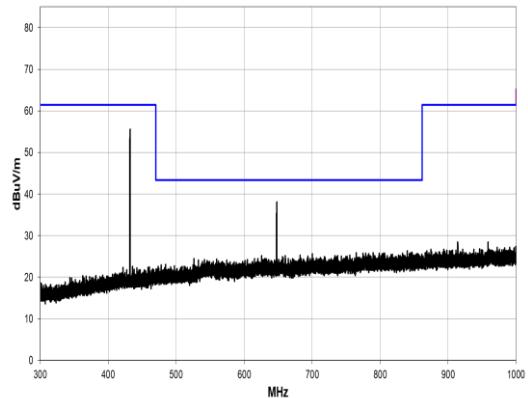
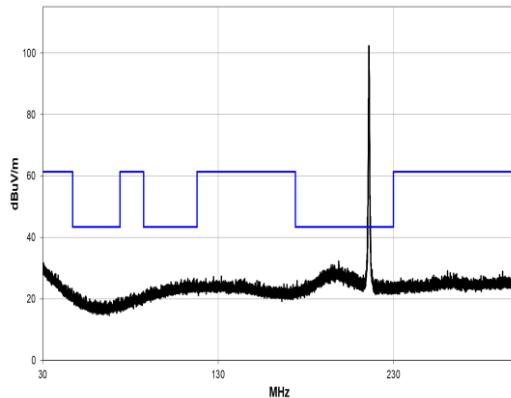

FREQUENCY: 174.1 MHz; POWER SETTING: 20 mW					
<i>Emission</i>	<i>Frequency (MHz)</i>	<i>Level (dBm)</i>	<i>Limit (dBm)</i>	<i>Margin (dB)</i>	<i>Result</i>
1	11142.38	-45.10	-30.00	-15.10	PASS

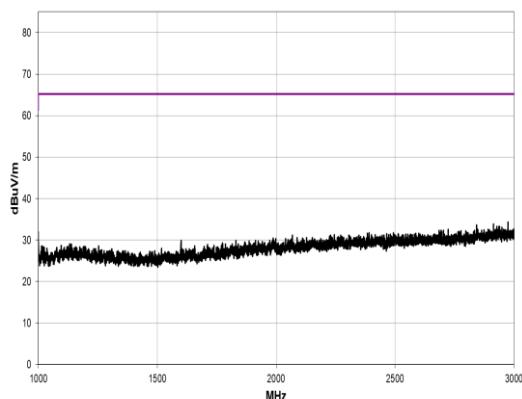

30 MHz to 300 MHz


300 MHz to 1 GHz

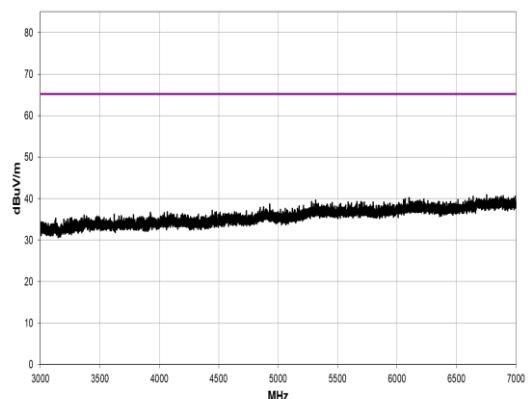

1 GHz to 3 GHz

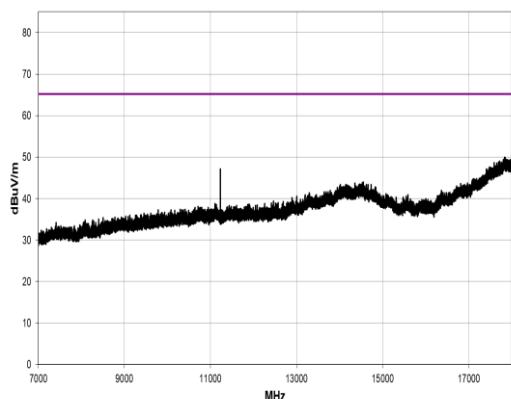
3 GHz to 7 GHz

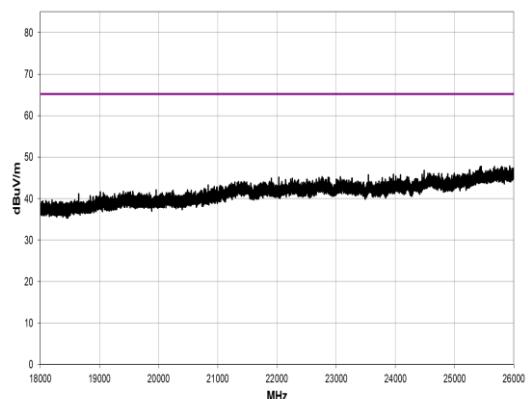


7 GHz to 18 GHz


18 GHz to 26 GHz

FREQUENCY: 195.0 MHz; POWER SETTING: 20 mW					
Emission	Frequency (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)	Result
1	390.03	-51.05	-36.00	-15.05	PASS
2	584.98	-67.91	-54.00	-13.91	PASS
3	10920.02	-44.20	-30.00	-14.20	PASS


BAND: 174.0 MHz-216.0 MHz


30 MHz to 300 MHz


300 MHz to 1 GHz

1 GHz to 3 GHz

3 GHz to 7 GHz

7 GHz to 18 GHz

18 GHz to 26 GHz

FREQUENCY: 215.9 MHz; POWER SETTING: 20 mW					
Emission	Frequency (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)	Result
1	431.83	-47.63	-36.00	-11.63	PASS
2	647.70	-65.15	-54.00	-11.15	PASS
3	11226.74	-45.76	-30.00	-15.76	PASS

14 Bandwidth Limitations

14.1 Definition

The 99% emission bandwidth is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained.

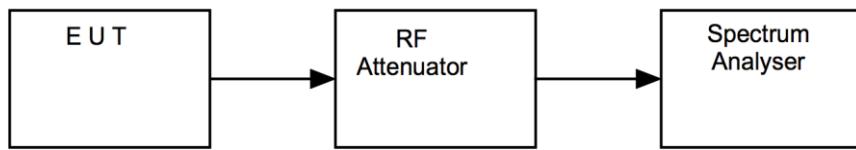
14.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	99% Bandwidth: RSS-Gen Clause 6.7 ANSI C63.26-2015, Clause 5.4
Frequencies Measured:	174.1 MHz / 195.0 MHz / 215.9 MHz
EUT Channel Bandwidths:	200 kHz
EUT Test Modulations:	1 kHz
Deviations From Standard:	None
Measurement BW:	2 kHz
Spectrum Analyzer Video BW:	10 kHz
Measurement Span:	500 kHz
Measurement Detector:	Peak

Environmental Conditions (Normal Environment)

Temperature: 20 °C	+15 °C to +35 °C (as declared)
Humidity: 56 % RH	20 % RH to 75 % RH (as declared)
Supply: 4.5 Vdc	

14.3 Test Limit

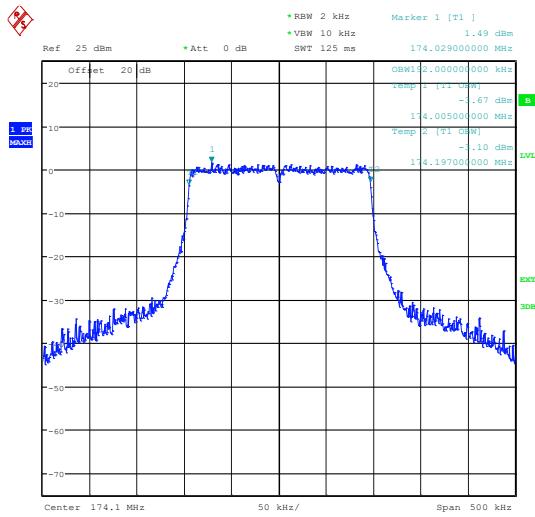

The wanted signal shall stay within the operating frequency band, and Authorized bandwidth.

Frequency bands (MHz)	Authorized bandwidth (kHz)
54-72	
76-88	
174-216	
470-608	200 kHz
614-616	
653-663	

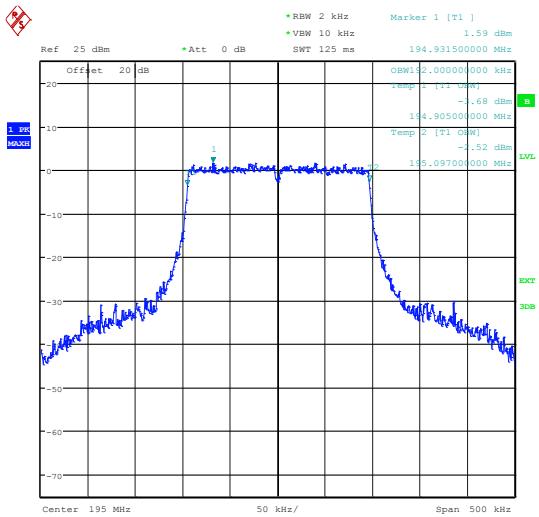
14.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the bandwidth of the EUT was measured on a spectrum analyser.

Figure iv Test Setup

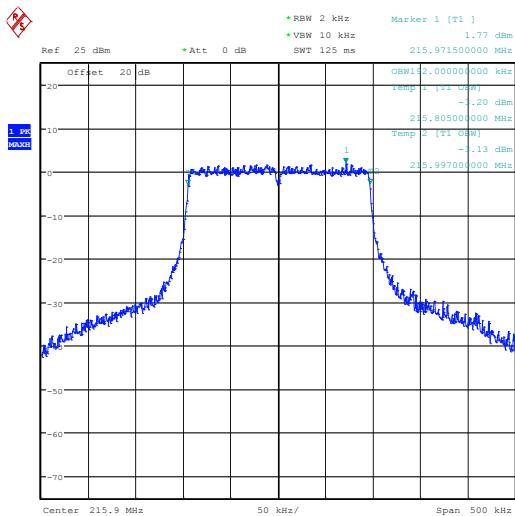

14.5 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
FSU46	R&S	Spectrum Analyser	REF910	2024-01-10
20dB SMA	AtlanTech	Attenuator	U631	Cal in use
SMBV100A	R&S	Signal Generator	U674	2024-05-02
IPS 303A	ISO-Tech	Power Supply	U748	Use REF976
34405a	Agilent	Multimeter	REF976	2024-01-24


14.6 Test Results

Channel Frequency (MHz)	F_L (MHz)	F_H (MHz)	99% Bandwidth (kHz)	Result
174.1	174.005000	174.197000	192.000000	PASS
195.0	194.905000	195.097000	192.000000	PASS
215.9	215.805000	215.997000	192.000000	PASS

174.1 MHz


195.0 MHz

Date: 2.AUG.2023 13:16:02

Date: 2.AUG.2023 15:27:00

215.9 MHz

15 Frequency stability

15.1 Definition

Frequency stability is a measure of frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at an appropriate reference temperature and the rated supply voltage.

15.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	Part 74.861(e)(4); Part 2.1055 RSS-210 Annex G; RSS-Gen
Frequencies Measured:	174.10 MHz / 195.00 MHz / 215.9 MHz
EUT Channel Bandwidths:	200 kHz
Deviations from Standard:	None
Measurement BW:	1 MHz
Spectrum Analyzer Video BW:	3 MHz
Measurement Detector:	RMS Average

Environmental Conditions (Normal Environment)

Temperature: 20 °C	+15 °C to +35 °C (as declared)
Humidity: 56 % RH	20 % RH to 75 % RH (as declared)
Voltage: 4.5 Vdc Via batteries	(as Declared)

15.3 Voltage Conditions (Extreme Environment)

V_{nominal}	4.5 Vdc
V_{minimum}	3.2 Vdc
V_{maximum}	4.5 Vdc

15.4 Test Limit

The frequency tolerance of the transmitter shall be 0.005 percent.

15.5 Test Method

When the measurement method of transmitter frequency stability is not stated in the applicable RSS or reference standards, the following conditions apply:

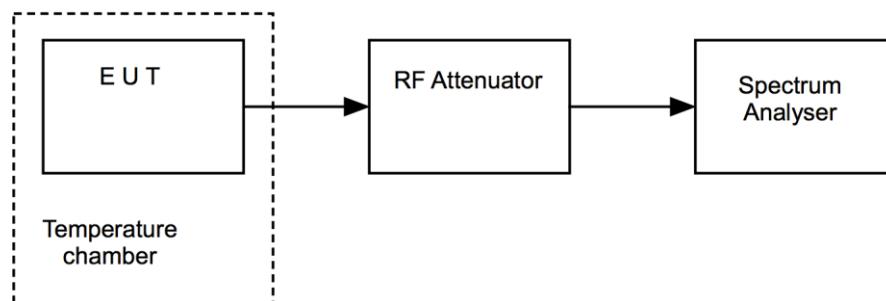
- (a) The reference temperature for radio transmitters is +20°C (+68°F).
- (b) A hand-held device that is only capable of operating using internal batteries shall be tested at the battery's nominal voltage, and again at the battery's operating end-point voltage, which shall be specified by the equipment manufacturer. For this test, either a battery or an external power supply can be used.
- (c) The operating carrier frequency shall be set up in accordance with the manufacturer's published operation and instruction manual prior to the commencement of these tests. No adjustment of any frequency-determining circuit element shall be made subsequent to this initial set-up.

With the transmitter installed in an environmental test chamber, the unmodulated carrier frequency and frequency stability shall be measured under the conditions specified below for licensed and licence-exempt devices, unless specified otherwise in the applicable RSS. A sufficient stabilization period at each temperature shall be used prior to each frequency measurement.

For licensed devices, the following measurement conditions apply:

- (a) at the temperatures of -30°C (-22°F), +20°C (+68°F) and +50°C (+122°F), and at the manufacturer's rated supply voltage.
- (b) at the temperature of +20°C (+68°F) and at $\pm 15\%$ of the manufacturer's rated supply voltage

For licence-exempt devices, the following conditions apply:


- (a) at the temperatures of -20°C (-4°F), +20°C (+68°F) and +50°C (+122°F), and at the manufacturer's rated supply voltage. General Requirements for Compliance of Radio Apparatus RSS-Gen 19
- (b) at the temperature of +20°C (+68°F) and at $\pm 15\%$ of the manufacturer's rated supply voltage

If the frequency stability limits are only met within a temperature range that is smaller than the range specified in (a) for licensed or licence-exempt devices, the frequency stability requirement will be deemed to be met if the transmitter is automatically prevented from operating outside this smaller temperature range and if the published operating characteristics for the equipment are revised to reflect this restricted temperature range.

If the device contains both licence and licence-exempt transmitter modules, the device's frequency stability shall be measured under the most stringent condition specified in the applicable RSS of the transmitter module.

The measurements were performed with a modulated signal,
The 99% occupied bandwidth was used to determine f_c using the formula $f_c = f_l + f_h / 2$
Measurements were made once temperature stability was achieved at each temperature.

Figure v Test Setup

15.6 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
FSU46	R&S	Spectrum Analyser	REF910	2024-01-10
20dB SMA	AtlanTech	Attenuator	U631	Cal in use
SMBV100A	R&S	Signal Generator	U674	2024-05-02
IPS 303A	ISO-Tech	Power Supply	U748	Use REF976
34405a	Agilent	Multimeter	REF976	2024-01-24
52 Series II	Fluke	Temperature Indicator	L426	2024-07-19
VT 4002	Votsch	Temperature Chamber	U521	Use L426 or U720

15.7 Test Results

EUT Frequency: 174.1 MHz						
Test Environment		Measured Frequency (MHz)	Frequency error (kHz)	Frequency error (ppm)	Limit (ppm)	Result
+50 C	V _{nominal}	174.101250	1.00	5.74	50.0	Pass
+20 C	V _{nominal}	174.101000	1.00	5.74	50.0	Pass
+20 C	V _{Minimal}	174.101000	1.00	5.74	50.0	Pass
-30 C	V _{nominal}	174.101500	1.00	5.74		Pass

EUT Frequency: 195.0 MHz						
Test Environment		Measured Frequency (MHz)	Frequency error (kHz)	Frequency error (ppm)	Limit (ppm)	Result
+50 C	V _{nominal}	195.001250	1.25	6.41	50.0	Pass
+20 C	V _{nominal}	195.001000	1.00	5.13	50.0	Pass
+20 C	V _{Minimal}	195.001000	1.00	5.13	50.0	Pass
-30 C	V _{nominal}	195.001500	1.50	7.69		Pass

EUT Frequency: 215.9 MHz						
Test Environment		Measured Frequency (MHz)	Frequency error (kHz)	Frequency error (ppm)	Limit (ppm)	Result
+50 C	V _{nominal}	215.901000	1.00	4.63	50.0	Pass
+20 C	V _{nominal}	215.901000	1.00	4.63	50.0	Pass
+20 C	V _{Minimal}	215.901000	1.00	4.63	50.0	Pass
-30 C	V _{nominal}	215.901500	1.50	6.95		Pass

16 Measurement Uncertainty

Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence where no required test level exists.

Test/Measurement	Budget Number	MU
Conducted RF Power, Power Spectral Density, Adjacent Channel Power and Spurious emissions		
Absolute RF power (via antenna connector) DARE RPR3006W Power Head	MU4001	0.9 dB
Carrier Power and PSD - Spectrum Analysers	MU4004	0.9 dB
Adjacent Channel Power	MU4002	1.9 dB
Transmitter conducted spurious emissions	MU4041	0.9 dB
Conducted power and spurious emissions 40 GHz to 50 GHz	MU4042	2.4 dB
Conducted power and spurious emissions 50 GHz to 75 GHz	MU4043	2.5 dB
Conducted power and spurious emissions 75 GHz to 110 GHz	MU4044	2.4 dB
Radiated RF Power and Spurious emissions ERP and EIRP		
Effective Radiated Power Reverb Chamber	MU4020	3.7 dB
Effective Radiated Power	MU4021	4.7 dB
TRP Emissions 30 MHz to 1 GHz using CBL6111 or CBL6112 Bilog Antenna	MU4046	5.3 dB
TRP Emissions 1 GHz to 18 GHz using HL050 Log Periodic Antenna	MU4047	5.1 dB
TRP Emissions 18 GHz to 26.5 GHz using Standard Gain Horn	MU4048	2.7 dB
TRP Emissions 26.5 GHz to 40 GHz using Standard Gain Horn	MU4049	2.7 dB
Spurious Emissions Electric and Magnetic Field		
Radiated Spurious Emissions 30 MHz to 1 GHz	MU4037	4.7 dB
Radiated Spurious Emissions 1-18 GHz	MU4032	4.5 dB
E Field Emissions 18GHz to 26 GHz	MU4024	3.2 dB
E Field Emissions 26GHz to 40 GHz	MU4025	3.3 dB
E Field Emissions 40GHz to 50 GHz	MU4026	3.5 dB
E Field Emissions 50GHz to 75 GHz	MU4027	3.6 dB
E Field Emissions 75GHz to 110 GHz	MU4028	3.6 dB
Radiated Magnetic Field Emissions	MU4031	2.3 dB
Frequency Measurements		
Frequency Deviation	MU4022	0.316 kHz
Frequency error using CMTA test set	MU4023	113.441 Hz
Frequency error using GPS locked frequency source	MU4045	0.0413 ppm
Bandwidth/Spectral Mask Measurements		
Channel Bandwidth	MU4005	3.87 %
Transmitter Mask Amplitude	MU4039	1.3 dB
Transmitter Mask Frequency	MU4040	2.59 %
Time Domain Measurements		
Transmission Time	MU4038	4.40 %
Dynamic Frequency Selection (DFS) Parameters		
DFS Analyser - Measurement Time	MU4006	679 µs
DFS Generator - Frequency Error	MU4007	92 Hz
DFS Threshold Conducted	MU4008	1.3 dB
DFS Threshold Radiated	MU4009	3.2 dB

Test/Measurement	Budget Number	MU
Receiver Parameters		
EN300328 Receiver Blocking	MU4010	1.1 dB
EN301893 Receiver Blocking	MU4011	1.1 dB
EN303340 Adjacent Channel Selectivity	MU4012	1.1 dB
EN303340 Overloading	MU4013	1.1 dB
EN303340 Receiver Blocking	MU4014	1.1 dB
EN303340 Receiver Sensitivity	MU4015	0.9 dB
EN303372-1 Image Rejection	MU4016	1.4 dB
EN303372-1 Receiver Blocking	MU4017	1.1 dB
EN303372-2 Adjacent Channel Selectivity	MU4018	1.1 dB
EN303372-2 Dynamic Range	MU4019	0.9 dB
Receiver Blocking Talk Mode Conducted	MU4033	1.2 dB
Receiver Blocking Talk Mode- radiated	MU4034	3.4 dB
Rx Blocking, listen mode, blocking level	MU4035	3.2 dB
Rx Blocking, listen mode, radiated Threshold Measurement	MU4036	3.4 dB
Adjacent Sub Band Selectivity	MU4003	4.2 dB