

TEST REPORT

Test Report No. : UL-RPT-RP14370604-116A

Manufacturer Sound Devices LLC

Model No. 9295W with 28255.000 Antenna

FCC ID 2AKLX-9295W

Test Standard(s) Antenna Gain Measurement

(Derived from FCC Part 15.247(b)(3))

1. This test report shall not be reproduced except in full, without the written approval of UL International (UK) Ltd.

- The results in this report apply only to the sample(s) tested. 2.
- The sample tested is in compliance with the above standard(s). 3.
- 4. The test results in this report are traceable to the national or international standards.

Version 2.0 supersedes all previous versions. 5.

> Date of Issue: 02 November 2022

Checked by:

Ben Mercer Lead Project Engineer, Radio Laboratory

Company Signatory:

Sarah Williams

RF Operations Leader, Radio Laboratory

This laboratory is accredited by the United Kingdom Accreditation Service (UKAS). UKAS is one of the signatories to the International Laboratory Accreditation Cooperation (ILAC) Arrangement for the mutual recognition of test reports. The tests reported herein have been performed in accordance with its terms of accreditation.

Walkers.

Telephone: +44 (0)1256 312000 Facsimile: +44 (0)1256 312001

Customer Information

Company Name:	Sound Devices LLC	
Address:	PO Box 576, E7556 State Rd 23-33, Reedsburg, WI 53959, United States	

Report Revision History

Version Number	Issue Date	Revision Details	Revised By
1.0	27/10/2022	Initial Version	Ben Mercer
2.0	02/11/2022	Implemented TCB feedback	Ben Mercer

Page 2 of 15 UL International (UK) Ltd

Table of Contents

Customer Information	2
Report Revision History	2
Table of Contents	3
1. Attestation of Test Results	4
1.1. Description of EUT	4
1.2. General Information	4
1.3. Summary of Test Results	4
1.4. Deviations from the Test Specification	4
2. Summary of Testing	5
2.1. Facilities and Accreditation	5
2.2. Methods and Procedures	5
2.3. Measurement Uncertainty & Decision Rule	6
2.4. Test and Measurement Equipment	7
3. Equipment Under Test (EUT)	8
3.1. Identification of Equipment Under Test (EUT)	8
3.2. Modifications Incorporated in the EUT	8
3.3. Additional Information Related to Testing	9
3.4. Description of Available Antennas	9
3.5. Description of Test Setup	10
4. Test Results	12
4.1. Transmitter Maximum Peak Output Power (Conducted)	12
4.2. Transmitter Maximum Peak Output Power (Radiated)	14

UL International (UK) Ltd Page 3 of 15

1. Attestation of Test Results

1.1. Description of EUT

The Equipment Under Test was a professional (body-worn) miniature microphone transmitter operating in the 902 MHz to 928 MHz frequency band including a ¼ wavelength whip antenna.

1.2. General Information

Specification Reference:	47CFR15.247
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) – Section 15.247
Site Registration:	685609
Lab. Designation No.:	UK2011
Location of Testing:	Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, G24 8AH, United Kingdom
Test Dates:	14 October 2022 to 21 October 2022

1.3. Summary of Test Results

FCC Reference (47CFR)	Measurement
Part 15.247(b)(3) / ANSI C63.10 Annex G	Antenna Gain

Results:

Frequency (MHz)	Conducted Output Power (dBm)	Radiated Output Power (dBm)	Antenna Gain (dBd)	Antenna Gain (dBi)
902.400	27.47	28.79	1.32	3.47
915.000	27.41	27.43	0.02	2.17
927.600	27.70	28.09	0.39	2.54

Notes:

1. Antenna gain in dBd was calculated in accordance with ANSI C63.10 G.3:

$$ERP = P_T + G_T - L_C$$

Rearranged to: $G_T = ERP + L_C - P_T$

LC is ignored since there is no cable connected between transmitter and antenna.

2. Antenna gain in dBi was calculated in accordance with ANSI C63.10 G.4:

$$G_T(dBd) = G_T(dBi) - 2.15 dB$$

Rearranged to: $G_T(dBi) = G_T(dBd) + 2.15 dB$

1.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

Page 4 of 15 UL International (UK) Ltd

VERSION 2.0 ISSUE DATE: 02 NOVEMBER 2022

2. Summary of Testing

2.1. Facilities and Accreditation

The test site and measurement facilities used to collect data are located at Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom. The following table identifies which facilities were utilised for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

Site 1	
Site 2	
Site 17	X

UL International (UK) Ltd is accredited by UKAS. The tests reported herein have been performed in accordance with its terms of accreditation.

2.2. Methods and Procedures

Reference:	ANSI C63.10-2013	
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	
Reference:	KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019	
Title:	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules	

UL International (UK) Ltd Page 5 of 15

2.3. Measurement Uncertainty & Decision Rule

Overview

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

Decision Rule

The decision rule applied is based upon the accuracy method criteria. The measurement uncertainty is met and the result is considered in conformance with the requirement criteria if the observed value is within the prescribed limit.

Measurement Uncertainty

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Maximum Peak Output Power (Conducted)	902 MHz to 928 MHz	95%	±1.13 dB
Maximum Peak Output Power (Radiated)	902 MHz to 928 MHz	95%	±3.3 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

Page 6 of 15 UL International (UK) Ltd

VERSION 2.0

2.4. Test and Measurement Equipment

Test Equipment Used for Conducted Tests

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2003	Thermohygrometer	Testo	608-H1	45046641	09 Dec 2022	12
M1874	Test Receiver	Rhode & Schwarz	ESU26	100553	09 May 2023	12
G217350	Vector Signal Generator	Rhode & Schwarz	SMM100A	101777	04 Apr 2025	36
A2946	Attenuator	AtlanTecRF	AN18W5-20	208146#1	Calibrated Before use	-

<u>Test Equipment Used for Transmitter Radiated Emissions Tests</u>

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
K0017	3m RSE Chamber	Rainford	N/A	N/A	26 Oct 2022	12
M2003	Thermohygrometer	Testo	608-H1	45046641	09 Dec 2022	12
M1874	Test Receiver	Rhode & Schwarz	ESU26	100553	09 May 2023	12
A3167	Pre Amplifier	Com Power	PAM-103	18020010	20 Oct 2022	12
A2916	Attenuator	AtlanTecRF	AN18W5-10	832827#2	26 Jan 2023	12
A3161	Antenna	Chase	CBL6111D	50859	03 May 2023	12

UL International (UK) Ltd Page 7 of 15

VERSION 2.0 ISSUE DATE: 02 NOVEMBER 2022

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	A20-MINI
Model Name or Number:	9295W with 28255.000
Test Sample Serial Number:	GE9922164002
Hardware Version:	5
Firmware Version:	7.00.6158
FCC ID:	2AKLX-9295W

3.2. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

Page 8 of 15 UL International (UK) Ltd

VERSION 2.0

ISSUE DATE: 02 NOVEMBER 2022

3.3. Additional Information Related to Testing

Tested Technology:	Short Range Device (Digital Transmission System)			
Power Supply Requirement:	Nominal 3.6 VDC			
Type of Unit:	Transceiver			
Modulation:	COFDM	COFDM		
Data Rate	1.339 Mbps			
Transmit Frequency Range:	902 MHz to 928 MHz			
Transmit Channels Tested:	Channel ID Channel Frequency (MHz)			
	Bottom		902.400	
	Middle		915.000	
	Тор		927.600	

3.4. Description of Available Antennas

The radio utilizes an external whip antenna with the maximum measured gain stated below. The measured conducted peak output power was subtracted from the measured peak ERP to obtain the antenna gain in dBd. The gain in dBi was calculated by adding 2.15 dB.

Antenna Type	Model Number	Frequency Range (MHz)	Antenna Gain (dBd)	Antenna Gain (dBi)
1/4 Wavelength Whip 28255.000	902.400	1.32	3.47	
	28255.000	915.000	0.02	2.17
		927.600	0.39	2.54

UL International (UK) Ltd Page 9 of 15

3.5. Description of Test Setup

Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Laptop PC
Brand Name:	HP
Model Name or Number:	Spectre Pro x360
Serial Number:	5CD6218MQ8

Description:	Laptop PC
Brand Name:	Dell
Model Name or Number:	Precision M6800
Serial Number:	86BSM12

Description:	Lavaliere Microphone
Brand Name:	Not marked or stated
Model Name or Number:	VT506WA-1934
Serial Number:	Not marked or stated

Description:	USB-TTL Interface Cable
Brand Name:	Not marked or stated
Model Name or Number:	Not marked or stated
Serial Number:	Not marked or stated

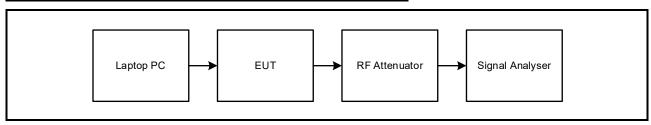
Operating Modes

The EUT was tested in the following operating mode(s):

• Continuously transmitting at maximum power with a modulated carrier on bottom, middle and top channels as required.

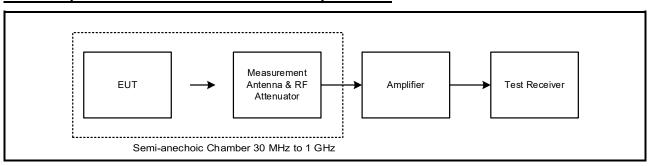
Configuration and Peripherals

The EUT was tested in the following configuration(s):


- Controlled in test mode using a software application on the laptop PC supplied by the customer.
 The application was used to enable a continuous transmission and to select the test channels as required. The customer supplied a document containing the setup instructions 'Set-Up_Instructions_v5.5.pdf. The laptop PC was connected to the EUT via USB-C cable.
- The power setting was set to 40 mW.
- Radiated peak output power tests were performed with the EUT in all 3 orientations. A lavaliere microphone was connected to the EUT.
- The EUT was powered from 3 x 1.5 V AAA alkaline batteries.
- The external whip antenna was removed to enable conducted measurements.

Page 10 of 15 UL International (UK) Ltd

Test Setup Diagrams


Conducted Tests:

Test Setup for Transmitter Conducted Peak Output Power

Radiated Tests:

Test Setup for Transmitter Radiated Peak Output Power

UL International (UK) Ltd Page 11 of 15

4. Test Results

4.1. Transmitter Maximum Peak Output Power (Conducted)

Test Summary:

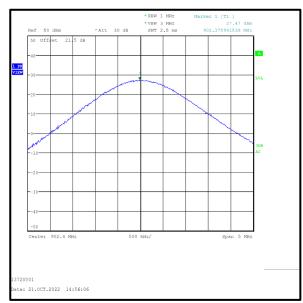
Test Engineer:	Jose Bayona	Test Date:	21 October 2022
Test Sample Serial Number:	GE9922164002		

FCC Reference:	Part 15.247(b)(3)
Test Method Used:	FCC KDB 558074 Section 8.3.1.1 referencing ANSI C63.10 Section 6.5 & 11.9.1.1

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	43

Note(s):


- 1. Conducted power tests were performed using a signal analyser in accordance with ANSI C63.10 Section 11.9.1.1 with the RBW ≥ DTS bandwidth procedure.
- 2. The signal analyser resolution bandwidth was set to 1 MHz and video bandwidth of 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 5 MHz. A marker was placed at the peak of the signal and the results recorded in the tables below.
- 3. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable. An RF level offset was entered on the signal analyser to compensate for the loss of the attenuator and RF cable.


Page 12 of 15 UL International (UK) Ltd

Transmitter Maximum Peak Output Power (Conducted) (continued)

Results:

Channel	Conducted Peak Power (dBm)
Bottom	27.47
Middle	27.41
Тор	27.70

Bottom Channel

* RBW 1 MHz * VBW 3 MHz SWT 2.5 ms Center 927.6 MHz te: 21.0CT.2022 15:05:25

Top Channel

UL International (UK) Ltd Page 13 of 15 VERSION 2.0 ISSUE DATE: 02 NOVEMBER 2022

4.2. Transmitter Maximum Peak Output Power (Radiated)

Test Summary:

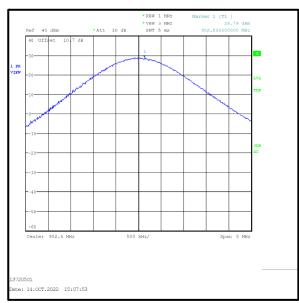
Test Engineer:	Jose Bayona	Test Date:	14 October 2022
Test Sample Serial Number:	GE9922164002		

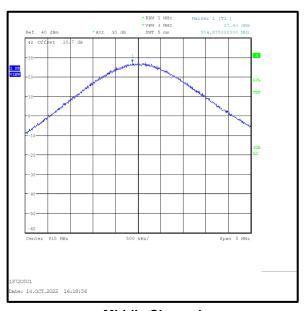
FCC Reference:	Part 15.247(b)(3)
Test Method Used:	FCC KDB 558074 Section 8.3.1.1 referencing ANSI C63.10 Section 6.5 & 11.9.1.1

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	50

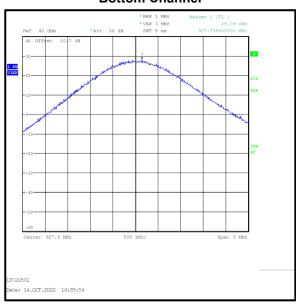
Note(s):


- 1. Radiated power tests were performed using a signal analyser in accordance with ANSI C63.10 Section 11.9.1.1 with the RBW ≥ DTS bandwidth procedure.
- 2. The signal analyser resolution bandwidth was set to 1 MHz and video bandwidth of 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 5 MHz. A marker was placed at the peak of the signal and the results recorded in the tables below.


Page 14 of 15 UL International (UK) Ltd

Transmitter Maximum Peak Output Power (Radiated) (continued)

Results:


Channel	Radiated Peak Power (dBm)
Bottom	28.79
Middle	27.43
Тор	28.09

Bottom Channel

Middle Channel

Top Channel

--- END OF REPORT ---

UL International (UK) Ltd Page 15 of 15