

SAR EVALUATION REPORT

FCC ID:	2AKLITP401
IC:	11858A-TP401
HVIN/Model(s):	TP401
Device Type:	Portable Device
Report Issue Date:	June 10, 2025

Life360, Inc. 1900 S Norfolk St. Suite 310, San Mateo, CA 94403 USA
Certification

FCC Equipment Class	Body SAR [W/kg]	1g Simultaneous Tx SAR [W/kg]	Extremity SAR [W/kg]	10g Simultaneous Tx SAR [W/kg]
PCE	1.35	1.38	2.16	2.21
DTS	0.65	1.38	0.77	2.21
DSS	< 0.10	1.38	< 0.10	2.21
FCC Limit	1.6	1.6	4.0	4.0

ISED	Body SAR [W/kg]	Body 1g Simultaneous Tx SAR [W/kg]	Extremity	Extremity 10g Simultaneous Tx SAR [W/kg]
WWAN	1.35	1.38	2.16	2.21
2.4 GHz WiFi	0.65	1.38	0.77	2.21
Bluetooth LE	< 0.10	1.38	< 0.10	2.21
Limits	1.6	1.6	4.0	4.0

The measurement evaluations presented in this report are based on the maximum performance of the tested device(s), which has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment / general population exposure federal limits in 47CFR § 1.1310 and Health Canada Safety Code 6 and has been tested in accordance with the measurement procedures specified within this report.

This document must be reproduced in its entirety without any alterations unless with written permission from RF Safety Laboratory, LLC.

Steve Liu
President

Table of Contents

1. DUT Specifics.....	3
2. DUT Conducted Powers	5
3. DUT SAR Test Results	9
4. DUT SAR Measurement Variability Requirement.....	11
5. General Introduction	12
6. Background on Radiofrequency (RF) Exposure Limits	12
7. RF Safety Laboratory SAR Measurement System	14
8. Technology Specific Test Setup Requirements.....	18
9. Equipment List	21
10. Conclusion.....	22

Appendix A: SAR Test Plots

Appendix B: Tissue Stimulating Liquids, System Checks and FCC System Validation

Appendix C: System Check Plots

Appendix D: Calibration Certificates

Appendix E: Simultaneous Transmission Analysis

Appendix F : Test Setup Photos

Appendix G : Secondary Mode Conducted Powers

1. DUT Specifics

1.1. Device under Test

The device under test is a wireless device, incorporating the technologies listed in Table 1-1 below. The manufacturer has confirmed that the device is within operational tolerances expected for production units and has the same physical, mechanical, and thermal characteristics expected for production units. The serial number of the device used for each test is indicated alongside the results.

During testing, the following firmware versions were used: BT 64.22.51.7 Rftest MCU FW, 01-006 Wifi FW, 51441 Cell Modem FW

1.2. Maximum SAR per Mode

Table 1-1 Maximum SAR Summary

FCC Equipment Class	Band/Mode	Frequency (MHz)	Body SAR [W/kg]	Extremity SAR [W/kg]
PCE	LTE-M Band 12	699 - 716 MHz	0.136	0.607
PCE	LTE-M Band 13	777 - 787 MHz	0.157	0.339
PCE	LTE-M Band 5	824 - 849 MHz	0.144	0.517
PCE	LTE-M Band 4	1710 - 1755 MHz	0.542	2.164
PCE	LTE-M Band 2	1850 - 1910 MHz	1.348	1.838
DTS	2.4 GHz WIFI	2412 - 2462 MHz	0.648	0.768
DSS	2.4 GHz Bluetooth LE	2402 - 2480 MHz	0.032	0.041

1.3. LTE-M Supported Bandwidths and Modulations

Band	Bandwidth (MHz)	UL Modulation
LTE-M Band 12	10, 5, 3, 1.4	QPSK, 16QAM
LTE-M Band 13	10, 5	QPSK, 16QAM
LTE-M Band 5	10, 5, 3, 1.4	QPSK, 16QAM
LTE-M Band 4	20, 15, 10, 5, 3, 1.4	QPSK, 16QAM
LTE-M Band 2	20, 15, 10, 5, 3, 1.4	QPSK, 16QAM

1.4. Maximum Time-Averaged Power From Manufacturer

The manufacturer has confirmed that this device follows the below target output power specifications and tolerances. SAR values were scaled to the maximum allowed power (including tolerance) to determine compliance per KDB Publication 447498 D04v01.

Table 1-2 LTE-M Target RF Output Power

LTE	
Band/Mode	Modulated Average Nominal Power [dBm]
	Body/Extremity
LTE-M Band 12	23.0
LTE-M Band 13	23.0
LTE-M Band 5	23.0
LTE-M Band 4	23.0
LTE-M Band 2	23.0
Upper Tolerance: +2.0 dB	
Lower Tolerance: -2.0 dB	

Table 1-3 2.4 GHz WIFI Target RF Output Power

2.4 GHz WIFI Maximum Power [dBm] - SISO				
Exposure Condition	Mode	802.11b	802.11g	802.11n
	Channel	WIFI/BLE 2.4 GHz Ant		
Body/Extremity	All	14.8	13.5	13.5
Upper Tolerance: +/- 2 dB				

Table 1-4 2.4 GHz Bluetooth LE Target RF Output Power

2.4 GHz Bluetooth Maximum Power [dBm]			
Exposure Condition	Mode	Data Rate	WIFI/BLE 2.4 GHz Ant
Body/Extremity	BLE	1Mbps	11.5
	BLE	2Mbps	11.5
	BLE LR s8	125kbps	11.5
	BLE LR s2	500kbps	11.5
Upper Tolerance: +/- 2 dB			

1.5. Test Guidance Applied

- IEEE 1528-2013 (FCC)
- IEC/IEEE 62209-1528:2020 (ISED)
- RSS-102 Issue 6 (ISED)
- RSS-102.SAR.MEAS (ISED)
- Health Canada Safety Code 6 (ISED)
- FCC KDB Publication 941225 D05V02r05 (4G) (FCC/ISED)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices) (FCC/ISED)
- FCC KDB Publication 447498 D04v01 (General SAR Guidance) (FCC/ISED)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz) (FCC)

2. DUT Conducted Powers

2.1. Power Measurement Setup

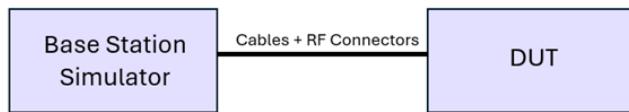


Figure 2-1 Power Measurement Setup for WWAN

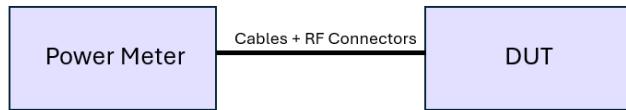


Figure 2-2 Power Measurement Setup for WIFI and Bluetooth LE

2.2. LTE-M Conducted Powers

Some bands do not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 2-1

LTE-M Band 12		Frequency [MHz]			707.5	MPR [dB]
Antenna:	LTE ANT	Channel Number			23095	
Bandwidth [MHz]:	10	RB Size	RB Offset	NB Postion	Conducted Powers [dBm]	
Body/Extremity	QPSK	1	0	1	23.38	0
		1	2	3	23.33	0
		1	5	6	23.32	0
		3	0	1	23.17	0
		3	2	3	23.18	0
		3	3	6	23.20	0
		6	0	1	22.16	1
		6	0	3	22.11	1
		6	0	6	22.12	1

Table 2-2

LTE-M Band 13		Frequency [MHz]			782	MPR [dB]
Antenna:	LTE ANT	Channel Number			23230	
Bandwidth [MHz]:	10	RB Size	RB Offset	NB Postion	Conducted Powers [dBm]	
Body/Extremity	QPSK	1	0	1	23.33	0
		1	2	3	23.29	0
		1	5	6	23.27	0
		3	0	1	23.24	0
		3	2	3	23.27	0
		3	3	6	23.28	0
		6	0	1	22.10	1
		6	0	3	22.11	1
		6	0	6	22.12	1

Table 2-3

LTE-M Band 5		Frequency [MHz]			836.5	MPR [dB]
Antenna:	LTE ANT	Channel Number			20525	
Bandwidth [MHz]:	10	RB Size	RB Offset	NB Postion	Conducted Powers [dBm]	
Body/Extremity	QPSK	1	0	1	23.27	0
		1	2	3	23.50	0
		1	5	6	23.36	0
		3	0	1	23.40	0
		3	2	3	23.21	0
		3	3	6	23.20	0
		6	0	1	22.05	1
		6	0	3	22.07	1
		6	0	6	22.05	1

Table 2-4

LTE-M Band 4		Frequency [MHz]			1732.5	MPR [dB]		
Antenna:	LTE ANT	Channel Number			20175			
Bandwidth [MHz]: 20		Exposure Condition	Modulation	RB Size	RB Offset	NB Postion	Conducted Powers [dBm]	
Body/Extremity	QPSK			1	0	1	23.47	0
				1	0	7	23.64	0
				1	5	14	23.41	0
				3	0	1	23.20	0
				3	0	7	23.32	0
				3	3	14	23.23	0
				6	0	1	23.23	0
				6	0	7	23.31	0
				6	0	14	23.22	0

Table 2-5

LTE-M Band 2		Frequency [MHz]			1860	1880	1900	MPR [dB]		
Antenna:	LTE ANT	Channel Number			18700	18900	19100			
Bandwidth [MHz]: 20		Exposure Condition	Modulation	RB Size	RB Offset	NB Postion	Conducted Powers [dBm]			
Body/Extremity	QPSK			1	0	1	23.29	23.29	23.32	0
				1	0	7	23.35	23.27	23.39	0
				1	5	14	23.31	23.36	23.38	0
				3	0	1	23.10	23.16	23.23	0
				3	0	7	23.21	23.29	23.37	0
				3	3	14	23.20	23.13	23.23	0
				6	0	1	23.18	23.09	23.17	0
				6	0	7	23.19	23.13	23.21	0
				6	0	14	23.17	23.14	23.23	0

2.3. 2.4 GHz WIFI Conducted Powers

Table 2-6

2.4 GHz WIFI Conducted Power [dBm] - SISO						
Exposure Condition		Mode		802.11b	802.11g	802.11n
		Ch.	Freq. [MHz]	WIFI/BLE 2.4 GHz Ant		
Body/Extremity		1	2412	16.23	12.73	12.59
		6	2437	16.29	12.89	12.60
		11	2462	16.20	12.78	12.62

2.4. 2.4 GHz Bluetooth LE Conducted Powers

Table 2-7

2.4 GHz Bluetooth Conducted Power [dBm] - SISO			
Exposure Condition/Mode	Channel	Freq [MHz]	WIFI/BLE 2.4 GHz Ant
Body/Extremity / BLE	37	2402	11.85
	17	2440	11.64
	39	2480	11.53

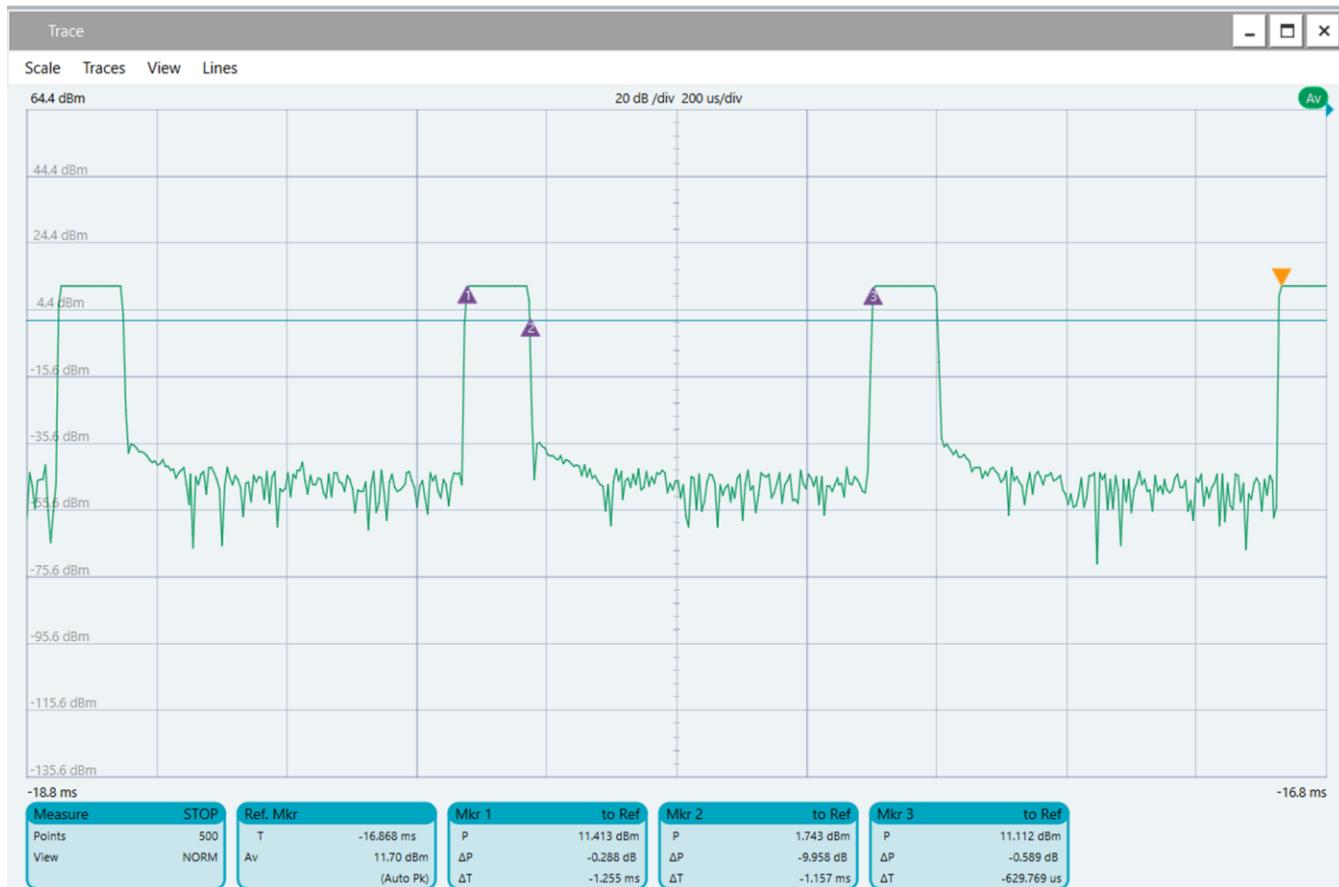


Figure 2-3 2.4 GHz Bluetooth LE Duty Cycle Plot

Table 2-8 2.4 GHz Bluetooth LE Duty Cycle calculation

Mode	Pulse Width (ms)	Pulse Period (ms)	Duty Cycle
BLE 1Mbps	0.098	0.6252	0.157

3. DUT SAR Test Results

3.1. LTE-M SAR Data

Table 3-1

Exposure Condition	Band/Mode	Antenna	DUT SN	Power Drift [dB]	Maximum Duty Cycle [%]	Measured Duty Cycle [%]	Frequency [MHz]	Channel	Modulation/Configuration	RB Size	RB Offset	NB Position	Maximum Allowed Power [dBm]	Measured Conducted Power [dBm]	MPR [dB]	Separation Distance [mm]	Position	Measured 1g SAR [W/kg]	Reported 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Reported 10g SAR [W/kg]	Test Plot
Body	LTE-M Band 12	LTE ANT	00007	0.03	100.0%	100.0%	707.5	23095	QPSK - 10 MHz	1	0	1	25	23.38	0	5	Back	0.090	0.131	-	-	-
Body	LTE-M Band 12	LTE ANT	00007	0.04	100.0%	100.0%	707.5	23095	QPSK - 10 MHz	3	3	6	25	23.20	0	5	Back	0.090	0.136	-	-	1
Extremity	LTE-M Band 12	LTE ANT	00007	0.01	100.0%	100.0%	707.5	23095	QPSK - 10 MHz	1	0	1	25	23.38	0	0	Front	-	-	0.402	0.584	2
Extremity	LTE-M Band 12	LTE ANT	00007	-0.01	100.0%	100.0%	707.5	23095	QPSK - 10 MHz	3	3	6	25	23.20	0	0	Front	-	-	0.401	0.607	-

Table 3-2

Exposure Condition	Band/Mode	Antenna	DUT SN	Power Drift [dB]	Maximum Duty Cycle [%]	Measured Duty Cycle [%]	Frequency [MHz]	Channel	Modulation/Configuration	RB Size	RB Offset	NB Position	Maximum Allowed Power [dBm]	Measured Conducted Power [dBm]	MPR [dB]	Separation Distance [mm]	Position	Measured 1g SAR [W/kg]	Reported 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Reported 10g SAR [W/kg]	Test Plot
Body	LTE-M Band 13	LTE ANT	00007	0.08	100.0%	100.0%	782	23230	QPSK - 10 MHz	1	0	1	25	23.33	0	5	Back	0.107	0.157	-	-	3
Body	LTE-M Band 13	LTE ANT	00007	0.01	100.0%	100.0%	782	23230	QPSK - 10 MHz	3	3	6	25	23.28	0	5	Back	0.101	0.150	-	-	-
Extremity	LTE-M Band 13	LTE ANT	00007	0.05	100.0%	100.0%	782	23230	QPSK - 10 MHz	1	0	1	25	23.33	0	0	Front	-	-	0.231	0.339	4
Extremity	LTE-M Band 13	LTE ANT	00007	0.06	100.0%	100.0%	782	23230	QPSK - 10 MHz	3	3	6	25	23.28	0	0	Front	-	-	0.217	0.322	-

Table 3-3

Exposure Condition	Band/Mode	Antenna	DUT SN	Power Drift [dB]	Maximum Duty Cycle [%]	Measured Duty Cycle [%]	Frequency [MHz]	Channel	Modulation/Configuration	RB Size	RB Offset	NB Position	Maximum Allowed Power [dBm]	Measured Conducted Power [dBm]	MPR [dB]	Separation Distance [mm]	Position	Measured 1g SAR [W/kg]	Reported 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Reported 10g SAR [W/kg]	Test Plot
Body	LTE-M Band 5	LTE ANT	00007	0.09	100.0%	100.0%	836.5	20525	QPSK - 10 MHz	1	2	3	25	23.50	0	5	Back	0.102	0.144	-	-	5
Body	LTE-M Band 5	LTE ANT	00007	0.04	100.0%	100.0%	836.5	20525	QPSK - 10 MHz	3	0	1	25	23.40	0	5	Back	0.099	0.143	-	-	-
Extremity	LTE-M Band 5	LTE ANT	00007	0.07	100.0%	100.0%	836.5	20525	QPSK - 10 MHz	1	2	3	25	23.50	0	0	Front	-	-	0.355	0.501	-
Extremity	LTE-M Band 5	LTE ANT	00007	-0.05	100.0%	100.0%	836.5	20525	QPSK - 10 MHz	3	0	1	25	23.40	0	0	Front	-	-	0.358	0.517	6

Table 3-4

Exposure Condition	Band/Mode	Antenna	DUT SN	Power Drift [dB]	Maximum Duty Cycle [%]	Measured Duty Cycle [%]	Frequency [MHz]	Channel	Modulation/Configuration	RB Size	RB Offset	NB Position	Maximum Allowed Power [dBm]	Measured Conducted Power [dBm]	MPR [dB]	Separation Distance [mm]	Position	Measured 1g SAR [W/kg]	Reported 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Reported 10g SAR [W/kg]	Test Plot
Body	LTE-M Band 4	LTE ANT	00007	0.02	100.0%	100.0%	1732.5	20175	QPSK - 20 MHz	1	0	7	25	23.64	0	5	Back	0.342	0.468	-	-	-
Body	LTE-M Band 4	LTE ANT	00007	-0.01	100.0%	100.0%	1732.5	20175	QPSK - 20 MHz	3	0	7	25	23.32	0	5	Back	0.368	0.542	-	-	7
Extremity	LTE-M Band 4	LTE ANT	00007	0.12	100.0%	100.0%	1732.5	20175	QPSK - 20 MHz	1	0	7	25	23.64	0	0	Front	-	-	1.450	1.983	-
Extremity	LTE-M Band 4	LTE ANT	00007	0.06	100.0%	100.0%	1732.5	20175	QPSK - 20 MHz	3	0	7	25	23.32	0	0	Front	-	-	1.470	2.164	8
Extremity	LTE-M Band 4	LTE ANT	00007	-0.07	100.0%	100.0%	1732.5	20175	QPSK - 20 MHz	6	0	7	25	23.31	0	0	Front	-	-	1.440	2.125	-

Table 3-5

Exposure Condition	Band/Mode	Antenna	Additional Information	DUT SN	Power Drift [dB]	Maximum Duty Cycle [%]	Measured Duty Cycle [%]	Frequency [MHz]	Channel	Modulation/Configuration	RB Size	RB Offset	NB Position	Maximum Allowed Power [dBm]	Measured Conducted Power [dBm]	MPR [dB]	Separation Distance [mm]	Position	Measured 1g SAR [W/kg]	Reported 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Reported 10g SAR [W/kg]	Test Plot
Body	LTE-M Band 2	LTE ANT	-	00007	-0.03	100.0%	100.0%	1860	18700	QPSK - 20 MHz	1	0	7	25	23.35	0	5	Back	0.799	1.155	-	-	-
Body	LTE-M Band 2	LTE ANT	-	00007	-0.08	100.0%	100.0%	1880	18900	QPSK - 20 MHz	1	5	14	25	23.36	0	5	Back	0.924	1.348	-	-	9
Body	LTE-M Band 2	LTE ANT	Variability	00007	0.07	100.0%	100.0%	1880	18900	QPSK - 20 MHz	1	5	14	25	23.36	0	5	Back	0.897	1.309	-	-	-
Body	LTE-M Band 2	LTE ANT	-	00007	0.01	100.0%	100.0%	1900	19100	QPSK - 20 MHz	1	0	7	25	23.36	0	0	Front	-	-	1.256	-	-
Body	LTE-M Band 2	LTE ANT	-	00007	-0.02	100.0%	100.0%	1860	18700	QPSK - 20 MHz	3	0	7	25	23.21	0	5	Back	0.745	1.125	-	-	-
Body	LTE-M Band 2	LTE ANT	-	00007	0.02	100.0%	100.0%	1880	18900	QPSK - 20 MHz	3	0	7	25	23.29	0	5	Back	0.798	1.183	-	-	-
Body	LTE-M Band 2	LTE ANT	-	00007	0.07	100.0%	100.0%	1900	19100	QPSK - 20 MHz	3	0	7	25	23.37	0	5	Back	0.813	1.183	-	-	-
Body	LTE-M Band 2	LTE ANT	-	00007	0.03	100.0%	100.0%	1860	18700	QPSK - 20 MHz	6	0	14	25	23.35	0	5	Back	0.858	1.290	-	-	-
Extremity	LTE-M Band 2	LTE ANT	-	00007	-0.14	100.0%	100.0%	1860	18700	QPSK - 20 MHz	1	0	7	25	23.35	0	0	Front	-	-	1.700	1.828	-
Extremity	LTE-M Band 2	LTE ANT	-	00007	-0.10	100.0%	100.0%	1880	18900	QPSK - 20 MHz	1	1	5	14	23.36	0	0	Front	-	-	1.260	1.838	10
Extremity	LTE-M Band 2	LTE ANT	-	00007	0.08	100.0%	100.0%	1900	19100	QPSK - 20 MHz	1	0	7	25	23.39	0	0	Front	-	-	1.160	1.681	-
Extremity	LTE-M Band 2	LTE ANT	-	00007	-0.06	100.0%	98.2%	1920	19300	QPSK - 20 MHz	3	0	7	25	23.37	0	0	Front	-	-	1.140	1.659	-

3.2. WIFI SAR Data

Table 3-6

Exposure Condition	Band/Mode	Antenna	DUT SN	Power Drift [dB]	Maximum Duty Cycle [%]	Measured Duty Cycle [%]	Frequency [MHz]	Channel	Modulation/Configuration	Data Rate (Mbps)	Maximum Allowed Power [dBm]	Measured Conducted Power [dBm]	Separation Distance [mm]	Position	Measured 1g SAR [W/kg]	Reported 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Reported 10g SAR [W/kg]	Test Plot	
Body	2.4 GHz WiFi	WIFI/BLE 2.4 GHz Ant	00002	0.14	100.0%	98.2%	2412	1	IEEE 802.11b - 22 MHz	1	16.8	16.23	5	Back	0.558	0.648	-	-	11	
Body	2.4 GHz WiFi	WIFI/BLE 2.4 GHz Ant	00002	-0.06	100.0%	98.2%	2437	6	IEEE 802.11b - 22 MHz	1	16.8	16.29	5	Back	0.467	0.535	-	-	-	
Body	2.4 GHz WiFi	WIFI/BLE 2.4 GHz Ant	00002	-0.02	100.0%	98.2%	2462	11	IEEE 802.11b - 22 MHz	1	16.8	16.20	5	Back	0.419	0.490	-	-	-	
Extremity	2.4 GHz WiFi	WIFI/BLE 2.4 GHz Ant	00002	-0.09	100.0%	98.2%	2412	1	IEEE 802.11b - 22 MHz	1	16.8	16.23	0	Front	-	-	-	0.658	0.764	-
Extremity	2.4 GHz WiFi	WIFI/BLE 2.4 GHz Ant	00001	-0.15	100.0%	98.2%	2437	6	IEEE 802.11b - 22 MHz	1	16.8	16.29	0	Front	-	-	-	0.671	0.768	12
Extremity	2.4 GHz WiFi	WIFI/BLE 2.4 GHz Ant	00001	-0.06	100.0%	98.2%	2462	11	IEEE 802.11b - 22 MHz	1	16.8	16.20	0	Front	-	-	-	0.572	0.669	-

3.3. BLE SAR Data

Table 3-7

Exposure Condition	Band/Mode	Antenna	DUT SN	Power Drift [dB]	Maximum Duty Cycle [%]	Measured Duty Cycle [%]	Frequency [MHz]	Channel	Modulation/Configuration	Data Rate (Mbps)	Maximum Allowed Power [dBm]	Measured Conducted Power [dBm]	Separation Distance [mm]	Position	Measured 1g SAR [W/kg]	Reported 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Reported 10g SAR [W/kg]	Test Plot

<tbl_r cells="20" ix="3" maxc

3.4. General SAR Testing Notes:

1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013 and FCC KDB Publication 447498 D04v01 for FCC.
2. The test data reported are the worst-case SAR values according to test procedures specified in IEC/IEEE 62209-1528 and RSS-102.SAR.MEAS for ISED.
3. Per IEC/IEEE 62209-1528, SAR testing was performed using probes calibrated for the modulation specific signal.
4. SAR evaluations were made in accordance with the latest version of RSS-102 Issue 6 and RSS-102.SAR.MEAS, then IEC/IEEE 62209-1528. FCC KDB Publications listed in RSS-102 can be used as supplementary procedures due to limitation of technology specific testing protocols in international standards.
5. Liquid tissue depth was at least 15.0 cm for all frequencies.
6. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D04v01.
7. Batteries are fully charged at the beginning of the SAR measurements.
8. Per IEC/IEEE 62209-1528, the worst-case configuration was additionally evaluated for all channels.
9. Since the front side of the device is intended for use on the user's hand, the extremity SAR is evaluated for this surface.
10. Since the back side of the device is in close proximity to the pet's neck, body SAR is also measured with this surface positioned against a flat phantom, representative of the operating conditions expected by users. Backside body is tested at 5mm distance due to body-worn accessories.
11. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below

3.5. LTE-M Notes:

1. LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.3.
2. LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for 1g for all configurations according to FCC KDB 941225 D05v02r04.
3. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3E-1.
4. A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
5. Per FCC KDB Publication 447498 D04v01, when the reported 1g SAR measured at the highest output power channel in a given a test configuration was > 0.8 W/kg for 1g for an LTE Band, testing at the other channels was required for such test configurations.

3.6. WLAN Notes:

1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WiFi operations, the initial test configuration was selected according to the 802.11 transmission modes with the highest maximum allowed powers. SAR for other 802.11 modes was not required due to the maximum allowed powers and the highest reported SAR.
2. When the maximum reported 1g average SAR is ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
3. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. Procedures used to measure the duty factor are identical to that in the associated Part 15 test reports.

3.7. Bluetooth LE Notes:

1. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 10.0% transmission duty factor for Bluetooth to determine compliance. See Section 2.4 for the time domain plot and calculation for the duty factor of the device.
2. The device was configured to transmit continuously at the required data rate and signal modulation, using the highest transmission duty factor supported by the test mode tools.

4. DUT SAR Measurement Variability Requirement

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. These additional measurements were repeated after the completion of all measurements requiring the same tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

1. When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
2. A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1g SAR limit).
3. A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .
4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
5. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Table 4-1

Exposure Condition	Band/Mode	Antenna	Maximum Duty Cycle [%]	Measured Duty Cycle [%]	Frequency [MHz]	Channel	Modulation/Configuration	RB Size	RB Offset	NB Position	Separation Distance [mm]	Position	Measured 1g SAR [W/Kg]	Repeated Measured 1g SAR [W/Kg]	Ratio
Body	LTE-M Band 2	LTE ANT	100.0%	100.0%	1880	18900	QPSK - 20 MHz	1	5	14	5	Back	0.924	0.897	1.03

5. General Introduction

Title 47 of the Code of Federal Regulations (CFR) pertains to United States Federal regulation for Telecommunications. The **Federal Communications Commission (FCC)** is the agency responsible for implementing and enforcing these regulations. The rules define a **radiofrequency device** as any device which in its operation is capable of emitting radiofrequency energy by radiation, conduction, or other means.

47CFR §2.1093(b) states, “A **portable device** is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that the RF source's radiating structure(s) **is/are within 20 centimeters of the body of the user.**”

Also, 47CFR §2.1093(d)(6) states, that General population/uncontrolled exposure limits defined in §1.1310 “apply to portable devices intended for use by consumers or persons who are exposed as a consequence of their employment and may not be fully aware of the potential for exposure or cannot exercise control over their exposure.”

47CFR §2.1093(d)(2) states that evaluation of compliance within FCC's SAR limits can be demonstrated by laboratory measurements. This test report serves this purpose.

6. Background on Radiofrequency (RF) Exposure Limits

6.1. Controlled Environment

Controlled environments are defined as locations where the RF field intensities have been adequately characterized by means of measurement or calculation and exposure is incurred by persons who are: aware of the potential for RF field exposure, cognizant of the intensity of the RF fields in their environment, aware of the potential health risks associated with RF field exposure and able to control their risk using mitigation strategies. In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

6.2. Uncontrolled Environment

Uncontrolled environments are defined as locations where either insufficient assessment of RF fields have been conducted or where persons who are allowed access to these areas have not received proper RF field

awareness/safety training and have no means to assess or, if required, to mitigate their exposure to RF fields. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed, or in which persons who may not be made fully aware of the potential for exposure, or cannot exercise control over their exposure. Members of the general public would fall under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.3. RF Exposure Limits for 100kHz – 6 GHz

Per FCC 47 CFR §1.1310 and Health Canada Safety Code 6, the SAR limits are applied for frequencies 100kHz ~ 6 GHz as shown below.

Table 6-1 Human Exposure to RF Radiation Limits in 47 CFR §1.1310 and Health Canada Safety Code 6- SAR Basic Restrictions

Environment	Condition	SAR	Averaging volume
Uncontrolled / General Population	Head, Neck Trunk	1.6 W/kg	1g cube
	Extremity	4.0 W/kg	10g cube
Controlled	Head/Trunk	8 W/kg	1g cube
	Extremity / Limbs	20 W/kg	10g cube

7. RF Safety Laboratory SAR Measurement System

7.1. SAR Measurement Hardware and Software

Peak spatially averaged SAR (psSAR) measurements are performed using a DASY8 robot system with cDASY8 module SAR software. The DASY8 is made by SPEAG in Switzerland and consists of a 6-axis robot, robot controller, computer, dosimetric probe, probe alignment light beam unit, and various SAR phantoms.

7.2. E-Field Probe

Manufacturer	Schmid & Partner Engineering AG
Model	EX3DV4
Description	Smallest isotropic electric (E-) field probe for high precision specific absorption rate (SAR) measurements
Frequency Range	10 MHz - 10.0 GHz
Dynamic Range	10 μ W/g - >100 mW/g
Overall Length (mm)	337
Body Diameter (mm)	12
Tip Length (mm)	337
Tip Diameter (mm)	2.5
Probe Tip to Sensor X Calibration Point (mm)	1
Probe Tip to Sensor Y Calibration Point (mm)	1
Applications	High precision dosimetric measurements in any exposure scenario (e.g. very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better than 30%
Compatibility	DASY8 robot + cDASY8 module SAR software

7.3. Peak Spatially Averaged SAR (psSAR) Measurements

SAR Evaluations are performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04, IEEE 1528:2013 and IEC/IEEE 62209-1528:

1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface, and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04, IEEE 1528:2013 and IEC/IEEE 62209-1528.

2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.
3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04, IEEE 1528:2013 and IEC/IEEE 62209-1528. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than the area scan and zoomscan resolutions specified in FCC KDB Publication 865664 D01v01v04 section 2.7.1, IEEE 1528:2013 table 6, and IEC/IEEE 62209-1528 table 3 & table 4. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
 - d. The zoom scan is confirmed to meet both of the following parameters if the result is $> 0.1 \text{ W/kg}$. If the result does not meet the below parameters, it is re-measured with a finer resolution scan until the below parameters are met.
 - (1) The smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal grid steps in both x- and y-directions.
 - (2) The ratio of the SAR at the second measured point (M2) to the SAR at the closest measured point (M1) at the x-y location of the measured maximum SAR value shall be at least 30%
4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

7.4. Test Positions

7.4.1. Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon = 3$ and loss tangent $\delta = 0.02$.

7.4.2. Body SAR Test

Since back of the device are in close proximity to the pet's neck, body SAR is also measured with these edges positioned against a flat phantom, representative of the operating conditions expected by users.

7.4.3. Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D04v01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is $> 1.2 \text{ W/kg}$, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration

7.4.4. Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D04v01 should be applied to determine SAR test requirements.

7.5. RF Safety Laboratory SAR System Measurement Uncertainty

SAR Uncertainty for DUTs According to 62209-1528 (Frequencies: 300 MHz - 3 GHz)										
Symbol	Input Quantity (Xi) (Source of Uncertainty)	62209-1528 Ref	Unc. (xi)	Prob. Dist. PDFi	Div(qi)	ci (1g)	ci (10g)	Std Unc (1g)	Std. Unc (10g)	vi
Measurement System Errors										
CF	Probe Calibration	8.4.1.1	11.0%	N (k=2)	2	1	1	5.50%	5.5%	∞
CFdrift	Probe Calibration Drift	8.4.1.2	1.7%	R	$\sqrt{3}$	1	1	1.0%	1.0%	∞
LIN	Probe Linearity and Detection Limit	8.4.1.3	4.7%	R	$\sqrt{3}$	1	1	2.7%	2.7%	∞
BBS	Broadband Signal	8.4.1.4	2.8%	R	$\sqrt{3}$	1	1	1.6%	1.6%	∞
ISO	Probe Isotropy	8.4.1.5	7.6%	R	$\sqrt{3}$	1	1	4.4%	4.4%	∞
DAE	Other probe and data acquisition errors	8.4.1.6	0.8%	N	1	1	1	0.8%	0.8%	∞
AMB	RF Ambient and Noise	8.4.1.7	1.8%	N	1	1	1	1.8%	1.8%	∞
Δ_{xyz}	Probe Positioning Errors	8.4.1.8	0.006 mm	N	1	0.14	0.14	0.1%	0.1%	
DAT	Data Processing Errors	8.4.1.9	1.2%	N	1	1	1	1.2%	1.2%	∞
Phantom and Device Errors										
LIQ(a)	Measurement of Phantom Conductivity	8.4.2.1	2.5%	N	1	0.78	0.71	2.0%	1.8%	∞
LIQ(Tc)	Temperature Effects (Medium)	8.4.2.2	3.3%	R	$\sqrt{3}$	0.78	0.71	1.5%	1.4%	∞
EPS	Shell Permittivity	8.4.2.3	14.0%	R	$\sqrt{3}$	0	0	0.0%	0.0%	∞
DIS	Distance between the radiating element of the DUT and the phantom medium	8.4.2.4	2.0%	N	1	2	2	4.0%	4.0%	∞
Δ_{xyz}	Repeatability of Positioning the DUT or source against the phantom	8.4.2.5	1.0%	N	1	1	1	1.0%	1.0%	5
H	Device Holder Effects	8.4.2.6	3.6%	N	1	1	1	3.6%	3.6%	8
MOD	Effect of Operating mode on probe sensitivity	8.4.2.7	2.4%	R	$\sqrt{3}$	1	1	1.4%	1.4%	∞
RFdrift	Variation in SAR due to Drift in output of DUT	8.4.2.9	2.5%	N	1	1	1	2.5%	2.5%	∞
VAL	Validation Antenna Uncertainty (Validation measurement only)	8.4.2.10	0.0%	N	1	1	1	0.0%	0.0%	∞
Pin	Uncertainty in Accepted Power (Validation Measurement only)	8.4.2.11	0.0%	N	1	1	1	0.0%	0.0%	∞
Correction to the SAR Results										
Cl(ϵ', σ)	Phantom Deviation from Target (ϵ', σ)	8.4.3.1	1.9%	N	1	1	0.84	1.9%	1.6%	∞
Cl(R)	SAR Scaling	8.4.3.2	0.0%	R	$\sqrt{3}$	1	1	0.0%	0.0%	∞
u(Δ S AR)							Combined Uncertainty	10.7%	10.6%	∞
U							Expanded Uncertainty and Effective Degrees of Freedom (k=2)	21.3%	21.1%	

8. Technology Specific Test Setup Requirements

8.1. Measured and Reported SAR

Per FCC KDB Publication 447498 D04v01, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2. Procedures Used to Establish RF Signal for SAR

Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a “point SAR” at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation.

8.3. SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.3.1. Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.3.2. MPR and A-MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3E-1.

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.3.3. Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

1. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - a. The required channel and offset combination with the highest maximum output power is required for SAR.
 - b. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - c. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
2. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
3. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
4. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to $\frac{1}{2}$ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/kg.
5. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.4. SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.4.1. General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% duty factor to determine compliance at the maximum tune-up tolerance limit.

8.4.2. Initial Test Position Procedure

The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.4.3. 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

9. Equipment List

Manufacturer	Model	Description	Serial Number	Calibration Date	Calibration Due	CBT
Amplifier Research	SS1G4	RF Broadband Amplifier (800 MHz - 4.2 GHz)	331258			✓
Anritsu	MA24118A	Microwave USB Power Sensor (10MHz - 18 GHz)	2123431	1/13/2025	1/13/2026	
Anritsu	MA24118A	Microwave USB Power Sensor (10MHz - 18 GHz)	2123500	1/13/2025	1/13/2026	
Anritsu	S820E	Vector Network Analyzer	2348026	11/30/2023	11/30/2025	
Control Company	4040	Ambient Thermometer	230581662	8/28/2023	8/28/2025	
Control Company	4040	Ambient Thermometer	230581657	8/28/2023	8/28/2025	
Control Company	4040	Ambient Thermometer	230581656	8/28/2023	8/28/2025	
Control Company	4352	Long Stem Liquid Thermometer	230662212	9/28/2023	9/28/2025	
Control Company	4352	Long Stem Liquid Thermometer	230662223	9/28/2023	9/28/2025	
Control Company	4352	Long Stem Liquid Thermometer	230662291	9/28/2023	9/28/2025	
Hewlett Packard	8648C	HP Signal Generator	3537A01741	3/10/2025	3/10/2026	
Micro-Coax	UFB205A-0-0240-30x30	SMA M-F RF test Cable (DC - 18 GHz)	-			✓
Mini-Circuits	BW-N20W20+	20dB RF Fixed Attenuator (DC - 18 GHz)	-			✓
Mini-Circuits	BW-N20W20+	20dB RF Fixed Attenuator (DC - 18 GHz)	-			✓
Mini-Circuits	BW-S3W2+	3dB RF Fixed Attenuator (DC - 18 GHz)	-			✓
Mini-Circuits	BW-S3W2+	3dB RF Fixed Attenuator (DC - 18 GHz)	-			✓
Mini-Circuits	CBL-6FT-SMNM+	Precision Test Cable SMA/N (DC - 18 GHz)	3318			✓
Mini-Circuits	CBL-6FT-SMNM+	Precision Test Cable SMA/N (DC - 18 GHz)	3335			✓
Mini-Circuits	CBL-6FT-SMNM+	Precision Test Cable SMA/N (DC - 18 GHz)	3329			✓
Mini-Circuits	NF-SF50+	RF Adapter N Male to SMA Female (DC - 18 GHz)	-			✓
Mini-Circuits	VLF-3000+	Coaxial Low Pass Filter (DC - 3 GHz)	-			✓
Mini-Circuits	VLF-1000+	Coaxial Low Pass Filter (DC - 1 GHz)	-			✓
Mitutoyo	CD-4"AX	Digital Caliper	B23243217	9/28/2023	9/28/2025	
Narda	24785-20	20 dB SMA Fixed Attenuator (DC - 4.0 GHz)	-			✓
Narda	4226-20 (26733)	20 dB SMA Directional Coupler (0.5 - 18 GHz)	0201			✓
Rohde & Schwarz	SMCV100B	R&S SMCV100B Vector Signal Generator (VSG)	103882	12/21/2023	12/19/2025	
Rohde & Schwarz	CMW500	CMW500 Radio Communication Test Station	1201.0002K50-167186-cf	1/12/2024	1/12/2026	
SPEAG	D1750V2	1750 MHz System Validation Dipole	1205	10/11/2023	10/11/2025	
SPEAG	D1900V2	1900 MHz System Validation Dipole	5d252	10/6/2023	10/6/2025	
SPEAG	D2450V2	2450 MHz System Validation Dipole	1112	11/15/2024	11/15/2025	
SPEAG	D750V3	750 MHz System Validation Dipole	1235	10/11/2023	10/11/2025	
SPEAG	D835V2	835 MHz System Validation Dipole	4d311	10/9/2023	10/9/2025	
SPEAG	DAE4ip	Data Acquisition Electronics with Integ. Power	1844	11/6/2024	11/6/2025	
SPEAG	DAE4ip	Data Acquisition Electronics with Integ. Power	1905	4/25/2025	4/25/2026	
SPEAG	DAE4ip	Data Acquisition Electronics with Integ. Power	1862	1/16/2025	1/16/2026	
SPEAG	DAK-3.5	DAK-3.5 Dielectric Probe	1349	9/2/2024	9/2/2025	
SPEAG	EX3DV4	SAR Measurement Probe	7853	11/7/2024	11/7/2025	
SPEAG	EX3DV4	SAR Measurement Probe	7859	5/5/2025	5/5/2026	
SPEAG	Powersource1	Signal Generator	4341	1/9/2025	1/9/2026	
SPEAG	SE UMS 171 E	MAIA Modulation and Interference Analyzer	1814			
SPEAG	SE UMS 171 E	MAIA Modulation and Interference Analyzer	1817			
SPEAG	SE UMS 176 C	ANT Wideband Communication Antenna	1579			
SPEAG	SE UMS 176 C	ANT Wideband Communication Antenna	1601			

✓ Note: Components calibrated before testing. Prior to testing, the measurement paths containing a cable, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator, power sensor, or VNA) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

10. Conclusion

The SAR evaluation indicates that the DUT is capable of compliance with the RF radiation exposure limits of the FCC and ISED, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.