

FCC SAR Test Report

Product : Professor Einstein
Model/Type reference : 0001
Report Number : 170707019SAR-1
Date of Issue : Jul. 07, 2017
FCC ID : 2AKFA00001
Test Standards : FCC 47 CFR Part 2 §2.1093
ANSI/IEEE C95.1-1992
IEEE Std 1528-2013
Test result : PASS

Prepared for:
SHAO GUAN EARLY LIGHT INTERNATIONAL CO., LTD
Xuri Toy Industry Zone, 6km The Western Suburbs of Shaoguan City,
GungDong, China

Prepared by:
Shenzhen UnionTrust Quality and Technology Co., Ltd.
16/F, Block A, Building 6, Baoneng Science and Technology Park,
Qingxiang Road No.1, Longhua New District, Shenzhen, China
TEL: +86-755-2823 0888
FAX: +86-755-2823 0886

Tested by:

Ricky Xu
Ricky Xu
Supervisor

Billy Li

Reviewed by:

Jim Long
Jim Long
Senior Supervisor

Approved by:

Date:

Jul. 07, 2017

Technical Director

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com [Http://www.uttlab.com](http://www.uttlab.com)

Version

Version No.	Date	Description
V1.0	Jul. 07, 2017	Original

Contents

	Page
1 GENERAL INFORMATION	4
1.1 STATEMENT OF COMPLIANCE.....	4
1.2 EUT DESCRIPTION.....	5
1.2.1 General Description.....	5
1.2.2 Wireless Technologies.....	5
1.2.3 List of Accessory.....	5
1.3 MAXIMUM CONDUCTED POWER	5
1.4 OTHER INFORMATION.....	5
1.5 TESTING LOCATION	5
1.6 TEST FACILITY	5
1.7 GUIDANCE STANDARD	6
2 SPECIFIC ABSORPTION RATE (SAR).....	7
2.1 INTRODUCTION	7
2.2 SAR DEFINITION.....	7
2.3 SAR LIMITS	7
3 SAR MEASUREMENT SYSTEM	8
3.1 SATIMO MEASUREMENT SYSTEM.....	8
3.1.1 Phantoms	8
3.1.2 Probe Specification.....	9
3.1.3 Device Holder	10
3.2 SAR SCAN PROCEDURE	11
3.2.1 SAR Reference Measurement (drift)	11
3.2.2 Area Scan	11
3.2.3 Zoom Scan	11
3.2.4 SAR Drift Measurement.....	12
3.3 TEST EQUIPMENT	13
3.4 MEASUREMENT UNCERTAINTY	14
3.5 TISSUE DIELECTRIC PARAMETER MEASUREMENT & SYSTEM VERIFICATION	15
3.5.1 Tissue Simulating Liquids	15
3.5.2 System Check Description	17
3.5.3 Tissue Verification.....	18
3.5.4 System Verification	18
4 SAR MEASUREMENT EVALUATION.....	19
4.1 EUT CONFIGURATION AND SETTING	19
4.1.1 WLAN Configuration and Testing	19
4.2 EUT TESTING POSITION.....	20
4.2.1 Body Exposure Conditions	20
4.3 MEASURED CONDUCTED POWER RESULT	20
4.3.1 Conducted Power of WLAN	20
4.4 SAR TEST EXCLUSION EVALUATIONS	21
4.4.1 Standalone SAR Test Exclusion Considerations.....	21
4.5 SAR TESTING RESULTS.....	22
4.5.1 SAR Test Reduction Considerations	22
4.5.2 SAR Results for Body Exposure Condition (Separation Distance is 0 cm).....	23
4.6 SAR MEASUREMENT VARIABILITY	23
4.6.1 Repeated Measurement.....	23
4.6.2 DUT Holder Perturbations	23

Appendix A. SAR Plots of System Verification**Appendix B. SAR Plots of SAR Measurement****Appendix C. Calibration Certificate for Probe and Dipole****Appendix D. Photographs of EUT and Setup****Shenzhen UnionTrust Quality and Technology Co., Ltd.**

1 General Information

1.1 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows:

Equipment Class	Mode	Highest Reported Body SAR _{1g} (0 cm Gap) (W/kg)
DTS	2.4G WLAN	0.002

1.2 EUT Description

1.2.1 General Description

Product Name	Professor Einstein
Model No.(EUT)	0001
FCC ID	2AKFA00001
Tx Frequency Bands (Unit: MHz)	WLAN: 2412 ~ 2462

1.2.2 Wireless Technologies

2.4G WLAN	802.11b 802.11g 802.11n (HT20)
-----------	--------------------------------------

1.2.3 List of Accessory

Battery	Model Name	J&Y Ni-MH
	Power Rating	2.4Vdc, 1800mAh
	Type	Li-ion

1.3 Maximum Conducted Power

The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below.

Mode	2.4G WLAN
802.11b	12.0
802.11g	18.0
802.11n HT20	18.0

1.4 Other Information

Sample Received Date:	Jul. 04, 2017
Sample tested Date:	Jul. 05, 2017

1.5 Testing Location

Sub-contract lab:
CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd.
Address: Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055, P. R. China
Telephone: +86 (0) 755 2662 7338 Fax :+86 (0) 755 2662 7238
Mail: manager@ccic-set.com Website: http://www.ccic-set.com

1.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1659

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com [Http://www.uttlab.com](http://www.uttlab.com)

1.7 Guidance Standard

The tests documented in this report were performed in accordance with FCC 47 CFR Part 2 §2.1093, IEEE Std 1528-2013, ANSI/IEEE C95.1-1992, the following FCC Published RF exposure KDB procedures:

KDB 865664 D01 v01r04

KDB 865664 D02 v01r02

KDB 248227 D01 v02r02

KDB 447498 D01 v06

The equipment have been tested by **CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd.**, and found compliance with the requirement of the above standards.

2 Specific Absorption Rate (SAR)

2.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling, by appropriate techniques, to produce specific absorption rates (SARs) as averaged over the whole-body, any 1 g or any 10 g of tissue (defined as a tissue volume in the shape of a cube). All SAR values are to be averaged over any six-minute period. When portable device was used within 20 cm of the user's body, SAR evaluation of the device will be required. The SAR limit in chapter 2.3.

2.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$\text{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$\text{SAR} = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

2.3 SAR Limits

(A) Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B) Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note:

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.
2. At frequencies above 6.0 GHz, SAR limits are not applicable and MPE limits for power density should be applied at 5 cm or more from the transmitting device.
3. The SAR limit is specified in FCC 47 CFR Part 2 §2.1093, ANSI/IEEE C95.1-1992.

3 SAR Measurement System

3.1 SATIMO Measurement System

Fig-3.1 SATIMO Measurement System

3.1.1 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SATIMO. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

Fig-3.2 SAM Twin Phantom

3.1.2 Probe Specification

Fig-3.3 Probe

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	700 MHz to 3 GHz; Linearity: ± 0.5 dB (700 MHz to 3 GHz)
Directivity	± 0.25 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	1.5 μ W/g to 100 mW/g; Linearity: ± 0.5 dB
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 5 mm Distance from probe tip to dipole centers: <2.7 mm
Application	General dosimetry up to 3 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Frequency	5GHz to 6 GHz; Linearity: ± 0.5 dB (5GHz to 6 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	1.5 μ W/g to 100 mW/g; Linearity: ± 0.8 dB
Dimensions	Overall length: 330 mm Tip diameter: 2.5 mm Distance from probe tip to dipole centers: 1 mm
Application	General dosimetry from 5GHz up to 6 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	COMOSAR

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

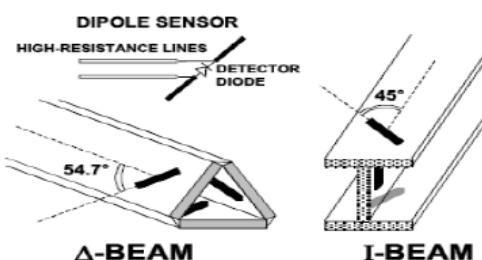


Fig-3.4 Probe

3.1.3 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SATIMO as an integral part of the COMOSAR test system.

The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

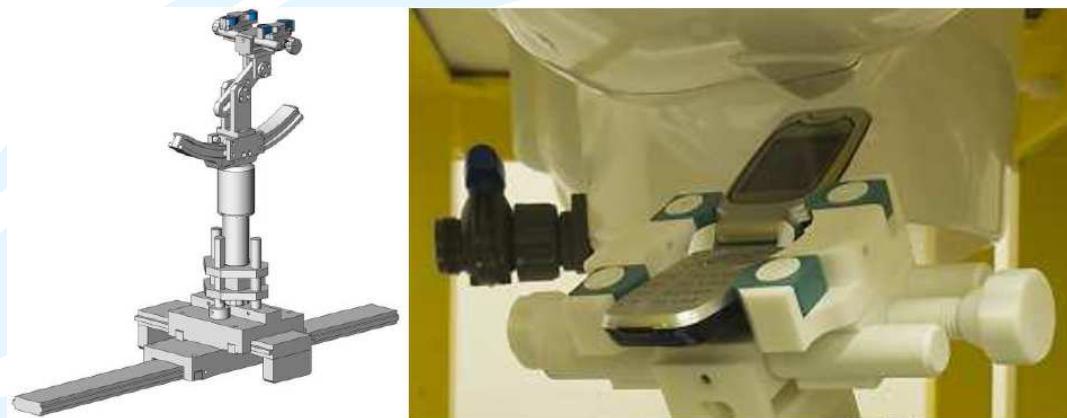


Fig-3.5 Device holder

3.2 SAR Scan Procedure

3.2.1 SAR Reference Measurement (drift)

Prior to the SAR test, local SAR shall be measured at a stationary reference point where the SAR exceeds the lower detection limit of the measurement system.

3.2.2 Area Scan

Measurement procedures for evaluating the SAR of wireless device start with a coarse measurement grid to determine the approximate location of the local peak SAR values. This is known as the area-scan procedure. All antennas and radiating structures that may contribute to the measured SAR or influence the SAR distribution must be included in the area scan. The area scan measurement resolution must enable the extrapolation algorithms of the SAR system to correctly identify the peak SAR location(s) for subsequent zoom scan measurements to correctly determine the 1-g SAR. Area scans are performed at a constant distance from the phantom surface, determined by the measurement frequencies. When a measured peak is closer than $\frac{1}{2}$ the zoom scan volume dimension (x, y) from the edge of the area scan region, unless the entire peak and gram-averaging volume are both captured within the zoom scan volume, the area scan must be repeated by shifting and expanding the area scan region to ensure all peaks are away from the area scan boundary. The area scan resolutions specified in the table below must be applied to the SAR measurements.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	$\leq 2 \text{ GHz: } \leq 15 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 12 \text{ mm}$	$3 - 4 \text{ GHz: } \leq 12 \text{ mm}$ $4 - 6 \text{ GHz: } \leq 10 \text{ mm}$
When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

3.2.3 Zoom Scan

To evaluate the peak spatial-average SAR values with respect to 1 g or 10 g cubes, fine resolution volume scans, called zoom scans, are performed at the peak SAR locations identified during the area scan. If the cube volume within the zoom scan chosen to calculate the peak spatial-average SAR touches any boundary of the zoom-scan volume, the zoom scan shall be repeated with the center of the zoom-scan volume shifted to the new maximum SAR location. For any secondary peaks found in the area scan that are within 2 dB of the maximum peak and are not within this zoom scan, the zoom scan shall be performed for such peaks, unless the peak spatial-average SAR at the location of the maximum peak is more than 2 dB below the applicable SAR limit (i.e., 1 W/kg for a 1.6 W/kg 1 g limit, or 1.26 W/kg for a 2 W/kg 10 g limit). The zoom scan resolutions specified in the table below must be applied to the SAR measurements.

		≤ 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*
Maximum zoom Scan spatial resolution, normal to phantom surface	uniform grid: $\Delta Z_{Zoom}(n)$	≤ 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
	graded grid	$\Delta Z_{Zoom}(1)$: between 1^{ST} two points closest to phantom surface	≤ 4 mm
		$\Delta Z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta Z_{Zoom}(n-1)$ mm
Minimum zoom scan volume	x, y, z	≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.			
* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.			

3.2.4 SAR Drift Measurement

The local SAR (or conducted power) shall be measured at exactly the same location as in 3.2.1 section. The absolute value of the measurement drift (the difference between the SAR measured in 3.2.1 and 3.2.4 section) shall be recorded. The SAR drift shall be kept within $\pm 5\%$.

3.3 Test Equipment

Equipment	Model	SN	Cal. Date	Cal. Interval
SAR Probe	SATIMO	SN 04/13 EP166	Apr. 11, 2017	1 Year
Dipole	SID2450	SN09/13 DIP2G450-220	Aug. 28, 2014	3 Year
Vector Network Analyzer	ZVB8	A0802530	Jun. 08, 2017	1 Year
Signal Generator	SMR27	A0304219	Jun. 08, 2017	1 Year
Power Meter	NRP2	A140401673	Mar. 09, 2017	1 Year
Power Sensor	NPR-Z11	1138.3004.02-114072-nq	Mar. 09, 2017	1 Year
Amplifier	Nucleitudes	143060	Mar. 09, 2017	1 Year
Directional Coupler	DC6180A	305827	Mar. 09, 2017	1 Year
Power Meter	NRVS	A0802531	Mar. 09, 2017	1 Year
Power Sensor	NRV-Z4	100069	Mar. 09, 2017	1 Year
Multimeter	Keithley-2000	4014020	Mar. 09, 2017	1 Year

3.4 Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

3.5 Tissue Dielectric Parameter Measurement & System Verification

3.5.1 Tissue Simulating Liquids

The temperature of the tissue-equivalent medium used during measurement must also be within 18 °C to 25 °C and within ± 2 °C of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance.

The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm with $\leq \pm 0.5$ cm variation for SAR measurements ≤ 3 GHz and ≥ 10.0 cm with $\leq \pm 0.5$ cm variation for measurements > 3 GHz. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.

Fig-3.6 Photo of Liquid Height

Table-3.1 Tissue Dielectric Parameters for Head and Body

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
750	41.9	0.89	55.5	0.96
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
1450	40.5	1.20	54.0	1.30
1640	40.3	1.29	53.8	1.40
1750	40.1	1.37	53.4	1.49
1800	40.0	1.40	53.3	1.52
1900	40.0	1.40	53.3	1.52
2000	40.0	1.40	53.3	1.52
2300	39.5	1.67	52.9	1.81
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3500	37.9	2.91	51.3	3.31
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000$ kg/m³)

The following table gives the recipes for tissue simulating liquids.

Table-3.2 Recipes of Tissue Simulating Liquid

Tissue Type	Bactericide	DGBE	HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono-hexylether
H750	0.2	-	0.2	1.4	57.0	-	41.1	-
H835	0.1	-	1.0	1.4	57.0	-	40.5	-
H900	0.1	-	1.0	1.5	56.5	-	40.9	-
H1450	-	45.5	-	0.7	-	-	53.8	-
H1640	-	45.8	-	0.5	-	-	53.7	-
H1750	-	44.5	-	0.3	-	-	55.2	-
H1800	-	44.9	-	0.2	-	-	54.9	-
H1900	-	44.9	-	0.2	-	-	54.9	-
H2000	-	50	-	-	-	-	50	-
H2300	-	44.9	-	0.1	-	-	55.0	-
H2450	-	45.0	-	0.1	-	-	54.9	-
H2600	-	45.1	-	0.1	-	-	54.8	-
H3500	-	8.0	-	0.2	-	20.0	71.8	-
H5G	-	-	-	-	-	17.2	65.52	17.3
B750	0.2	-	0.2	0.8	48.8	-	50.0	-
B835	0.2	-	0.2	0.9	48.5	-	50.2	-
B900	0.2	-	0.2	0.9	48.2	-	50.5	-
B1450	-	34.0	-	0.3	-	-	65.7	-
B1640	-	32.5	-	0.3	-	-	67.2	-
B1750	-	29.4	-	0.4	-	-	70.2	-
B1800	-	29.5	-	0.4	-	-	70.1	-
B1900	-	29.5	-	0.3	-	-	70.2	-
B2000	-	30.0	-	0.2	-	-	69.8	-
B2300	-	31.0	-	0.1	-	-	68.9	-
B2450	-	31.4	-	0.1	-	-	68.5	-
B2600	-	31.8	-	0.1	-	-	68.1	-
B3500	-	28.8	-	0.1	-	-	71.1	-
B5G	-	-	-	-	-	10.7	78.6	10.7

3.5.2 System Check Description

The system check procedure provides a simple, fast, and reliable test method that can be performed daily or before every SAR measurement. The objective here is to ascertain that the measurement system has acceptable accuracy and repeatability. This test requires a flat phantom and a radiating source. The system verification setup is shown as below.

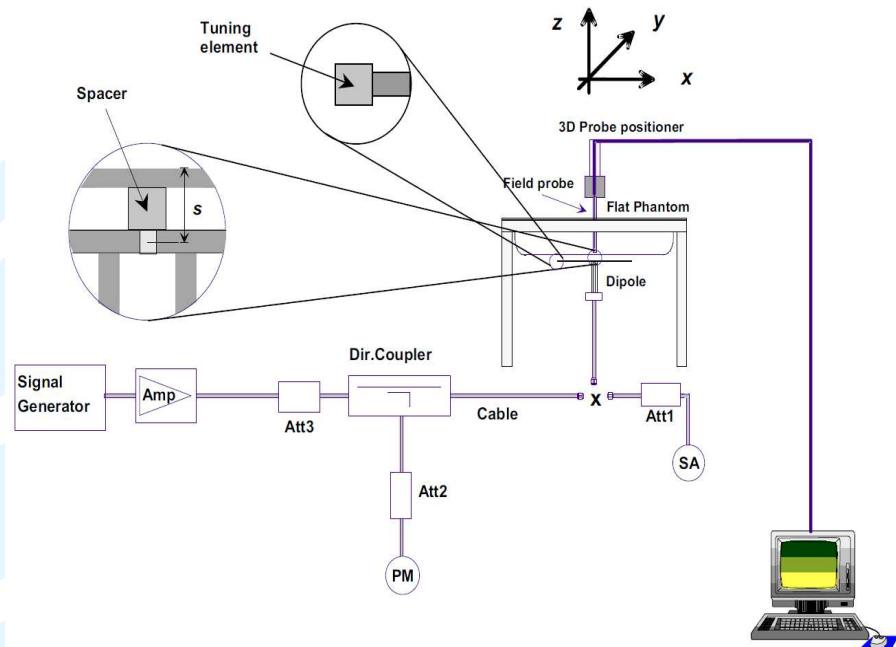


Fig-3.7 System Verification Setup

3.5.3 Tissue Verification

The measuring results for tissue simulating liquid are shown as below.

Test Date	Tissue Type	Frequency (MHz)	Liquid Temp. (°C)	Measured Conductivity (σ)	Measured Permittivity (ε _r)	Target Conductivity (σ)	Target Permittivity (ε _r)	Conductivity Deviation (%)	Permittivity Deviation (%)
Jul. 05, 2017	Body	2450	22.3	1.896	52.266	1.95	52.70	-2.75	-0.82

Note:

The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within $\pm 5\%$ of the target values. The variation of the liquid temperature must be within $\pm 2\text{ }^{\circ}\text{C}$ during the test.

3.5.4 System Verification

The measuring result for system verification is tabulated as below.

Test Date	Tissue Type	Frequency (MHz)	1W Target SAR-1g (W/kg)	Measured SAR-1g (W/kg)	Normalized to 1W SAR-1g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N
Jul. 05, 2017	Body	2450	52.40	0.5291	52.91	0.97	SN09/13 DIP2G450-220	SN 04/13 EP166

Note:

Comparing to the reference SAR value, the validation data should be within its specification of 10%. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

4 SAR Measurement Evaluation

4.1 EUT Configuration and Setting

4.1.1 WLAN Configuration and Testing

In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

According to KDB 248227 D01, this device has installed WLAN engineering testing software which can provide continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

Initial Test Configuration

An initial test configuration is determined for OFDM transmission modes in 2.4 GHz and 5 GHz bands according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

Subsequent Test Configuration

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. When the highest reported SAR for the initial test configuration according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$, SAR is not required for that subsequent test configuration.

SAR Test Configuration and Channel Selection

When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is using largest channel bandwidth, lowest order modulation, lowest data rate, and lowest order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n). After an initial test configuration is determined, if multiple test channels have the same measured

Shenzhen UnionTrust Quality and Technology Co., Ltd.

maximum output power, the channel chosen for SAR measurement is determined according to the following.

- 1) The channel closest to mid-band frequency is selected for SAR measurement.
- 2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

4.2 EUT Testing Position

4.2.1 Body Exposure Conditions

RF Exposure Conditions		Test Position	Separation Distance	SAR test exclusion
Body		Front Face	0 cm	Note 1
		Rear Face		
		Left Side		
		Right Side		
		Top Side		
		Bottom Side		

Note:

1. For SAR test exclusion, please refer to section 4.4.1.

4.3 Measured Conducted Power Result

4.3.1 Conducted Power of WLAN

Mode		Channel	Frequency (MHz)	Average Power (dBm)
2.4G	802.11b	1	2412	11.80
		6	2437	11.40
		11	2462	11.00
	802.11g	1	2412	16.70
		6	2437	17.40
		11	2462	16.20
	802.11n (HT20)	1	2412	17.80
		6	2437	18.00
		11	2462	16.80

4.4 SAR Test Exclusion Evaluations

4.4.1 Standalone SAR Test Exclusion Considerations

According to KDB 447498 D01, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The 1-g and 10-g SAR test exclusion thresholds are determined by the following:

a) For 100 MHz to 6 GHz and *test separation distances* \leq 50 mm:

$$\frac{\text{Max. Tune up Power}_{(mW)}}{\text{Min. Test Separation Distance}_{(mm)}} \times \sqrt{f_{(\text{GHz})}} \leq 3.0 \text{ for SAR-1g, } \leq 7.5 \text{ for SAR-10g}$$

When the minimum *test separation distance* is $<$ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

b) For 100 MHz to 1500 MHz and *test separation distances* $>$ 50 mm:

$$\{[\text{Threshold for } 50 \text{ mm in step a}]) + [(\text{test separation distance} - 50 \text{ mm}) \cdot (f_{(\text{MHz})}/150)]\} \text{ mW}$$

c) For $>$ 1500 MHz and \leq 6 GHz and *test separation distances* $>$ 50 mm:

$$\{[\text{Threshold for } 50 \text{ mm in step a}]) + [(\text{test separation distance} - 50 \text{ mm}) \cdot 10]\} \text{ mW}$$

When the calculated result in step a) is \leq 3.0 for SAR-1g exposure condition, or \leq 7.5 for SAR-10g exposure condition, the SAR testing exclusion is applied.

When the device output power is less than the calculated result (power threshold, mW) shown in step b) and c), the SAR testing exclusion is applied.

Mode	Max. Tune-up Power (dBm)	Max. Tune-up Power (mW)	Front Face			Rear Face			Left Side		
			Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?
WLAN 2.4G 802.11b	12.0	15.85	26	1.0	No	68	276 mW	No	14	1.8	No
			Right Side			Top Side			Bottom Side		
			Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?
			75	346 mW	No	67	266 mW	No	50	0.5	No

Mode	Max. Tune-up Power (dBm)	Max. Tune-up Power (mW)	Front Face			Rear Face			Left Side		
			Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?
WLAN 2.4G 802.11g/n	18.0	63.10	26	3.8	Yes	68	276 mW	No	14	7.1	Yes
			Right Side			Top Side			Bottom Side		
			Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?
			75	346 mW	No	67	266 mW	No	50	2.0	No

4.5 SAR Testing Results

4.5.1 SAR Test Reduction Considerations

KDB 447498 D01 General RF Exposure Guidance

Testing of other required channels within the operating mode of a frequency band is not required when the *reported* SAR for the mid-band or highest output power channel is:

- a) $\leq 0.8 \text{ W/kg}$ or 2.0 W/kg , for 1-g or 10-g respectively, when the transmission band is $\leq 100 \text{ MHz}$
- b) $\leq 0.6 \text{ W/kg}$ or 1.5 W/kg , for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- c) $\leq 0.4 \text{ W/kg}$ or 1.0 W/kg , for 1-g or 10-g respectively, when the transmission band is $\geq 200 \text{ MHz}$

KDB 248227 D01 Wi-Fi SAR

- a) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is $\leq 0.4 \text{ W/kg}$, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is $\leq 0.8 \text{ W/kg}$ or all test positions are measured.
- b) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is $\leq 0.8 \text{ W/kg}$, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is $> 1.2 \text{ W/kg}$, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is $\leq 1.2 \text{ W/kg}$.
- c) Duty Cycle

For SAR test, the correct crest factor parameter in the SAR measurement system software was set.

The duty cycle as below table.

Band	Duty Cycle
2.4G WLAN	100%

Note: Crest Factor = 1 / Duty Cycle

4.5.2 SAR Results for Body Exposure Condition (Separation Distance is 0 cm)

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (%)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
01	802.11g	-	Front Face	6	18.0	17.40	0.34	0.001427	1.15	0.002
	802.11g	-	Left Side	6	18.0	17.40	0.60	0.001254	1.15	0.001

4.6 SAR Measurement Variability

4.6.1 Repeated Measurement

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
2. When the highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 , or when the original or repeated measurement is ≥ 1.45 W/kg, perform a second repeated measurement.
4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 , and the original, first or second repeated measurement is ≥ 1.5 W/kg, perform a third repeated measurement.

All the measured SAR are less than 0.8 W/kg, so the repeated measurement is not required.

4.6.2 DUT Holder Perturbations

Depending on antenna locations, buttons locations on phones or device, form factor (e.g. dongles etc.), the measured SAR could be influenced by the relative positions of the test device and its holder.

When the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation verification is required, using the highest SAR configuration among all applicable frequency bands with and without the device holder.

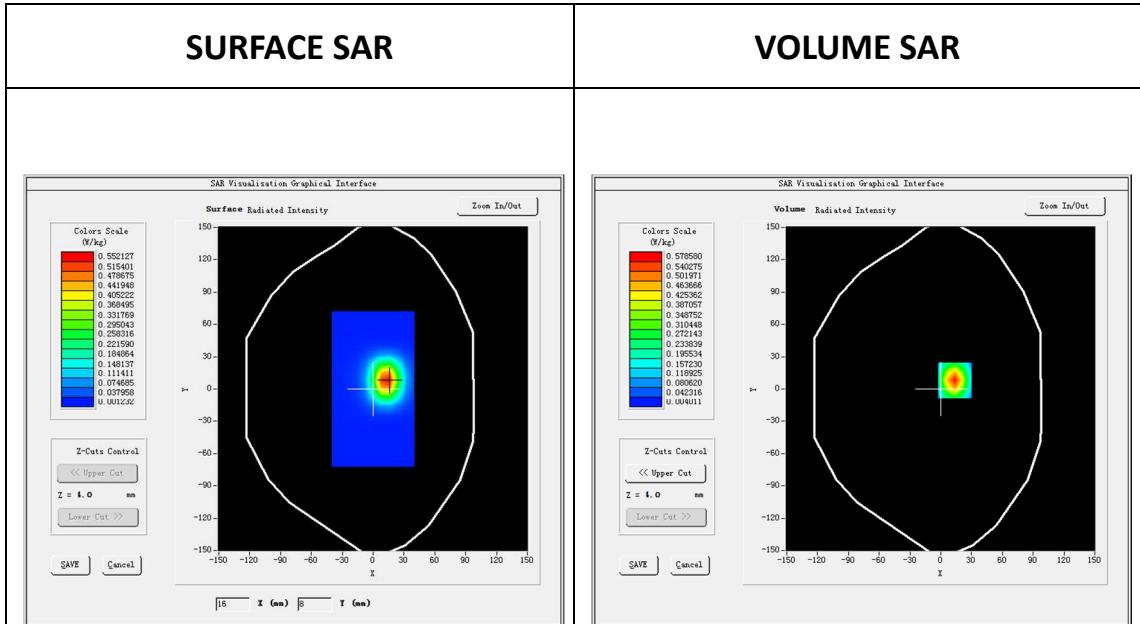
All the measured SAR are less than 1.2 W/kg, so the holder perturbation verification is not required.

Appendix A. SAR Plots of System Verification

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

Date of measurement: 05/7/2017

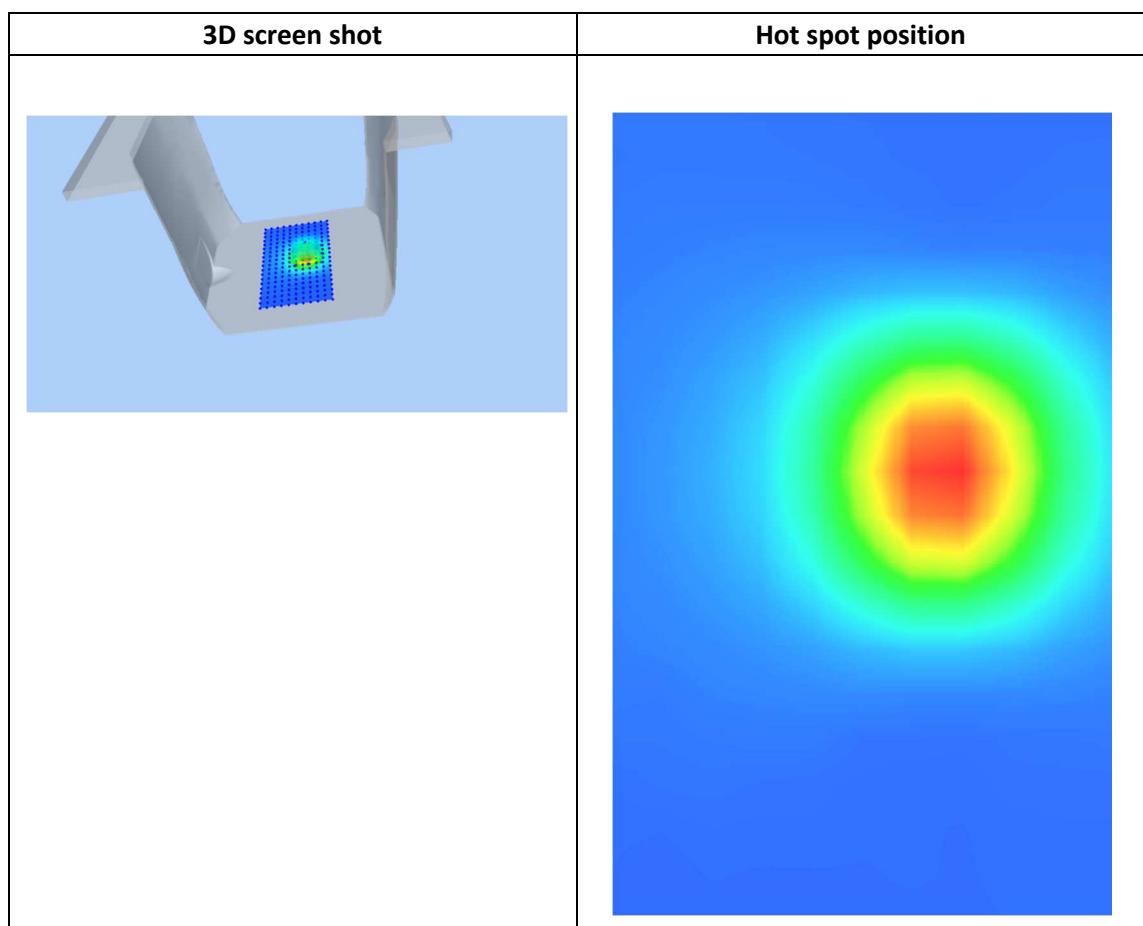
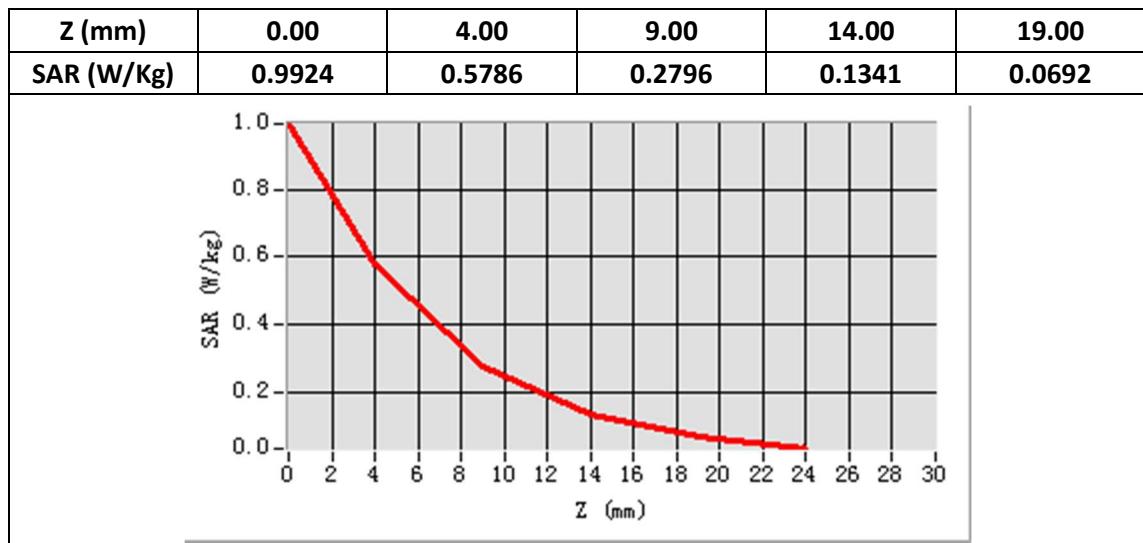
Measurement duration: 22 minutes 23 seconds


Mobile Phone IMEI number: --

A. Experimental conditions.

<u>Area Scan</u>	dx=8mm dy=8mm
<u>ZoomScan</u>	7x7x7, dx=5mm dy=5mm dz=5mm
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Body</u>
<u>Band</u>	<u>CW2450</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	<u>CW (Crest factor: 1.0)</u>

B. SAR Measurement Results



Frequency (MHz)	2450.000000
Relative permittivity (real part)	52.266228
Relative permittivity (imaginary)	13.970050
Conductivity (S/m)	1.896390
Variation (%)	-0.240000

Maximum location: X=14.00, Y=8.00

SAR Peak: 0.99 W/kg

SAR 10g (W/Kg)	0.242159
SAR 1g (W/Kg)	0.529065

Appendix B. SAR Plots of SAR Measurement

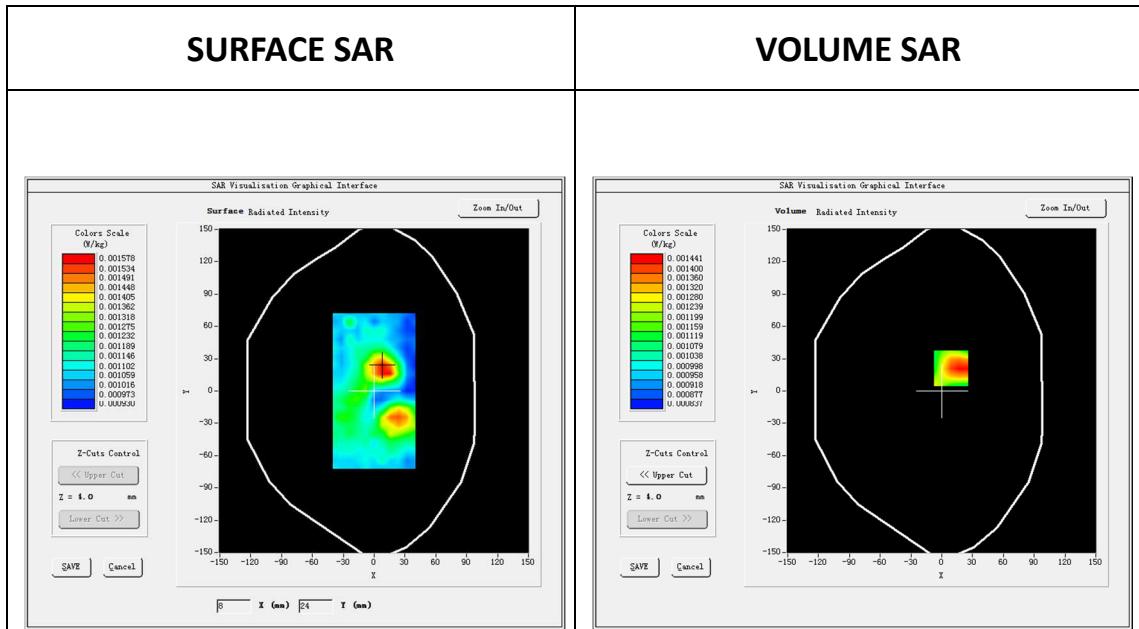
The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows.

Plot	Band	Mode	Test Position	Channel	Gap
01	802.11g	-	Face	6	0cm

Type: Phone measurement (Very fast, 11 points in the volume)

Date of measurement: 05/07/2017

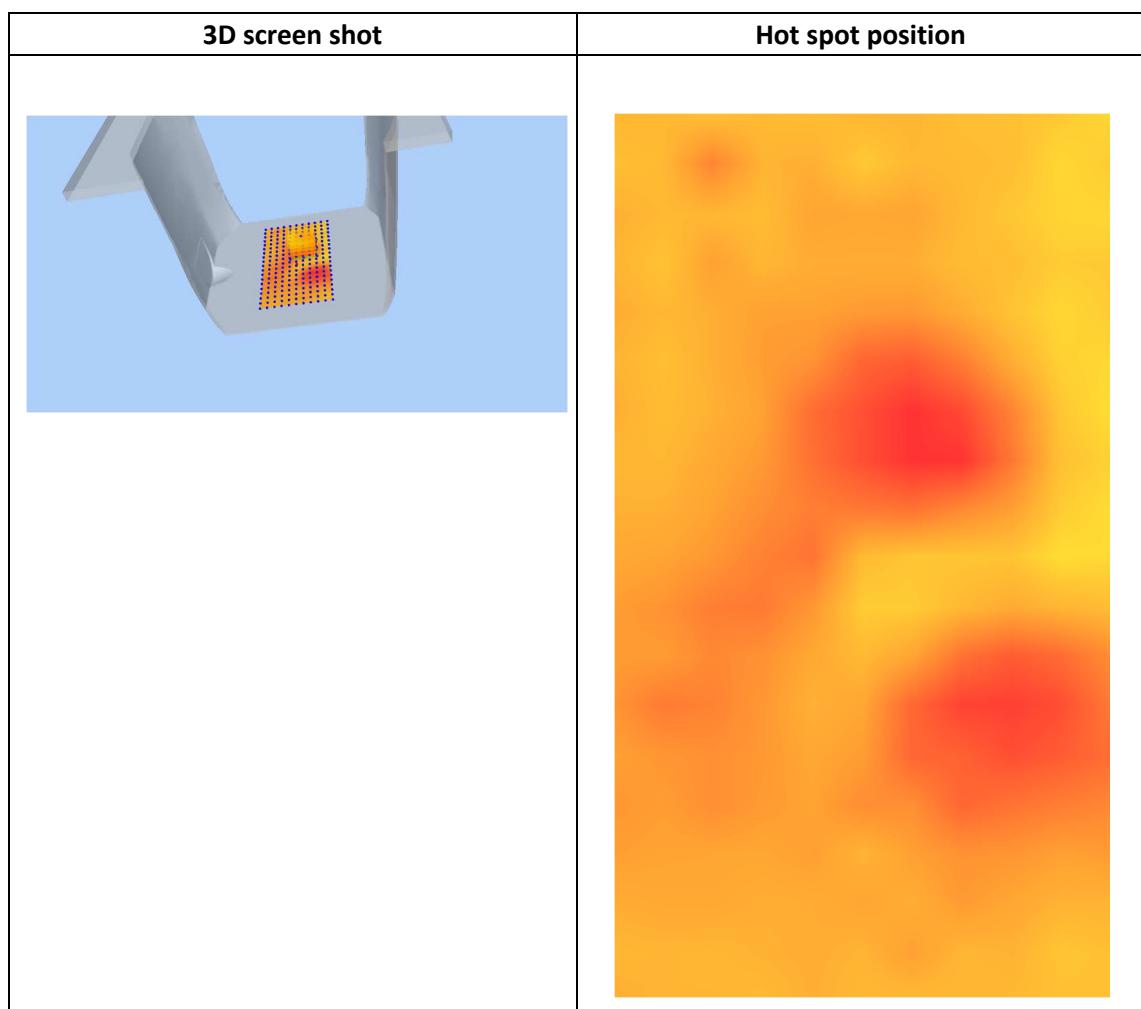
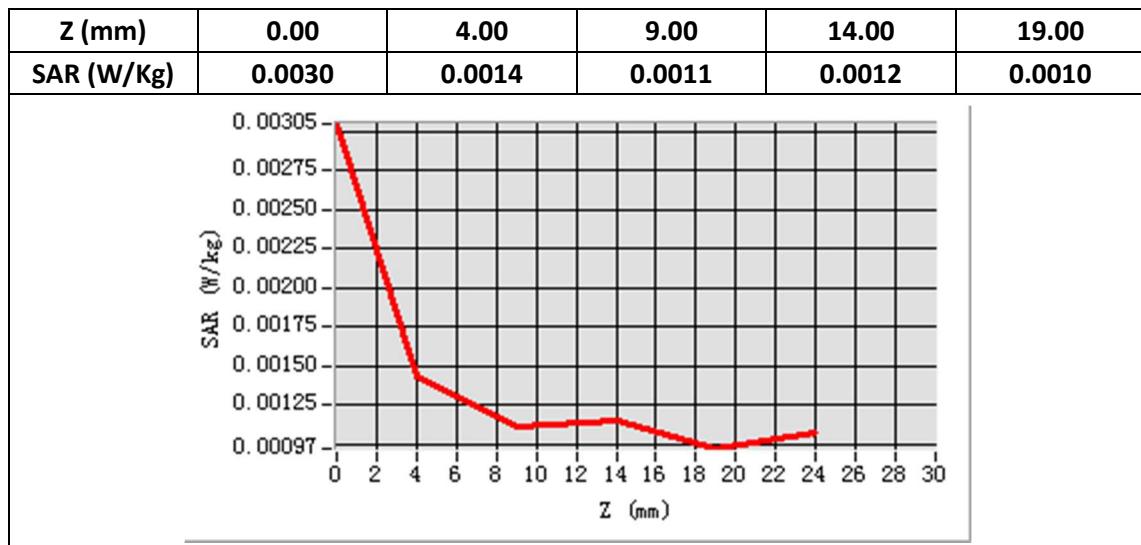
Measurement duration: 22minutes 35 seconds


Mobile Phone IMEI number: --

A. Experimental conditions.

<u>Area Scan</u>	dx=8mm dy=8mm
<u>ZoomScan</u>	5x5x7, dx=8mm dy=8mm dz=5mm
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Body</u>
<u>Band</u>	<u>IEEE 802.11b ISM</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	<u>IEEE802.b (Crest factor: 1.0)</u>

B. SAR Measurement Results



E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2437.0
Relative permittivity (real part)	52.266228
Relative permittivity (imaginary)	13.970050
Conductivity (S/m)	1.896390
Variation (%)	0.34

Maximum location: X=9.00, Y=21.00

SAR Peak: 0.00 W/kg

SAR 10g (W/Kg)	0.001215
SAR 1g (W/Kg)	0.001427

Appendix C. Calibration Certificate for Probe and Dipole

The calibration certificates are shown as follows.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com [Http://www.uttlab.com](http://www.uttlab.com)

COMOSAR E-Field Probe Calibration Report

Ref : ACR.102.1.17.SATU.A

**CCIC SOUTHERN ELECTRONIC PRODUCT
TESTING (SHENZHEN) CO., LTD**
**ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI
TOWN**
SHENZHEN, P.R. CHINA (POST CODE:518055)
MVG COMOSAR DOSIMETRIC E-FIELD PROBE
SERIAL NO.: SN 04/13 EP166

Calibrated at MVG US
2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 04/11/17

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

	<i>Name</i>	<i>Function</i>	<i>Date</i>	<i>Signature</i>
<i>Prepared by :</i>	Jérôme LUC	Product Manager	4/12/2017	
<i>Checked by :</i>	Jérôme LUC	Product Manager	4/12/2017	
<i>Approved by :</i>	Kim RUTKOWSKI	Quality Manager	4/12/2017	

	<i>Customer Name</i>
<i>Distribution :</i>	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co., Ltd

<i>Issue</i>	<i>Date</i>	<i>Modifications</i>
A	4/12/2017	Initial release

TABLE OF CONTENTS

1	Device Under Test	4
2	Product Description	4
2.1	General Information	4
3	Measurement Method	4
3.1	Linearity	4
3.2	Sensitivity	5
3.3	Lower Detection Limit	5
3.4	Isotropy	5
3.5	Boundary Effect	5
4	Measurement Uncertainty	5
5	Calibration Measurement Results	6
5.1	Sensitivity in air	6
5.2	Linearity	7
5.3	Sensitivity in liquid	7
5.4	Isotropy	8
6	List of Equipment	9

1 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Manufacturer	MVG
Model	SSE5
Serial Number	SN 04/13 EP166
Product Condition (new / used)	New
Frequency Range of Probe	0.15 GHz-3GHz
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.233 MΩ Dipole 2: R2=0.204 MΩ Dipole 3: R3=0.234 MΩ

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

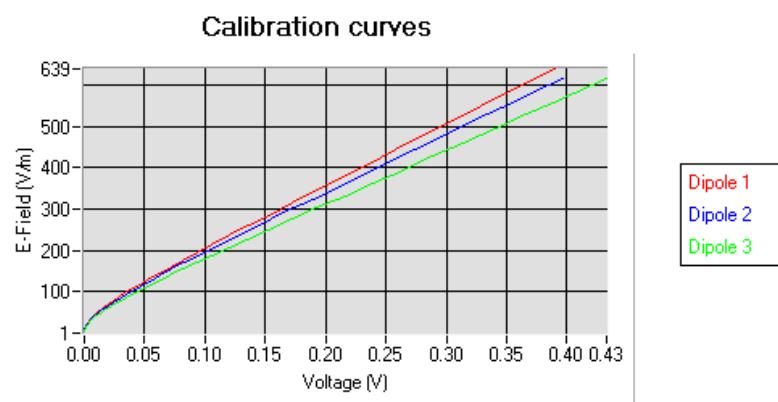
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

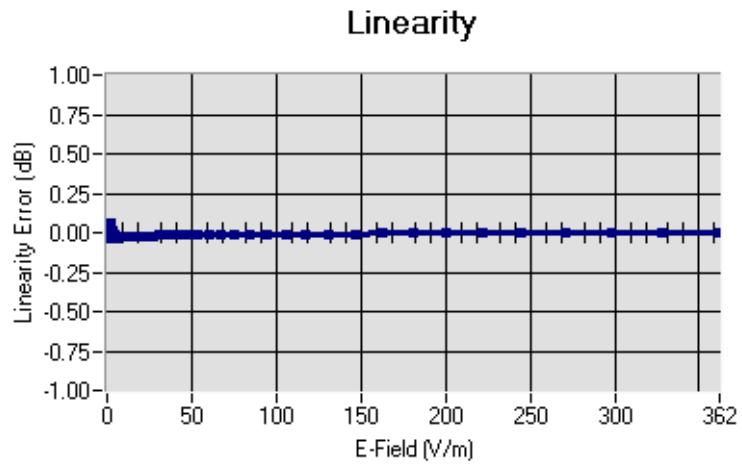
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level $k = 2$					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters	
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


5.1 SENSITIVITY IN AIR

Normx dipole 1 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normy dipole 2 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normz dipole 3 ($\mu\text{V}/(\text{V}/\text{m})^2$)
5.26	5.31	6.46


DCP dipole 1 (mV)	DCP dipole 2 (mV)	DCP dipole 3 (mV)
95	97	93

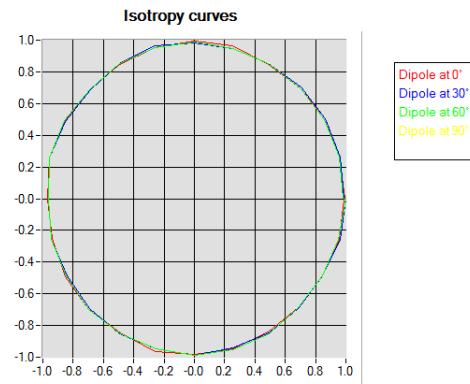
Calibration curves $e_i=f(V)$ ($i=1,2,3$) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

5.2 LINEARITY

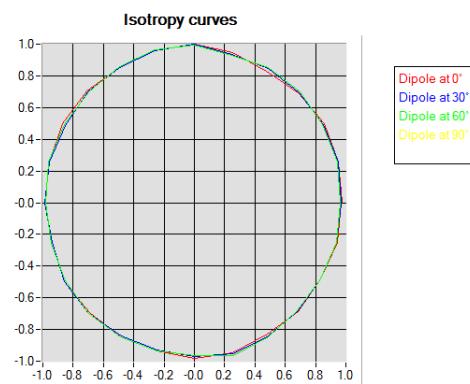
Linearity: +/-1.32% (+/-0.06dB)

5.3 SENSITIVITY IN LIQUID


Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL750	750	40.03	0.93	5.73
BL750	750	56.83	1.00	5.90
HL850	835	42.19	0.90	5.85
BL850	835	54.67	1.01	6.07
HL900	900	42.08	1.01	5.98
BL900	900	55.25	1.08	6.21
HL1800	1800	41.68	1.46	5.43
BL1800	1800	53.86	1.46	5.60
HL1900	1900	38.45	1.45	5.99
BL1900	1900	53.32	1.56	6.11
HL2000	2000	38.26	1.38	5.51
BL2000	2000	52.70	1.51	5.67
HL2450	2450	37.50	1.80	5.35
BL2450	2450	53.22	1.89	5.56
HL2600	2600	39.80	1.99	5.22
BL2600	2600	52.52	2.23	5.39

LOWER DETECTION LIMIT: 8mW/kg

5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB
- Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.04 dB
- Hemispherical isotropy: 0.08 dB

6 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Reference Probe	MVG	EP 94 SN 37/08	10/2016	10/2017
Multimeter	Keithley 2000	1188656	01/2017	01/2020
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	01/2017	01/2020
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	10/2015	10/2017

SID 2450 Dipole Calibration Certificate

SAR Reference Dipole Calibration Report

Ref : ACR.240.6.14.SATU.A

**CCIC SOUTHERN ELECTRONIC PRODUCT
TESTING (SHENZHEN) CO., LTD**
ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI
TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055)

SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 09/13 DIP2G450-220

Calibrated at **SATIMO US**

2105 Barrett Park Dr. - Kennesaw, GA 30144

08/28/14

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/29/2014	
Checked by :	Jérôme LUC	Product Manager	8/29/2014	
Approved by :	Kim RUTKOWSKI	Quality Manager	8/29/2014	

	Customer Name
Distribution :	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co., Ltd

Issue	Date	Modifications
A	8/29/2014	Initial release

TABLE OF CONTENTS

1. Introduction.....	4
2. Device Under Test.....	4
3. Product Description.....	4
3.1. General Information.....	4
4. Measurement Method.....	5
4.1. Return Loss Requirements.....	5
4.2. Mechanical Requirements.....	5
5. Measurement Uncertainty.....	5
5.1. Return Loss.....	5
5.2. Dimension Measurement.....	5
5.3. Validation Measurement.....	5
6. Calibration Measurement Results.....	6
6.1. Return Loss and Impedance In Head Liquid.....	6
6.2. Return Loss and Impedance In Body Liquid.....	6
6.3. Mechanical Dimensions.....	6
7. Validation measurement.....	7
7.1. Head Liquid Measurement.....	7
7.2. SAR Measurement Result With Head Liquid.....	8
7.3. Body Liquid Measurement.....	9
7.4. SAR Measurement Result With Body Liquid.....	10
8. List of Equipment.....	11

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE
Manufacturer	Satimo
Model	SID2450
Serial Number	SN 09/13 DIP2G450-220
Product Condition (new / used)	Used

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

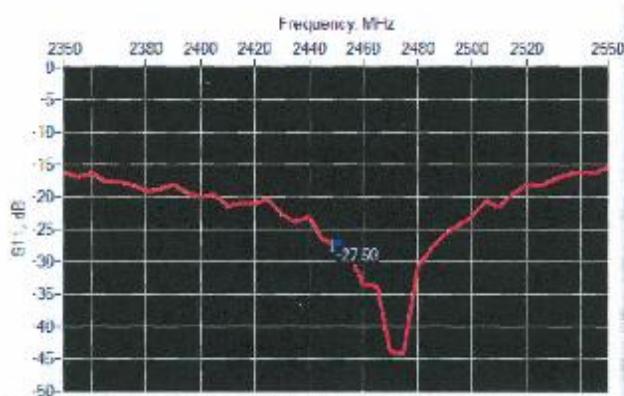
The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

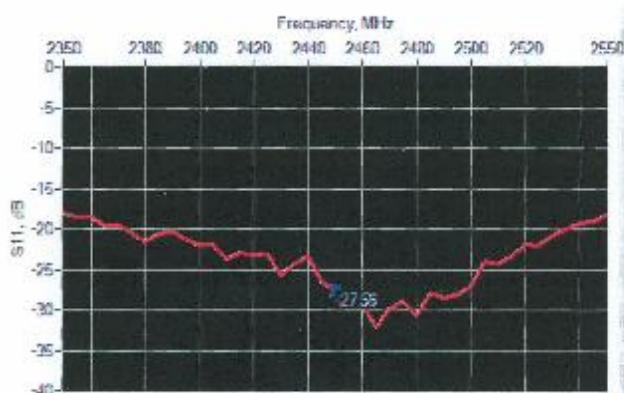
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm


5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-27.50	-20	$51.7 \Omega + 3.8 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-27.56	-20	$54.3 \Omega + 0.9 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 $\pm 1\%$		250.0 $\pm 1\%$		6.35 $\pm 1\%$	
450	290.0 $\pm 1\%$		166.7 $\pm 1\%$		6.35 $\pm 1\%$	
750	176.0 $\pm 1\%$		100.0 $\pm 1\%$		6.35 $\pm 1\%$	
835	161.0 $\pm 1\%$		89.8 $\pm 1\%$		3.6 $\pm 1\%$	

900	149.0 \pm 1 %.		83.3 \pm 1 %.		3.6 \pm 1 %.	
1450	85.1 \pm 1 %.		51.7 \pm 1 %.		3.6 \pm 1 %.	
1500	80.5 \pm 1 %.		50.0 \pm 1 %.		3.6 \pm 1 %.	
1640	75.0 \pm 1 %.		45.7 \pm 1 %.		3.6 \pm 1 %.	
1750	75.2 \pm 1 %.		42.9 \pm 1 %.		3.6 \pm 1 %.	
1800	72.0 \pm 1 %.		41.7 \pm 1 %.		3.6 \pm 1 %.	
1900	68.0 \pm 1 %.		38.5 \pm 1 %.		3.6 \pm 1 %.	
1950	66.3 \pm 1 %.		38.5 \pm 1 %.		3.6 \pm 1 %.	
2000	64.5 \pm 1 %.		37.5 \pm 1 %.		3.6 \pm 1 %.	
2100	61.0 \pm 1 %.		35.7 \pm 1 %.		3.6 \pm 1 %.	
2300	55.5 \pm 1 %.		32.5 \pm 1 %.		3.6 \pm 1 %.	
2450	51.5 \pm 1 %.	PASS	30.4 \pm 1 %.	PASS	3.6 \pm 1 %.	PASS
2600	48.5 \pm 1 %.		28.8 \pm 1 %.		3.6 \pm 1 %.	
3000	41.5 \pm 1 %.		25.0 \pm 1 %.		3.6 \pm 1 %.	
3500	37.0 \pm 1 %.		26.4 \pm 1 %.		3.6 \pm 1 %.	
3700	34.7 \pm 1 %.		26.4 \pm 1 %.		3.6 \pm 1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

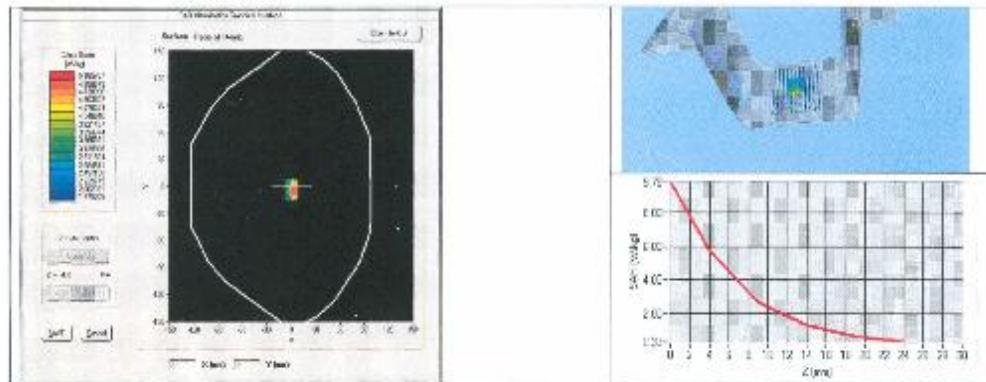
7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 \pm 5 %		0.87 \pm 5 %	
450	43.5 \pm 5 %		0.87 \pm 5 %	
750	41.9 \pm 5 %		0.89 \pm 5 %	
835	41.5 \pm 5 %		0.90 \pm 5 %	
900	41.5 \pm 5 %		0.97 \pm 5 %	
1450	40.5 \pm 5 %		1.20 \pm 5 %	
1500	40.4 \pm 5 %		1.23 \pm 5 %	
1640	40.2 \pm 5 %		1.31 \pm 5 %	
1750	40.1 \pm 5 %		1.37 \pm 5 %	
1800	40.0 \pm 5 %		1.40 \pm 5 %	
1900	40.0 \pm 5 %		1.40 \pm 5 %	
1950	40.0 \pm 5 %		1.40 \pm 5 %	
2000	40.0 \pm 5 %		1.40 \pm 5 %	

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.240.6.14 SATUA

2100	35.8 ± 5 %		1.49 ± 5 %	
2300	36.5 ± 5 %		1.67 ± 5 %	
2450	36.2 ± 5 %	PASS	1.80 ± 5 %	PASS
2600	35.0 ± 5 %		1.96 ± 5 %	
3000	38.5 ± 5 %		2.40 ± 5 %	
3500	37.9 ± 5 %		2.91 ± 5 %	


7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

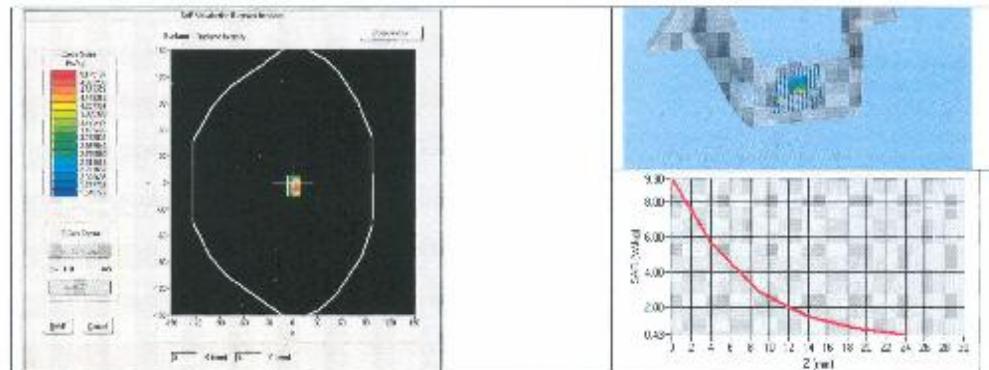
The IEEE Std. 1528 and CIE/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: egs ¹ : 39.0 sigma : 1.77
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.35	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

2450	52.4	53.60 (5.36)	24	23.77 (2.38)
2600	55.3		24.6	
3000	53.8		25.7	
3500	57.1		25	

7.3 BODY LIQUID MEASUREMENT


Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: ϵ_r : 53.0 sigma : 1.93
Distance between dipole center and liquid	10.0 mm
Area scan resolution	$dx=8\text{mm}/dy=8\text{mm}$
Zoon Scan Resolution	$dx=8\text{mm}/dy=8\text{mm}/dz=5\text{mm}$
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR {W/kg/W}	10 g SAR {W/kg/W}
	measured	measured
2450	52.66 (5.27)	23.73 (2.37)

8 LIST OF EQUIPMENT

Equipment Summary Sheet

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2013	12/2016
Reference Probe	Satimo	EPG122 SN 1B/11	10/2013	10/2014
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261488	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Appendix D. Photographs of EUT and Setup**Shenzhen UnionTrust Quality and Technology Co., Ltd.**

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com [Http://www.uttlab.com](http://www.uttlab.com)