

Test report

Number: T251-0042/17 Project file: C20170001

> 2017-04-13 Date:

Pages: 97

Product: RF transmitter for Anemometer

Type reference: WS 010-2, WSD 011-2

Ratings: 3,6 V Li-SOCI₂ battery (AA)

Protection class: III

NAVIS Trademark:

Applicant: Navis elektronika, podjetje za elektroniko d.o.o.

Poljska cesta 11, SI-1241 Kamnik, Slovenia

Manufacturer: Navis elektronika, podjetje za elektroniko d.o.o.

Poljska cesta 11, SI-1241 Kamnik, Slovenia

Place of manufacture: Navis elektronika, podjetje za elektroniko d.o.o.

Poljska cesta 11, SI-1241 Kamnik, Slovenia

Summary of testing

Testing method: 47 CFR Part 15, Subpart C

Testing location: SIQ Ljubljana, Trpinčeva ulica 37 A, SI-1000 Ljubljana, Slovenia

Remarks: Date of receipt of test items: 2017-01-03

Number of items tested: 5

Date of performance of tests: 2017-01-03 - 2017-04-13

The test results presented in this report relate only to the items tested. The product complies with the requirements of the testing methods.

Tested by: Andrej Škof Approved by: Marjan Mak

The report shall not be reproduced except in full.

T251-0042/17

Page: 2 (97)

C	ONTENTS	page
		_
<u>1</u>	GENERAL	3
1.1	I EQUIPMENT UNDER TEST	3
1.2	2 GENERAL PRODUCT INFORMATION	3
<u>2</u>	TEST SUMMARY	4
2.1	OPERATING VOLTAGES/FREQUENCIES USED FOR TESTING	4
	of Electrical volumes and the electrical and the el	
3	EMISSION TESTS (INTENTIONAL RADIATORS)	5
<u> </u>		
3.1	1 §15.203 Antenna requirements	5
-	2 §15.207 CONDUCTED EMISSION	5
	3 §15.247 (A) (1) 20 DB BANDWIDTH	6
3.4		9
	5 §15.247 (A) (1) NUMBER OF HOPPING FREQUENCIES	15
	S §15.247 (A) (1) CARRIER FREQUENCY SEPARATION	18
	7 §15.247 (a) (1) PSEUDORANDOM FREQUENCY HOPPING SEQUENCE AND EQUAL HOOPING FREQUENCY U	JSE 21
	B §15.247 (B) PEAK POWER OUTPUT	22
3.9	9 §15.247 (c) Spurious RF Conducted Emissions	26
3.1	10 §15.247 RADIATED SPURIOUS EMISSIONS	27
3.1	11 §15.247 (I) RF EXPOSURE COMPLIANCE REQUIREMENTS	96
_		
<u>4</u>	TEST EQUIPMENT	97

1 GENERAL

History sheet						
Date	Report No.	Change	Revision			
2017-04-13	T251-0042/17	Initial Test Report issued.				

Environmental conditions:

Ambient temperature: 15°C to 35°C Relative humidity: 30% to 60%

Atmospheric pressure: 860 mbar to 1060 mbar

1.1 Equipment under test

RF transmitter for Anemometer

Type: WSD 011-2

NOTE: Difference between WS 010-2 and WSD 011-2 is in angle measurement. WSD 011-2 include's additional electrical circuit with angle sensor, added wind vane and different mounting holder for wind sensor. Since WS 010-2 has identical RF circuitry it is also covered by this test report.

Tested SIQ sample numbers:

S20170016 – Hopping enabled, transmitting every 50 ms S20170015 – Hopping enabled, transmitting every 2 s

S20172124 – Channel 1, Hopping disabled S20172125 – Channel 25, Hopping disabled S20172126 – Channel 50, Hopping disabled

1.2 General product information

Serial number:	Prototype				
Supply voltage:	3.6 V Li-SOCI2 battery (AA)				
Transmitter, Receiver,	Fransmitter				
Transceiver, Simplex, Duplex	Transmiller				
Rated RF output power:	< 1 W peak conducted power				
Modulation type:	2G FSK				
Operating frequency:	908.4 MHz – 915.8 MHz				
Channel separation:	150 kHz				
Number of channels:	50				
Antenna type:	Internal				
FCC ID:	2AK8G-NAVIS-WS01				

Page: 4 (97)

2 TEST SUMMARY

Test	Conclusion
§15.203 Antenna requirements	PASS
§15.207 Conducted emission	N/A
§15.247 (a) (1) 20 dB Bandwidth	PASS
§15.247 (a) (1) Time of Occupancy (Dwell Time)	PASS
§15.247 (a) (1) Number of Hopping Frequencies	PASS
§15.247 (a) (1) Carrier Frequency Separation	PASS
§15.247 (a) (1) Pseudorandom Frequency Hopping Sequence and Equal Hooping Frequency Use	PASS
§15.247 (b) Peak Power Output	PASS
§15.247 (d) Spurious RF Conducted Emissions	PASS
§15.247 Radiated Spurious Emissions	PASS
§15.247 (i) RF Exposure Compliance Requirements	PASS

2.1 Operating voltages/frequencies used for testing

Test	Operating conditions
§15.203 Antenna requirements	/
§15.207 Conducted emission	1
§15.247 (a) (1) 20 dB Bandwidth	3.6 Vdc
§15.247 (a) (1) Time of Occupancy (Dwell Time)	3.6 Vdc
§15.247 (a) (1) Number of Hopping Frequencies	3.6 Vdc
§15.247 (a) (1) Carrier Frequency Separation	3.6 Vdc
§15.247 (b) Peak Power Output	3.6 Vdc
§15.247 (d) Spurious RF Conducted Emissions	3.6 Vdc
§15.247 Radiated Spurious Emissions	3.6 Vdc
§15.247 (i) RF Exposure Compliance Requirements	/

3 EMISSION TESTS (Intentional Radiators)

3.1 §15.203 Antenna requirements

Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Conclusion:

PASS; EUT has an Integral antenna.

3.2 §15.207 Conducted emission

Not applicable due to EUT is battery operated.

Page: 6 (97)

3.3 §15.247 (a) (1) 20 dB Bandwidth

Requirement

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test procedure:

As per Clause 6.9.2 from ANSI C63.10-2013 and FCC/DA-00-705

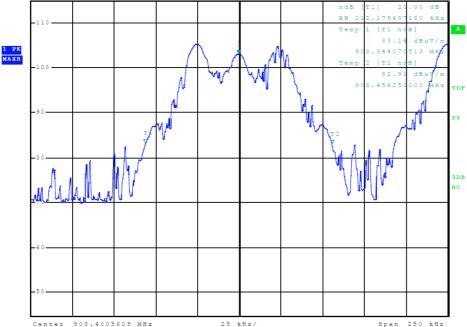
Test results
03.Jan 17 13:31

Meas Type OCCUPIED CHANNEL BANDWIDTH

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping ON, CH1
Operator Andrej Skof


Test Spec

VERTICAL 100 cm, 0 deg

Sween	Settings	Screen	Δ
2weeh	Jennigs	Scieen	_

Center Frequency	908.400561	MH 7	Ref Level	114.800	dBuV/m
Frequency Offset	0.000000		Ref Level Offset	0.000	
Span	250.000000		Ref Position	100.000	
•	908.275561			70.000	
Start Frequency	908.525561		Level Range RF Att	40.000	
Stop Frequency	10.000000		RF All	40.000	иь
RBW			V A :	T TN1	
VBW	30.000000	KHZ	X-Axis	LIN	
Sweep Time	10.00 ms		Y-Axis	LOG	

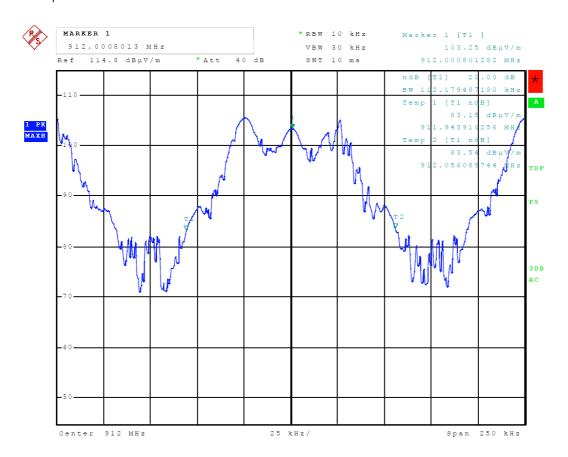
03.Jan 17 13:25

Meas Type OCCUPIED CHANNEL BANDWIDTH

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping ON, CH25


Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

Center Frequency	912.000000	MHz	Ref Level	114.800	dBµV/m
Frequency Offset	0.000000	Ηz	Ref Level Offset	0.000	dB
Span	250.000000	kHz	Ref Position	100.000	용
Start Frequency	911.875000	MHz	Level Range	70.000	dB
Stop Frequency	912.125000	MHz	RF Att	40.000	dB
RBW	10.000000	kHz			
VBW	30.000000	kHz	X-Axis	LIN	
Sweep Time	10.00 ms		Y-Axis	LOG	

Page: 8 (97)

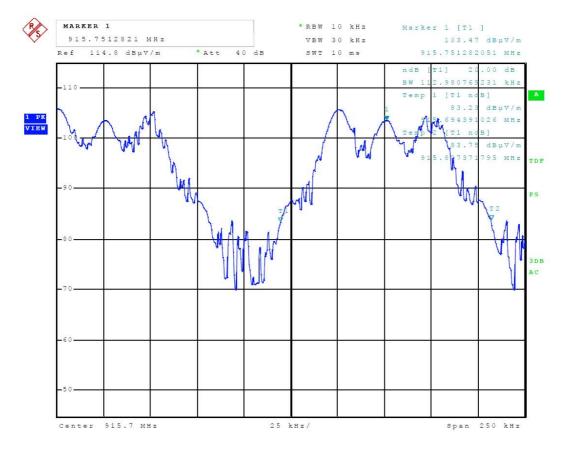
03.Jan 17 13:20

Meas Type OCCUPIED CHANNEL BANDWIDTH

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping ON, CH50


Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

Center Frequency	915.700000	MHz	Ref Level	114.800	dBuV/m
Frequency Offset	0.000000		Ref Level Offset	0.000	
Span	250.000000	kHz	Ref Position	100.000	
Start Frequency	915.575000	MHz	Level Range	70.000	dB
Stop Frequency	915.825000	MHz	RF Att	40.000	dB
RBW	10.000000	kHz			
VBW	30.000000	kHz	X-Axis	LIN	
Sweep Time	10.00 ms		Y-Axis	LOG	

Tabulated test results

Frequency (MHz)	Occupied bandwidth (kHz)	Limit (kHz)	Conclusion
908.4 (CH1)	112	250	PASS
912.0 (CH25)	112	250	PASS
915.8 (CH50)	113	250	PASS

3.4 §15.247 (a) (1) Time of Occupancy (Dwell Time)

Requirement

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

Test procedure:

As per Clause 7.8.4 from ANSI C63.10-2013 and FCC/DA-00-705

Test results

05.Jan 17 07:18

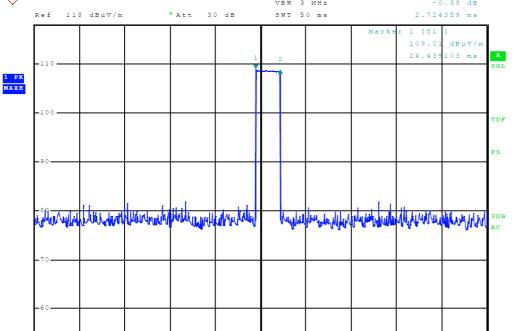
Meas TypeDWELL TIMEEquipment under TestWSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping ON, CH1
Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg


Sweep Settings Screen A

Center 908.3745192 MHz

Center Frequency	908.374519	MHz	Ref Level	118.000	dBµV/m
Frequency Offset	0.000000	Ηz	Ref Level Offset	0.000	dB
Span	0.000000	Ηz	Ref Position	100.000	용
Start Frequency	908.374519	MHz	Level Range	70.000	dB
Stop Frequency	908.374519	MHz	RF Att	30.000	dB
RBW	1.000000	MHz			
VBW	3.000000	MHz	X-Axis	LIN	
Sweep Time	50.00 ms		Y-Axis	LOG	

RBW 1 MHz

Page: 10 (97)

05.Jan 17 07:33

Meas Type NUMBER OF PULSES

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping ON, CH1
Operator Andrej Skof

Test Spec


VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

Center Frequency	908.370000	MHz	Ref Level	117.000	dBµV/m
Frequency Offset	0.000000	Ηz	Ref Level Offset	0.000	dB
Span	0.000000	Ηz	Ref Position	100.000	용
Start Frequency	908.370000	MHz	Level Range	70.000	dB
Stop Frequency	908.370000	MHz	RF Att	10.000	dB
RBW	1.000000	MHz			
VBW	3.000000	MHz	X-Axis	LIN	
Sweep Time	20.00 s		Y-Axis	LOG	

RBW 1 MHz VBW 3 MHz

Page: 11 (97)

05.Jan 17 07:22

DWELL TIME Meas Type Equipment under Test WSD 011-2

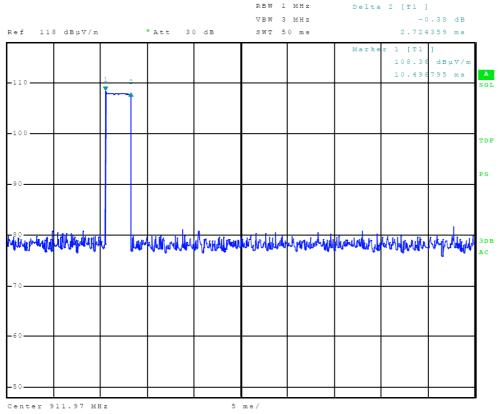
Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping ON, CH25

Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg


Sweep Settings Screen A

Center Frequency	911.970000	MHz	Ref Level	118.000	dBµV/m
Frequency Offset	0.000000	Ηz	Ref Level Offset	0.000	dB
Span	0.000000	Hz	Ref Position	100.000	%
Start Frequency	911.970000	MHz	Level Range	70.000	dB
Stop Frequency	911.970000	MHz	RF Att	30.000	dB
RBW	1.000000	MHz			
VBW	3.000000	MHz	X-Axis	LIN	
Sweep Time	50.00 ms		Y-Axis	LOG	

RBW 1 MHz

1 PK MAXH

Page: 12 (97)

05.Jan 17 07:34

Meas Type NUMBER OF PULSES

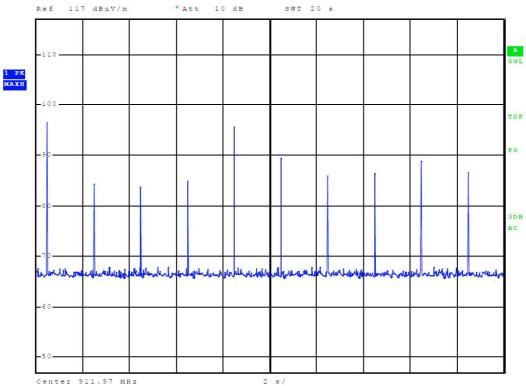
Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping ON, CH25

Operator Andrej Skof

Test Spec


VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

Center Frequency	911.970000	MHz	Ref Level	117.000	dBµV/m
Frequency Offset	0.000000	Ηz	Ref Level Offset	0.000	dB
Span	0.000000	Hz	Ref Position	100.000	%
Start Frequency	911.970000	MHz	Level Range	70.000	dB
Stop Frequency	911.970000	MHz	RF Att	10.000	dB
RBW	1.000000	MHz			
VBW	3.000000	MHz	X-Axis	LIN	
Sweep Time	20.00 s		Y-Axis	LOG	

RBW 1 MHz VBW 3 MHz

Page: 13 (97)

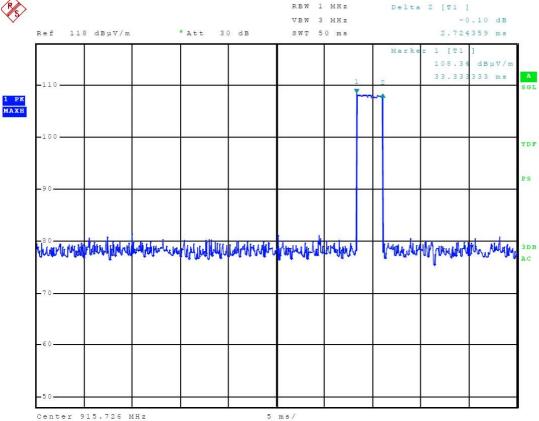
05.Jan 17 07:23

Meas Type DWELL TIME Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping ON, CH50

Operator Andrej Skof


Test Spec

VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

Center Frequency	915.726000	MHz	Ref Level	118.000	dBµV/m
Frequency Offset	0.000000	Hz	Ref Level Offset	0.000	dB
Span	0.000000	Hz	Ref Position	100.000	용
Start Frequency	915.726000	MHz	Level Range	70.000	dB
Stop Frequency	915.726000	MHz	RF Att	30.000	dB
RBW	1.000000	MHz			
VBW	3.000000	MHz	X-Axis	LIN	
Sweep Time	50.00 ms		Y-Axis	LOG	

Page: 14 (97)

05.Jan 17 07:35

Meas Type NUMBER OF PULSES

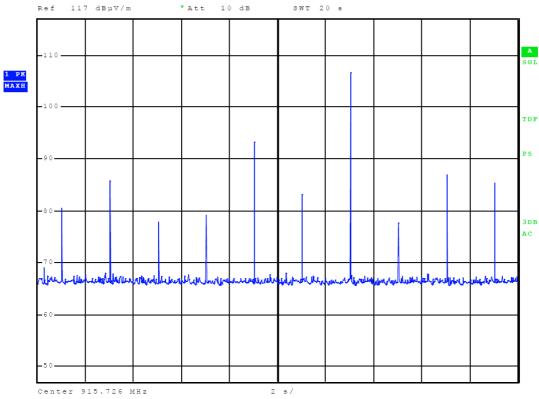
Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping ON, CH50

Operator Andrej Skof

Test Spec


VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

Center Frequency	915.726000	MHz	Ref Level	117.000	dBµV/m
Frequency Offset	0.000000	Ηz	Ref Level Offset	0.000	dB
Span	0.000000	Ηz	Ref Position	100.000	응
Start Frequency	915.726000	MHz	Level Range	70.000	dB
Stop Frequency	915.726000	MHz	RF Att	10.000	dB
RBW	1.000000	MHz			
VBW	3.000000	MHz	X-Axis	LIN	
Sweep Time	20.00 s		Y-Axis	LOG	

RBW 1 MHz VBW 3 MHz

Tabulated test results

Frequency (MHz)	Dwell Time (ms)	Number of pulses in 20 seconds	Average time of Occupancy (ms)	Limit (ms)	Conclusion
908.4 (CH1)	2.7	10	27	400	PASS
912.0 (CH25)	2.7	10	27	400	PASS
915.8 (CH50)	2.7	10	27	400	PASS

3.5 §15.247 (a) (1) Number of Hopping Frequencies

Requirement

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies

Test procedure:

As per Clause 7.8.3 from ANSI C63.10-2013 and FCC/DA-00-705

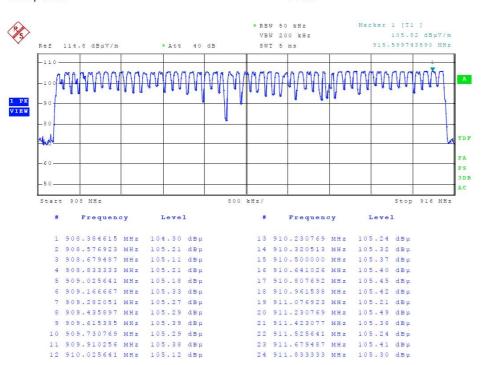
Test results

03.Jan 17 11:19

Meas Type NUMBER OF CHANNELS

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.


OP Condition Hopping enabled
Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg

Sweep	Settings	Screen A

Center Frequency	912.000000	MHz	Ref Level	114.800	dBμV/m
Frequency Offset	0.000000	Ηz	Ref Level Offset	0.000	dB
Span	8.000000	MHz	Ref Position	100.000	olo
Start Frequency	908.000000	MHz	Level Range	70.000	dB
Stop Frequency	916.000000	MHz	RF Att	40.000	dB
RBW	50.000000	kHz			
VBW	200.000000	kHz	X-Axis	LIN	
Sweep Time	5.00 ms		Y-Axis	LOG	

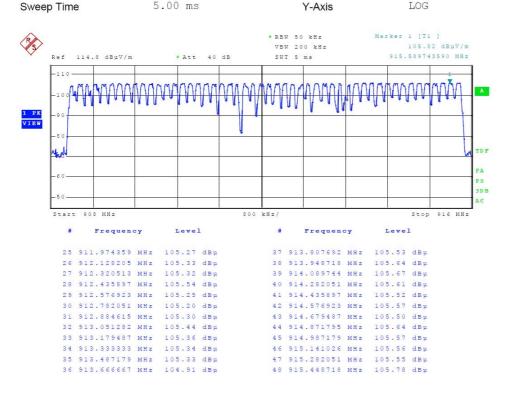
T251-0042/17

Page: 16 (97)

Meas Type NUMBER OF CHANNELS

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.


OP Condition Hopping enabled
Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg

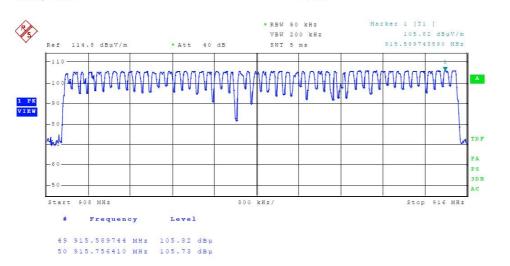
Sweep Settings Screen A

Center Frequency	912.000000	MHz	Ref Level	114.800	dBµV/m
Frequency Offset	0.000000	Hz	Ref Level Offset	0.000	dB
Span	8.000000	MHz	Ref Position	100.000	96
Start Frequency	908.000000	MHz	Level Range	70.000	dB
Stop Frequency	916.000000	MHz	RF Att	40.000	dB
RBW	50.000000	kHz			
VBW	200.000000	kHz	X-Axis	LIN	
Curson Time	5 00 mg		V Avia	TOG	

Meas Type NUMBER OF CHANNELS

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.


OP Condition Hopping enabled Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

Center Frequency	912.000000	MHz	Ref Level	114.800	dBµV/m
Frequency Offset	0.000000	Hz	Ref Level Offset	0.000	dB
Span	8.000000	MHz	Ref Position	100.000	9
Start Frequency	908.000000	MHz	Level Range	70.000	dB
Stop Frequency	916.000000	MHz	RF Att	40.000	dB
RBW	50.000000	kHz			
VBW	200.000000	kHz	X-Axis	LIN	
Sweep Time	5.00 ms		Y-Axis	LOG	

Conclusion:

Number of channels: 50

PASS

Page: 18 (97)

3.6 §15.247 (a) (1) Carrier Frequency Separation

Requirement

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

As per Clause 7.8.2 from ANSI C63.10-2013 and FCC/DA-00-705

Test results

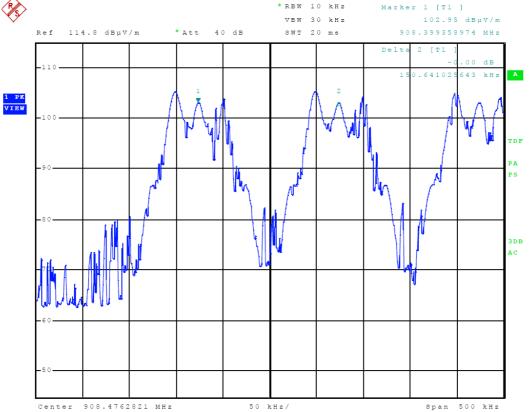
03.Jan 17 12:33

Meas Type CHANNEL SEPARATION

WSD 011-2 **Equipment under Test**

Manufacturer NAVIS ELEKTRONIKA D.O.O. **OP Condition** Hopping ON, CH1 and CH2

Andrej Skof Operator


Test Spec

VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

Center Frequency	908.476282	MHz	Ref Level	114.800	dBµV/m
Frequency Offset	0.000000	Ηz	Ref Level Offset	0.000	dB
Span	500.000000	kHz	Ref Position	100.000	%
Start Frequency	908.226282	MHz	Level Range	70.000	dB
Stop Frequency	908.726282	MHz	RF Att	40.000	dB
RBW	10.000000	kHz			
VBW	30.000000	kHz	X-Axis	LIN	
Sweep Time	20.00 ms		Y-Axis	LOG	

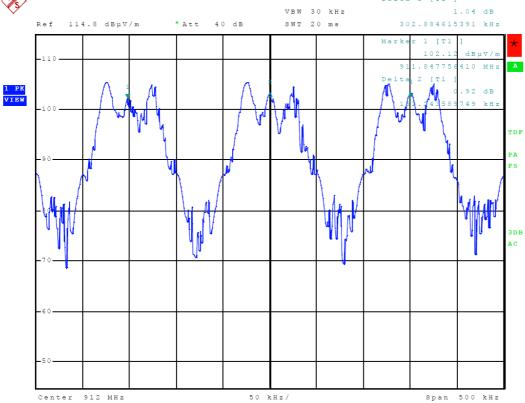
03.Jan 17 12:38

Meas Type CHANNEL SEPARATION

Equipment under Test WSD 011-2

ManufacturerNAVIS ELEKTRONIKA D.O.O.OP ConditionHopping ON, CH24 - CH26

Operator Andrej Skof


Test Spec

VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

Center Frequency	912.000000	MHz	Ref Level	114.800	dBµV/m
Frequency Offset	0.000000	Ηz	Ref Level Offset	0.000	dB
Span	500.000000	kHz	Ref Position	100.000	용
Start Frequency	911.750000	MHz	Level Range	70.000	dB
Stop Frequency	912.250000	MHz	RF Att	40.000	dB
RBW	10.000000	kHz			
VBW	30.000000	kHz	X-Axis	LIN	
Sweep Time	20.00 ms		Y-Axis	LOG	

Page: 20 (97)

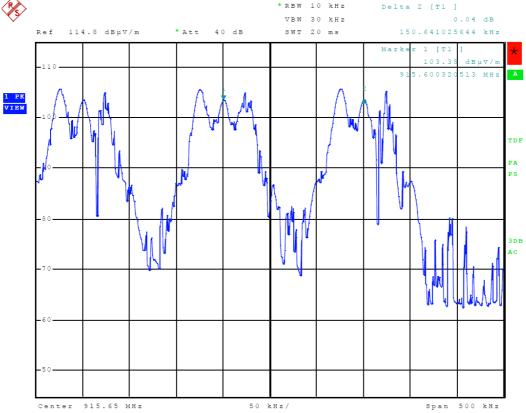
03.Jan 17 12:27

CHANNEL SEPARATION **Meas Type**

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O. **OP Condition** Hopping ON, CH49 and CH50

Andrej Skof Operator


Test Spec

VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

Center Frequency	915.650000	MHz	Ref Level	114.800	dBµV/m
Frequency Offset	0.000000	Ηz	Ref Level Offset	0.000	dB
Span	500.000000	kHz	Ref Position	100.000	용
Start Frequency	915.400000	MHz	Level Range	70.000	dB
Stop Frequency	915.900000	MHz	RF Att	40.000	dB
RBW	10.000000	kHz			
VBW	30.000000	kHz	X-Axis	LIN	
Sweep Time	20.00 ms		Y-Axis	LOG	

Tabulated test results

Tabulated test results			
Channel selection	Channel Separation	Limit	Conclusion
	(kHz)	(kHz)	
CH1 to CH2	151	113 (20 dB BW)	PASS
CH 25 to CH26	151	113 (20 dB BW)	PASS
CH 49 to CH50	151	113 (20 dB BW)	PASS

Page: 21 (97)

3.7 §15.247 (a) (1) Pseudorandom Frequency Hopping Sequence and Equal Hooping Frequency Use

Data declared by manufacturer by manufacturer:

Pseudorandom Frequency Hopping Sequence

For FHSS[frequency hopping spread spectrum] are used 50 frequency channels in 150 kHz steps. Starting frequency is 908.4MHz. Channel hop is made on every new transmitted package (~2s). Channel hopping sequence is determined by array of pseudorandom generated numbers between 1 and 50.

Equal Hopping Frequency Use

Every new transmitted data package is transmitted on different frequency channel with pseudorandom generated sequence channel change. After 50 transmitted data packages transmitter repeat pseudorandom sequence. This logic ensure that transmitter continuous transmit data packages uniform distributed on all 50 frequency channels.

Page: 22 (97)

3.8 §15.247 (b) Peak Power Output

Requirement

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels.

Test Procedure

As per Clause 7.8.5 from ANSI C63.10-2013 and FCC/DA-00-705

Note: The test was performed Radiated since the EUT has an integrated antenna.

Calculation of Transmitter Peak Power:

 $P = (E*d)^2/(30*G)$

E - Radiated Field Strength in V/m

d - Measurement distance

G - Numeric gain of the transmitting antenna with reference to isotropic radiator

Calculation of final measurements:

Final Measurement ($dB\mu V/m$) = Receiver Reading ($dB\mu V/m$) + AF (dB) + CL (dB) + Atten (dB) + Preamp (dB)

where:

Final Measurement = Final measurement result
Receiver Reading = Uncorrected amplitude measured by the receiver
AF = Antenna Factor
CL = Cable Loss
Atten = Attenuator correction
Preamp = Preamplifier correction

Test results

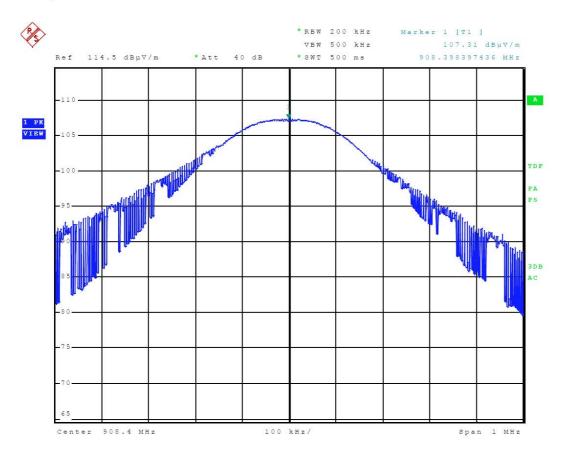
Frequency (MHz)	Field Strength (dBµV/m)	Field Strength (V/m)	Antenna Gain (dBi)	Conducted power (W)	Limit (W)	Conclusion
908.4 (CH1)	107.31	0.23	0	0.016	1	PASS
912.1 (CH25)	106.39	0.21	0	0.013	1	PASS
915.7 (CH50)	107.65	0.24	0	0.017	1	PASS

S20170001 11.Apr 17 05:22

Meas Type PEAK POWER OUTPUT

Equipment under Test WSD 011-2

ManufacturerNAVIS ELEKTRONIKA D.O.O.OP ConditionChannel 1 (Hopping disabled)


Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

Center Frequency	908.400000	MHz	Ref Level	114.500	dBµV/m
Frequency Offset	0.000000	Ηz	Ref Level Offset	0.000	dB
Span	1.000000	MHz	Ref Position	100.000	용
Start Frequency	907.900000	MHz	Level Range	50.000	dB
Stop Frequency	908.900000	MHz	RF Att	40.000	dB
RBW	200.000000	kHz			
VBW	500.000000	kHz	X-Axis	LIN	
Sweep Time	500.00 ms		Y-Axis	LOG	

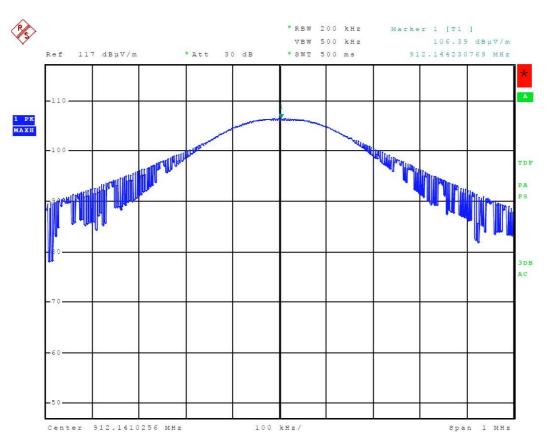
Page: 24 (97)

S20170001 11.Apr 17 06:20

Meas Type PEAK POWER OUTPUT

Equipment under Test WSD 011-2

ManufacturerNAVIS ELEKTRONIKA D.O.O.OP ConditionChannel 25 (Hopping disabled)


Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

				100 000	2 0
Center Frequency	912.141026	MHz	Ref Level	117.000	dBµV/m
Frequency Offset	0.000000	Hz	Ref Level Offset	0.000	dB
Span	1.000000	MHz	Ref Position	100.000	%
Start Frequency	911.641026	MHz	Level Range	70.000	dB
Stop Frequency	912.641026	MHz	RF Att	30.000	dB
RBW	200.000000	kHz			
VBW	500.000000	kHz	X-Axis	LIN	
Sweep Time	500.00 ms		Y-Axis	LOG	

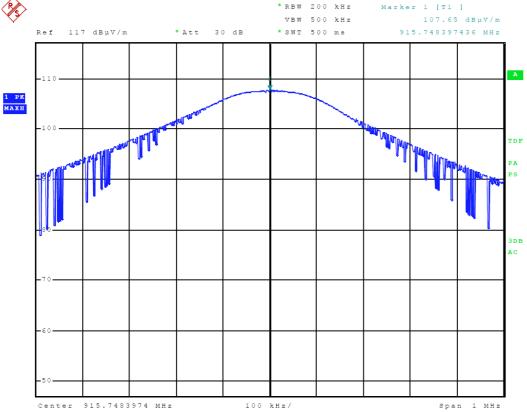
S20170001 11.Apr 17 06:24

Meas Type PEAK POWER OUTPUT

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O. **OP Condition** Channel 50 (Hopping disabled)

Operator Andrej Skof


Test Spec

VERTICAL 100 cm, 0 deg

Sweep Settings Screen A

Center Frequency	915.748397	MHz	Ref Level	117.000	dBµV/m
Frequency Offset	0.000000	Ηz	Ref Level Offset	0.000	dB
Span	1.000000	MHz	Ref Position	100.000	%
Start Frequency	915.248397	MHz	Level Range	70.000	dB
Stop Frequency	916.248397	MHz	RF Att	30.000	dB
RBW	200.000000	kHz			
VBW	500.000000	kHz	X-Axis	LIN	
Sweep Time	500.00 ms		Y-Axis	LOG	

Page: 26 (97)

3.9 §15.247 (c) Spurious RF Conducted Emissions

Since EUT has integrated antenna and antenna conducted tests cannot be performed. Due to that alternative test procedure was used acc. to the FCC/DA-00-705. Radiated tests were done to show compliance with the spurious RF conducted emission limit specified is section 15.247 (c). For the test results see Radiated Spurious Emission test results in chapter 3.10.

Conclusion: PASS

T251-0042/17

3.10 §15.247 Radiated Spurious Emissions

Requirements

§15.35 Measurement detector functions and bandwidths

(b) Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz. When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519 of this part, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device, e.g., the total peak power level. Note that the use of a pulse desensitization correction factor may be needed to determine the total peak emission level. The instruction manual or application note for the measurement instrument should be consulted for determining pulse desensitization factors, as necessary.

§15.209 Radiated emission limit

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency Range (MHz)	Limits (dBµV/m)	Test distance (m)
0,009 to 0,490	20*log(2400/F(kHz))	300
0,490 to 1,705	20*log(24000/F(kHz))	30
1,705 to 30,0	30	30
30 to 88	40**	3
88 to 216	43.5**	3
216 to 960	46**	3
Above 960	54	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

Page: 28 (97)

§15.205 Restricted bands of operation

Requirement

Except as shown in paragraph (d) of §15.205 only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§15.247 (d) Band edge

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test procedure

As per Clauses 6.3, 6.4, 6.5, 6.6 and 6.10 from ANSI C63.10-2013 and FCC/DA-00-705

²Above 38.6

Page: 29 (97)

Test results

Calculation of final measurements:

Final Measurement (dB μ V/m) = Receiver Reading (dB μ V/m) + AF (dB) + CL (dB) + Atten (dB) + Preamp (dB)

where:

Final Measurement = Final measurement result
Receiver Reading = Uncorrected amplitude measured by the receiver
AF = Antenna Factor
CL = Cable Loss
Atten = Attenuator correction
Preamp = Preamplifier correction

Page: 30 (97)

06.Jan 17 07:16

Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

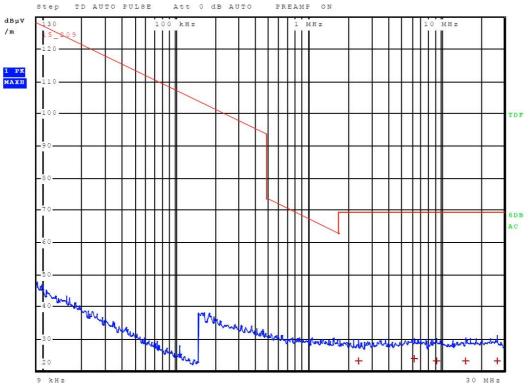
OP Condition Hopping mode
Operator Andrej Skof

Test Spec

Antenna: 0 deg, Sample: 0 deg

Time Domain Scan (2 Ranges)

Scan Start: 9 kHz Scan Stop: 30 MHz


Detector: Trace 1: MAX PEAK

Transducer: HFH2-Z2V

Start Stop			Step			Meas	RF			
Frequency		Frequency		Size		Res BW	Time	Atten	Preamp	Input
9.000000	kHz	149.950000	kHz	50.00	Hz	200.00 Hz	300 ms	Auto	20 dB	INPUT2
150.000000	kHz	30.000000	MHz	2.25	kHz	9.00 kHz	30 ms	Auto	20 dB	INPUT2

RBW 9 kHz
MT 1 s
PREAMP ON

Page: 31 (97)

06.Jan 17 07:16

Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec

Antenna: 0 deg, Sample: 0 deg

Final Measurement

Meas Time: 1 s Margin: 40 dB Peaks: 5

Trace	Frequency	Level (dBµV/m)	Detector	Delta Limit/dB
1	6.303750000 MHz	23.74	Quasi Peak	-45.76
1	9.264750000 MHz	23.20	Quasi Peak	-46.30
1	26.605500000 MHz	23.05	Quasi Peak	-46.45
1	2.411250000 MHz	23.03	Quasi Peak	-46.47
1	15.414000000 MHz	23.01	Quasi Peak	-46.49

Page: 32 (97)

03.Jan 17 10:15

Meas Type RADIATED EMISSION, 30 MHz - 900 MHz

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

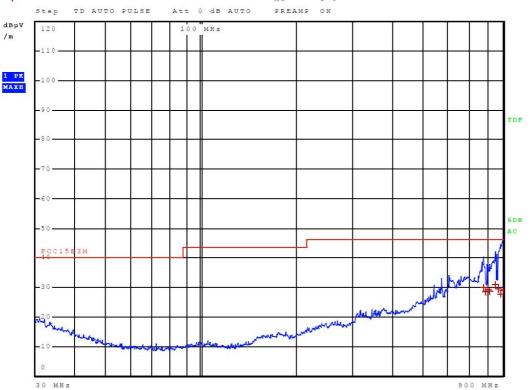
OP Condition Hopping mode
Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg

Time Domain Scan (1 Range)

Scan Start: 30 MHz Scan Stop: 900 MHz


Detector: Trace 1: MAX PEAK

Transducer: 3142B3m

Start Stop		Step	N	Meas	RF		
Frequency	Frequency	Size	Res BW T	ime	Atten	Preamp	Input
30.000000 M	Hz 900.000000 M	Hz 30.00 kHz	120.00 kHz 1	0 ms	Auto	20 dB	TNPUT2

RBW 120 kHz MT 1 s

03.Jan 17 10:15

Meas Type RADIATED EMISSION, 30 MHz - 900 MHz

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg

Final Measurement

Meas Time: 1 s Margin: 10 dB Peaks: 8

Trace	Frequenc	у	Level (dBµV/m)	Detector	Delta Limit/dB
1	850.680000000	MHz	30.97	Quasi Peak	-15.03
1	780.960000000	MHz	29.88	Quasi Peak	-16.12
1	870.330000000	MHz	29.29	Quasi Peak	-16.71
1	806.070000000	MHz	29.24	Quasi Peak	-16.76
1	897.960000000	MHz	28.89	Quasi Peak	-17.11
1	815.580000000	MHz	28.56	Quasi Peak	-17.44
1	792.150000000	MHz	28.36	Quasi Peak	-17.64
1	886.140000000	MHz	27.73	Ouasi Peak	-18.27

Page: 34 (97)

03.Jan 17 10:18

Meas Type RADIATED EMISSION, 30 MHz - 900 MHz

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

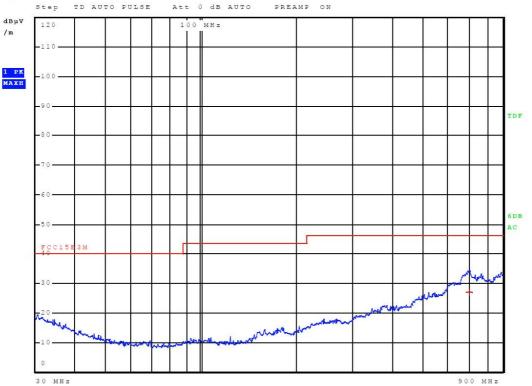
OP Condition Hopping mode
Operator Andrej Skof

Test Spec

HORIZONTAL 100 cm, 0 deg

Time Domain Scan (1 Range)

Scan Start: 30 MHz Scan Stop: 900 MHz


Detector: Trace 1: MAX PEAK

Transducer: 3142B3m

Start Stop		Step	N	Meas	RF		
Frequency	Frequency	Size	Res BW T	ime	Atten	Preamp	Input
30.000000 M	Hz 900.000000 M	Hz 30.00 kHz	120.00 kHz 1	0 ms	Auto	20 dB	TNPUT2

RBW 120 kHz

Page: 35 (97)

03.Jan 17 10:18

Meas Type RADIATED EMISSION, 30 MHz - 900 MHz

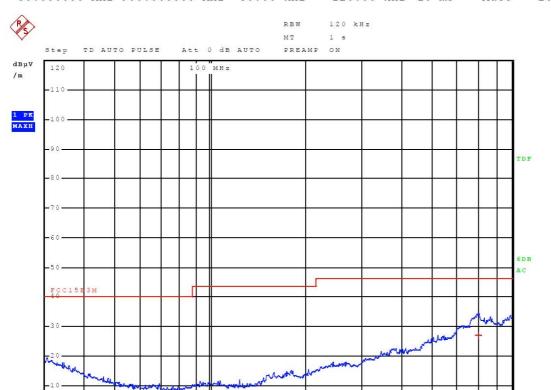
Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec

HORIZONTAL 100 cm, 0 deg


Time Domain Scan (1 Range)

Scan Start: 30 MHz Scan Stop: 900 MHz

Detector: Trace 1: MAX PEAK

Transducer: 3142B3m

Start	Stop Frequency	Step	Res BW	Meas Time	RF	Preamp	Input
Frequency		Size			Atten		
30.000000 MHz	900.000000 MH	Hz 30.00 kHz	120.00 kHz	10 ms	Auto	20 dB	INPUT2

Page: 36 (97)

03.Jan 17 10:23

Meas Type RADIATED EMISSION

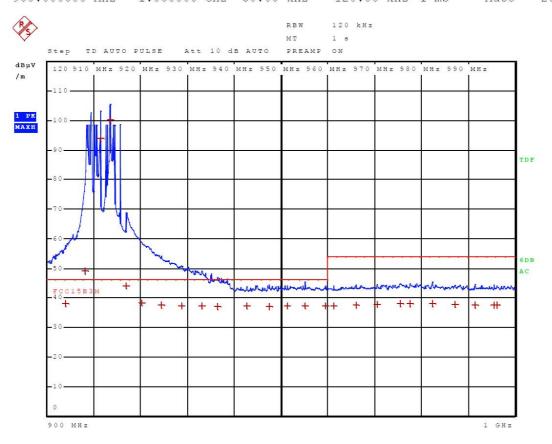
Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg


Time Domain Scan (1 Range)

Scan Start: 900 MHz Scan Stop: 1 GHz

Detector: Trace 1: MAX PEAK

Transducer: 3142B3m

Start	Stop Frequency	Step Size	Res BW	Meas Time	RF Atten	Preamp	Input
Frequency							
900.000000 MHz	1.000000 G	Hz 30.00 kHz	120.00 kH	z 1 ms	Auto	20 dB	TNPUT2

03.Jan 17 10:23

Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec

VERTICAL 100 cm, 0 deg

Final Measurement

Meas Time: 1 s Margin: 15 dB Subranges: 25

Trace	Frequenc	у	Level (dBµV/m)	Detecto	r	Delta Limit/dB
1	903.81000000	MHz	37.94	Quasi	Peak	-8.06
1	907.980000000	MHz	49.13	Quasi	Peak	3.13
1	911.340000000	MHz	93.96	Quasi	Peak	47.96
1	913.380000000	MHz	100.27	Quasi	Peak	54.27
1	916.860000000	MHz	43.94	Quasi	Peak	-2.06
1	920.160000000	MHz	38.19	Quasi	Peak	-7.81
1	924.360000000	MHz	37.50	Quasi	Peak	-8.50
1	928.590000000	MHz	37.26	Quasi	Peak	-8.74
1	933.060000000	MHz	37.08	Quasi	Peak	-8.92
1	936.390000000	MHz	37.02	Quasi	Peak	-8.98
1	942.600000000	MHz	37.13	Quasi	Peak	-8.87
1	947.430000000	MHz	37.02	Quasi	Peak	-8.98
1	951.240000000	MHz	37.07	Quasi	Peak	-8.93
1	955.110000000	MHz	37.11	Quasi	Peak	-8.89
1	959.400000000	MHz	37.15	Quasi	Peak	-8.85
1	961.140000000	MHz	37.15	Quasi	Peak	-16.85
1	965.940000000	MHz	37.48	Quasi	Peak	-16.52
1	970.560000000	MHz	37.69	Quasi	Peak	-16.31
1	975.390000000	MHz	37.99	Quasi	Peak	-16.01
1	977.490000000	MHz	37.95	Quasi	Peak	-16.05
1	982.290000000	MHz	37.83	Quasi	Peak	-16.17
1	987.210000000	MHz	37.67	Quasi	Peak	-16.33
1	991.410000000	MHz	37.48	Quasi	Peak	-16.52
1	995.490000000	MHz	37.50	Quasi	Peak	-16.50
1	996.120000000	MHz	37.50	Quasi	Peak	-16.50

Page: 38 (97)

03.Jan 17 10:19

Meas Type RADIATED EMISSION, 900 MHz - 1 GHz

Equipment under Test WSD 011-2

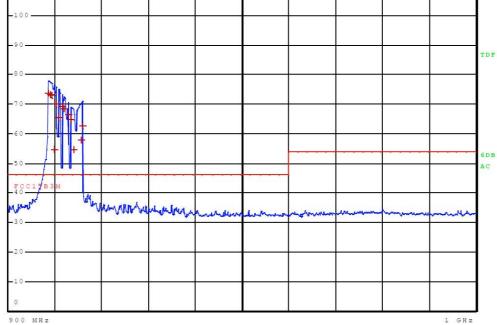
Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec

HORIZONTAL 100 cm, 0 deg

Time Domain Scan (1 Range)


Scan Start: 900 MHz Scan Stop: 1 GHz

Detector: Trace 1: MAX PEAK

Transducer: 3142B3m

Start	Stop	Step		Meas	RF		
Frequency	Frequency	Size	Res BW	Time	Atten	Preamp	Input
900.000000 MHz	1.000000 GHz	30.00 kHz	120.00 kHz	1 ms	Auto	20 dB	INPUT2

03.Jan 17 10:19

Meas Type RADIATED EMISSION, 900 MHz - 1 GHz

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec

HORIZONTAL 100 cm, 0 deg

Final Measurement

Meas Time: 1 s Margin: 15 dB Peaks: 13

Trace	Frequenc	у	Level (dBµV/m)	Detecto	or	Delta Limit/dB
1	908.52000000	MHz	73.84	Quasi	Peak	27.84
1	908.97000000	MHz	73.30	Quasi	Peak	27.30
1	909.27000000	MHz	72.89	Quasi	Peak	26.89
1	909.72000000	MHz	54.66	Quasi	Peak	8.66
1	910.170000000	MHz	70.04	Quasi	Peak	24.04
1	910.770000000	MHz	65.44	Quasi	Peak	19.44
1	911.520000000	MHz	69.23	Quasi	Peak	23.23
1	911.820000000	MHz	68.55	Quasi	Peak	22.55
1	912.720000000	MHz	66.32	Quasi	Peak	20.32
1	913.320000000	MHz	64.77	Quasi	Peak	18.77
1	913.920000000	MHz	54.54	Quasi	Peak	8.54
1	915.480000000	MHz	57.98	Quasi	Peak	11.98
1	915.780000000	MHz	62.70	Quasi	Peak	16.70

Page: 40 (97)

13.Jan 17 16:23

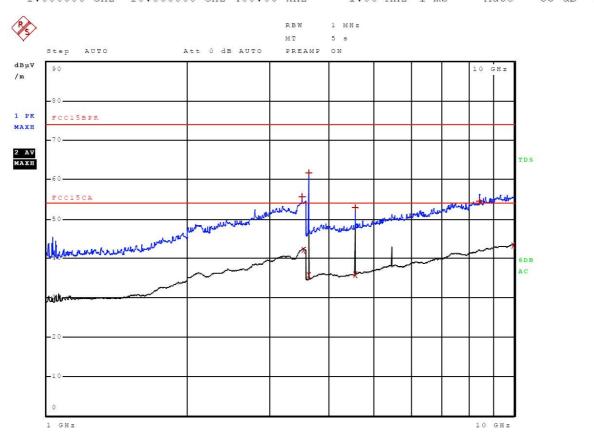
Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec


VERTICAL 150 cm, 0 deg

Stepped Scan (1 Range)

Scan Start: 1 GHz Scan Stop: 10 GHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Start	Stop	Step		Meas	RF		Input
Frequency	Frequency	Size	Res BW	Time	Atten	Preamp	
1.000000 GHz	10.000000 G	Hz 400.00 kHz	1.00 MH	7 1 ms	Auto	35 dB	TNPUT1

13.Jan 17 16:23

Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec

VERTICAL 150 cm, 0 deg

Final Measurement

 Meas Time:
 5 s

 Margin:
 22 dB

 Peaks:
 9

Trace	Frequenc	у	Level (dBµV/m)	Detector	Delta Limit/dB
2	9.964400000	GHz	43.21	CISPR Averag	-10.79
2	3.544400000	GHz	42.11	CISPR Averag	-11.89
1	3.639600000	GHz	61.70	Max Peak	-12.30
2	4.571200000	GHz	35.86	CISPR Averag	-18.14
2	4.573600000	GHz	35.77	CISPR Averag	-18.23
1	3.519200000	GHz	55.60	Max Peak	-18.40
2	3.640000000	GHz	35.59	CISPR Averag	-18.41
1	8.444800000	GHz	54.55	Max Peak	-19.45
1	4.571200000	GHz	52.84	Max Peak	-21.16

Page: 42 (97)

13.Jan 17 16:26

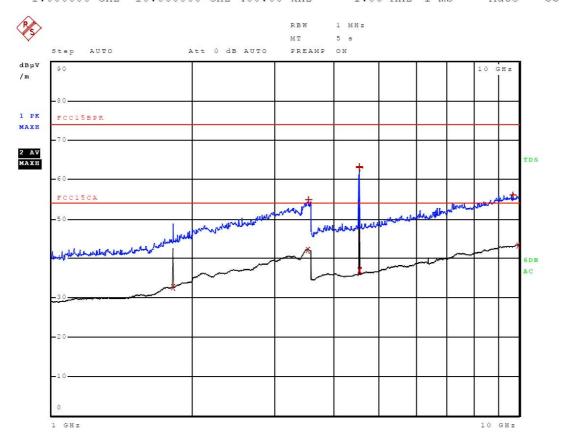
Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec


HORIZONTAL 150 cm, 0 deg

Stepped Scan (1 Range)

Scan Start: 1 GHz Scan Stop: 10 GHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Start	Stop Frequency	Step	Res BW	Meas	RF	Preamp	Input
Frequency		Size		Time	Atten		
1 000000 GHz	10 000000 G	H= 400 00 kH=	1 00 MH	7 1 ms	Auto	35 dB	TMPHT1

13.Jan 17 16:26

Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec

HORIZONTAL 150 cm, 0 deg

Final Measurement

 Meas Time:
 5 s

 Margin:
 22 dB

 Peaks:
 9

Trace	Frequenc	у	Level (dBµV/m)	Detector	Delta Limit/dB
1	4.550400000	GHz	63.30	Max Peak	-10.70
2	9.975200000	GHz	43.17	CISPR Averag	-10.83
1	4.548000000	GHz	62.98	Max Peak	-11.02
2	3.529600000	GHz	42.08	CISPR Averag	-11.92
2	4.548000000	GHz	37.00	CISPR Averag	-17.00
2	4.550400000	GHz	36.86	CISPR Averag	-17.14
1	9.713600000	GHz	56.15	Max Peak	-17.85
1	3.551600000	GHz	54.99	Max Peak	-19.01
2	1.818000000	GHz	32.67	CISPR Averag	-21.33

Page: 44 (97)

13.Jan 17 15:53

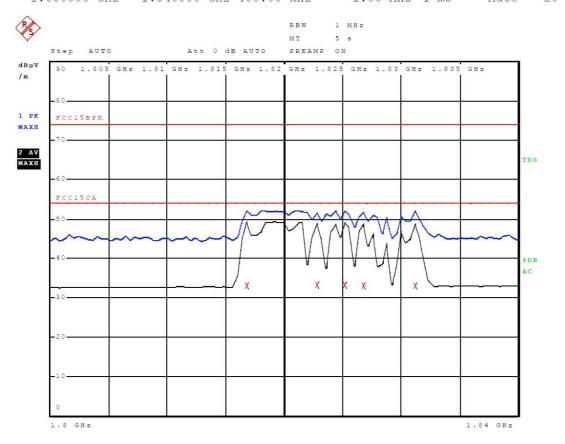
Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec


VERTICAL 150 cm, 0 deg

Stepped Scan (1 Range)

Scan Start: 1.8 GHz Scan Stop: 1.84 GHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Start	Stop	Step		Meas	RF		Input
Frequency	Frequency	Size	Res BW	Time	Atten	Preamp	
1.800000 GHz	1.840000 G	Hz 400.00 kHz	1.00 MH	7 1 ms	Auto	20 dB	TNPUT1

13.Jan 17 15:53

Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec

VERTICAL 150 cm, 0 deg

Final Measurement

 Meas Time:
 5 s

 Margin:
 21 dB

 Peaks:
 5

Trace	Frequency	у	Level (dBµV/m)	Detector	Delta Limit/dB
2	1.825200000	GHz	33.23	CISPR Averag	-20.77
2	1.822800000	GHz	33.21	CISPR Averag	-20.79
2	1.816800000	GHz	33.08	CISPR Averag	-20.92
2	1.826800000	GHz	32.99	CISPR Averag	-21.01
2	1.831200000	GHz	32.96	CISPR Averag	-21.04

Page: 46 (97)

13.Jan 17 15:51

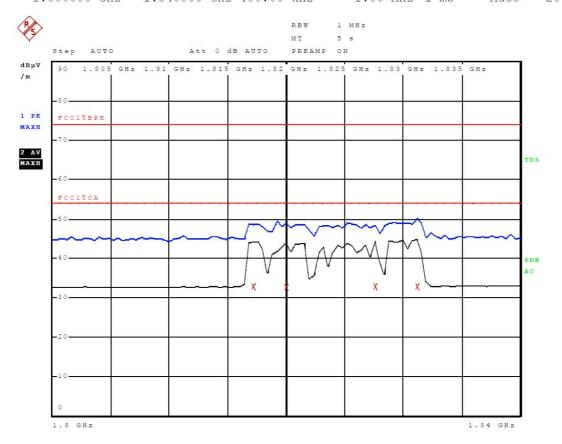
Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec


HORIZONTAL 150 cm, 0 deg

Stepped Scan (1 Range)

Scan Start: 1.8 GHz Scan Stop: 1.84 GHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Start	Stop	Step		Meas	RF		Input
Frequency	Frequency	Size	Res BW	Time	Atten	Preamp	
1.800000 GHz	1.840000 G	Hz 400.00 kHz	1.00 MH	7 1 ms	Auto	20 dB	TNPUT1

13.Jan 17 15:51

Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec

HORIZONTAL 150 cm, 0 deg

Final Measurement

 Meas Time:
 5 s

 Margin:
 21 dB

 Peaks:
 4

Trace	Frequenc	У	Level (dBµV/m)	Detector	Delta Limit/dB
2	1.827600000	GHz	32.86	CISPR Averag	-21.14
2	1.831200000	GHz	32.76	CISPR Averag	-21.24
2	1.817200000	GHz	32.72	CISPR Averag	-21.28
2	1.820000000	GHz	32.70	CISPR Averac	-21.30

Page: 48 (97)

13.Jan 17 15:47

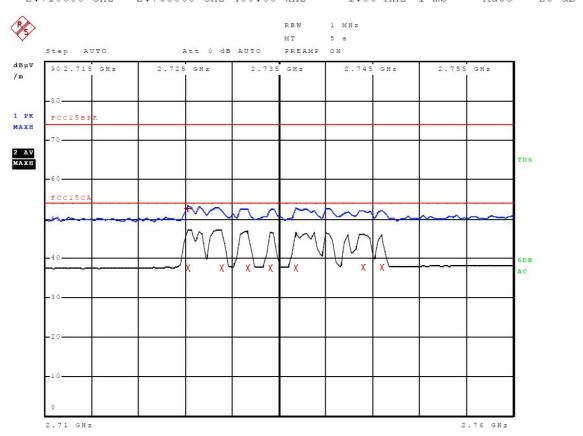
Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec


VERTICAL 150 cm, 0 deg

Stepped Scan (1 Range)

Scan Start: 2.71 GHz Scan Stop: 2.76 GHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Start	Stop	Step		Meas	RF		Input
Frequency	Frequency	Size	Res BW	Time	Atten	Preamp	
2.710000 GHz	2.760000 G	Hz 400.00 kHz	1.00 MH	7 1 ms	Auto	20 dB	TNPUT1

13.Jan 17 15:47

Meas Type RADIATED EMISSION

Equipment under Test WSD 011-2

Manufacturer NAVIS ELEKTRONIKA D.O.O.

OP Condition Hopping mode
Operator Andrej Skof

Test Spec

VERTICAL 150 cm, 0 deg

Final Measurement

 Meas Time:
 5 s

 Margin:
 21 dB

 Peaks:
 8

Trace	Frequenc	у	Level (dBµV/m)	Detector	Delta Limit/dB
2	2.746000000	GHz	37.81	CISPR Averag	-16.19
2	2.744000000	GHz	37.75	CISPR Averag	-16.25
2	2.731600000	GHz	37.60	CISPR Averag	-16.40
2	2.734000000	GHz	37.59	CISPR Averag	-16.41
2	2.736800000	GHz	37.58	CISPR Averag	-16.42
2	2.728800000	GHz	37.52	CISPR Averag	-16.48
2	2.725200000	GHz	37.51	CISPR Averag	-16.49
1	2.725200000	GHz	52.67	Max Peak	-21.33