

FCC RADIO TEST REPORT FCC ID: 2AK7UFM2000

Product: 5.8GHz/2.4GH wireless local area network equipment

Trade Name : FEIMA ROBOTICS

Model Name: FM2000

Serial Model: N/A

Report No.: POCE- 20170203217R2

Prepared for

Shen Zhen Feima Robotics Co.,Ltd

1st floor,16 Buiding,Zhiheng Industrial Park Guankou 2nd Road,Nantou,Nanshan District,Shenzhen,China

Prepared by

Shenzhen POCE Technology Co.,Ltd.

Room 502, Bldg. 1, Xinghua Garden, Baoan Road Xixiang,
Baoan District,Shenzhen, China

Applicant's name: Shen Zhen Feima Robotics Co.,Ltd

Report No.: POCE- 20170203217R2

TEST RESULT CERTIFICATION

Address:	1st floor,16 Buiding,Zhiheng Industrial Park Guankou 2nd Road,Nantou,Nanshan District,Shenzhen,China				
Manufacture's Name:	Shen Zhen Feima Robotics Co.,Ltd				
Address:	1st floor,16 Buiding,Zhiheng Industrial Park Guankou 2nd Road,Nantou,Nanshan District,Shenzhen,China				
Product description					
Product name:	5.8GHz/2.4GH wireless local area network equipment				
Model and/or type reference :	FM2000				
Serial Model:	N/A				
Standards:	FCC Part15.407				
Test procedure	ANSI C63.10-2013				
	is been tested by POCE, and the test results show that the n compliance with the FCC requirements. And it is applicable only in the report.				
·	ced except in full, without the written approval of POCE, this vised by POCE, personal only, and shall be noted in the revision of				
Date (s) of performance of tests					
Date of Issue					
Test Result	Pass				
Testing Engi	(Lynn Chen)				
Technical Ma	anager: Carlen Liu)				
Authorized Signatory	: Towny Lang (Tommy Zhang)				

Table of Contents

	raye
1. SUMMARY OF TEST RESULTS	5
2. TEST FACILITY	6
3. MEASUREMENT UNCERTAINTY	6
	7
4. GENERAL INFORMATION	-
5. DESCRIPTION OF TEST MODES	9
6. BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	_
7. DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
8. EQUIPMENTS LIST FOR ALL TEST ITEMS	11
9. EMC EMISSION TEST	12
9.1 CONDUCTED EMISSION MEASUREMENT	12
POWER LINE CONDUCTED EMISSION LIMITS 9.2 TEST PROCEDURE	12 13
9.3 DEVIATION FROM TEST STANDARD	13
TEST SETUP	13
9.4 EUT OPERATING CONDITIONS	13
10 RADIATED EMISSION MEASUREMENT	15
10.1 APPLICABLE STANDARD	15
10.2 CONFORMANCE LIMIT 10.3 MEASURING INSTRUMENTS	15 16
10.4 TEST CONFIGURATION	16
10.5 TEST PROCEDURE	17
10.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)	19
10.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ)	20
3.2.8 TEST RESULTS (1GHZ-18GHZ)	24
11. POWER SPECTRAL DENSITY TEST	27
11.1 APPLIED PROCEDURES / LIMIT 11.2 TEST PROCEDURE	27 28
11.3 DEVIATION FROM STANDARD	28 28
11.4 TEST SETUP	28
11.5 EUT OPERATION CONDITIONS	28
11.6 TEST RESULTS	29
12. 26 DB & 99% EMISSION BANDWIDTH	32
12.1 APPLIED PROCEDURES / LIMIT	32
12.2 TEST PROCEDURE 12.3 EUT OPERATION CONDITIONS	32 33
1 2.4 TEST RESULTS	34
13. MINIMUM 6 DB BANDWIDTH	37
19. MINTINIOM V DD DAMDMID I I I	<i>31</i>

Table of Contents

rable of Gomenia	Page
13.1 APPLIED PROCEDURES / LIMIT 13.2 TEST PROCEDURE 13.3 DEVIATION FROM STANDARD 13.4 TEST SETUP 13.5 EUT OPERATION CONDITIONS 13.6 TEST RESULTS	37 37 37 37 37 38
14. MAXIMUM CONDUCTED OUTPUT POWER 14.1 PPLIED PROCEDURES / LIMIT 14.2 TEST PROCEDURE 14.3 DEVIATION FROM STANDARD 14.4 TEST SETUP 14.6 TEST RESULTS	41 41 41 41 41
15. OUT OF BAND EMISSIONS 15.1 APPLICABLE STANDARD 15.2 TEST PROCEDURE 15.3 DEVIATION FROM STANDARD 15.4 EUT OPERATION CONDITIONS 15.5 TEST RESULTS	43 43 43 44 44
16. FREQUENCY STABILITY MEASUREMENT 16.1 LIMIT	47 47
16.2 TEST PROCEDURES 16.3 TEST SETUP LAYOUT 16.4 EUT OPERATION DURING TEST	47 47 47
16.5 TEST RESULTS 17. ANTENNA REQUIREMENT	48 51
17.1 STANDARD REQUIREMENT 17.2 EUT ANTENNA	51 51
1 8. EUT TEST PHOTO APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	52

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.407) , Subpart E					
Standard Section	Test Item	Judgment	Remark		
15.207	AC Power Line Conducted Emissions	PASS			
15.209(a), 15.407 (b)(1) 15.407 (b)(4) 15.407 (b)(6)	Spurious Radiated Emissions	PASS			
15.407 (a)(1) 15.407 (a)(3) 15.1049	26 dB and 99% Emission Bandwidth	PASS			
15.407(e)	Minimum 6 dB bandwidth	PASS			
15.407 (a)(1) 15.407 (a)(3)	Maximum Conducted Output Power	PASS			
2.1051, 15.407(b)(1) 15.407(b)(4)	Band Edges	PASS			
15.407 (a)(1) 15.407 (a)(3)	Power Spectral Density	PASS			
15.407(g)	Frequency Stability	PASS			
15.203	Antenna Requirement	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2. TEST FACILITY

Shenzhen POCE Technology Co.,Ltd.

Add.: Room 502, Bldg. 1, Xinghua Garden, Baoan Road Xixiang, Baoan District, Shenzhen,

China

FCC Registered No.: 222278

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

4. GENERAL INFORMATIONGENERAL DESCRIPTION OF EUT

Equipment	5.8GHz/2.4GH w	ireless local area network equipment		
Trade Name	FEIMA ROBOTICS			
Model Name	FM2000			
Serial Model	N/A			
	N/A			
	IEEE 802.11 WLAN Mode Supported			
	Data Rate	802.11n(HT20):MCS0-MCS15; 802.11n(HT40):MCS0-MCS15;		
Model Difference	OFDM with Modulation BPSK/QPSK/16QAM/64QAM/256QAM for 802.11a/n			
	Operating Frequency Range	⊠5745-5825 MHz for 802.11a/n(HT20); 5755-5795 MHz for 802.11a/n(HT40);		
	Number of Channels	 ∑5 channels for 802.11a/N20 in the 5745-5825MHz band; 2 channels for 802.11 N40 in the 5755-5795MHz band; 		
	Antenna Type	Integrated antenna		
	Antenna Gain	See Table for Filed Antenna		
Product Description	Based on the application, features, or specification exhibited in User's Manual, More details of EUT technical specification, please refer to the User's Manual.			
Channel List	Please refer to the Note 2.			
Power Source	DC 3.7V			
Adapter	N/A			
hardware version	N/A			
Software version	N/A			

Note

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Frequency and Channel list for 802.11a/n(20 MHz) band III (5745-5825MHz):

Page 8 of 52

	802.11a/n(20 MHz) Carrier Frequency Channel						
Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-	-	-	-

Frequency and Channel list for 802.11n(40MHz) band III (5755-5795MHz):

802.11n 40MHz Carrier Frequency Channel						
Channel	Channel Frequency (MHz) Channel Frequency (MHz) Frequency (MHz)					
151	5755	159	5795	-	-	

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Gain (dBi)	NOTE
2	N/A	N/A	Integrated antenna	1.7dBi	

5. DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description			
Mode 1	802.11a /n 20M CH149/ CH157/ CH 165			
Mode 2	802.11n 40M CH 151 / CH 159			
Mode 3	Link Mode			
For Radiated Emission				
Final Test Mode	Description			
Mode 1	802.11a /n 20M CH149/ CH157/ CH 165			
Mode 2	802.11n 40M CH 151 / CH 159			
Mode 3	Link Mode			

6. BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted/Radiated Spurious Emission Test

E-1 EUT

7. DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	5.8GHz/2.4G H wireless local area network equipment	FEIMA ROBOTICS	FM2000	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

8. EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibratio n period
1	Spectrum Analyzer	Agilent	E4407B	MY4510804 0	2016.07.06	2017.07.05	1 year
2	Test Receiver	R&S	ESPI	101318	2016.06.07	2017.06.06	1 year
3	Bilog Antenna	TESEQ	CBL6111D	31216	2016.07.06	2017.07.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	620026441 6	2016.06.07	2017.06.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2016.06.07	2017.06.06	1 year
6	Horn Antenna	EM	EM-AH-101 80	2011071402	2016.07.06	2017.07.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2016.07.06	2017.07.05	1 year
8	Amplifier	EM	EM-30180	060538	2016.12.22	2017.12.21	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2016.06.08	2017.06.07	1 year
10	Power Meter	DARE	RPR3006W	100696	2016.12.02	2017.12.01	1 year

Conduction Test equipment

CONG	Conduction rest equipment						
Item	Kind of Equipment	Manufactu rer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2016.06.06	2017.06.05	1 year
2	LISN	R&S	ENV216	101313	2016.08.24	2017.08.23	1 year
3	LISN	EMCO	3816/2	00042990	2016.08.24	2017.08.23	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2016.06.07	2017.06.06	1 year
5	Passive Voltage Probe	R&S	ESH2-Z3	100196	2016.06.07	2017.06.06	1 year
6	Absorbing clamp	R&S	MOS-21	100423	2016.06.08	2017.06.07	1 year

9. EMC EMISSION TEST

9.1 CONDUCTED EMISSION MEASUREMENT

POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

	Class B	Ctondord	
FREQUENCY (MHz)	Quasi-peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	56.00	46.00	CISPR
5.0 -30.0	60.00	50.00	CISPR

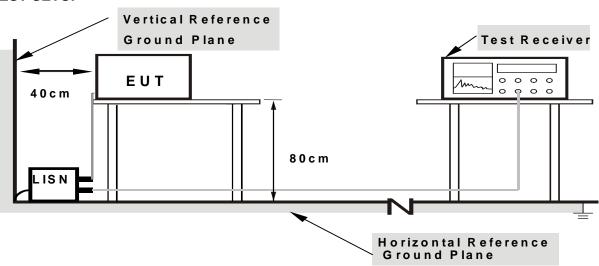
0.15 -0.5	66 - 56 *	56 - 46 *	FCC/ RSS-247
0.50 -5.0	56.00	46.00	FCC/ RSS-247
5.0 -30.0	60.00	50.00	FCC/ RSS-247

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


9.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

9.3 DEVIATION FROM TEST STANDARD

No deviation

TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

9.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

9.5 TEST RESULT:	
N/A	

10 RADIATED EMISSION MEASUREMENT

10.1 APPLICABLE STANDARD

According to FCC Part 15.407(d) and 15.209

10.2 CONFORMANCE LIMIT

According to FCC Part 15.407(b)(7): radiated emissions which fall in the restricted bands, as defined in $\S15.205(a)$, must also comply with the radiated emission limits specified in $\S15.209(a)$ (see $\S15.205(c)$).

According to FCC Part15.205, Restricted bands

1 tooti lotoa bariao		
MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2)
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHz MHz 16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5-1646.5 74.8-75.2 1660-1710 123-138 2200-2300 149.9-150.05 2310-2390 156.52475-156.52525 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

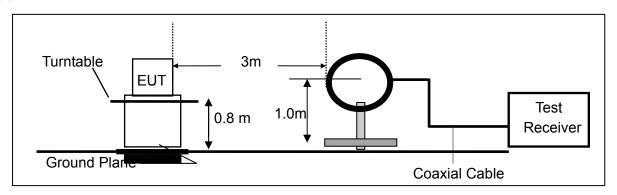
detroted barra epochied on respectation are respectation in the table bolow has to be relieved.					
Restricted Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance		
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300		
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30		
1.705~30.0	30	29.5	30		
30-88	100	40	3		
88-216	150	43.5	3		
216-960	200	46	3		
Above 960	500	54	3		

Limits of Radiated Emission Measurement(Above 1000MHz)

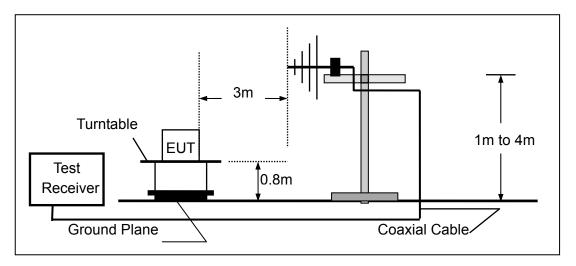
Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

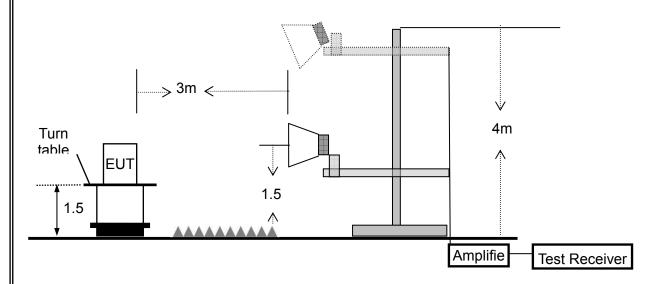


10.3 MEASURING INSTRUMENTS


The Measuring equipment is listed in the section 6.3 of this test report.

10.4 TEST CONFIGURATION

(a) For radiated emissions below 30MHz



(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

10.5 TEST PROCEDURE

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz and frequencies above 1GHz,
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

Report No.: POCE- 20170203217R2

g For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

10.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode:	TX	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				N/A
				N/A

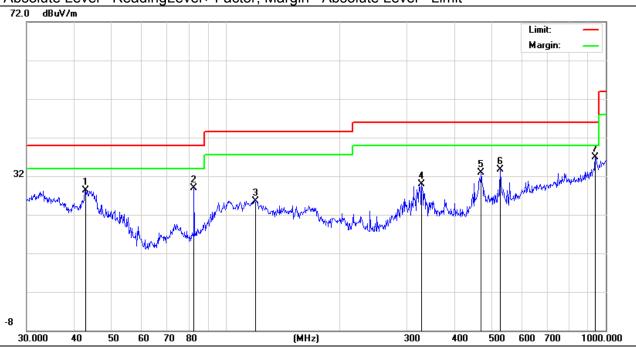
NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

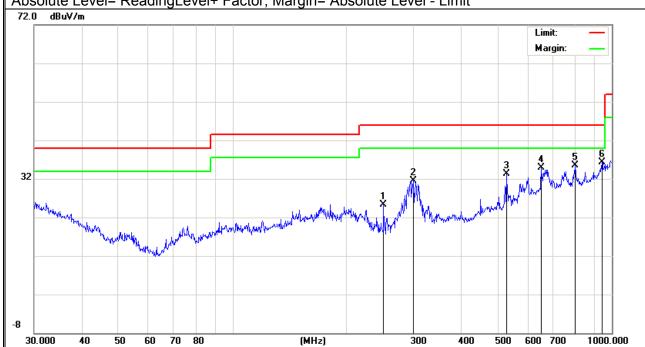
10.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ)


■ Spurious Emission below 1GHz (30MHz to 1GHz)

Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX (802.11a)		

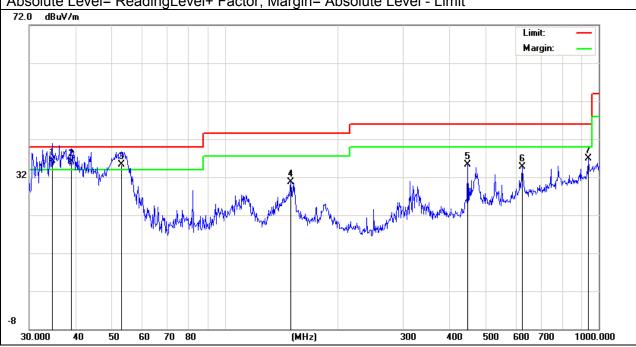
All the modulation modes have been tested, and the worst result was report as below:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	42.8997	14.58	13.79	28.37	40.00	-11.63	QP
V	82.6482	18.74	10.08	28.82	40.00	-11.18	QP
V	119.4361	14.02	11.57	25.59	43.50	-17.91	QP
V	327.8873	14.99	14.83	29.82	46.00	-16.18	QP
V	470.5230	15.16	17.73	32.89	46.00	-13.11	QP
V	528.2458	14.83	18.86	33.69	46.00	-12.31	QP
V	938.8324	9.39	27.44	36.83	46.00	-9.17	QP


Remark:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	250.3010	13.11	12.12	25.23	46.00	-20.77	QP
Н	299.3158	17.66	13.82	31.48	46.00	-14.52	QP
Н	528.2458	14.48	18.86	33.34	46.00	-12.66	QP
Н	651.9417	13.31	21.63	34.94	46.00	-11.06	QP
Н	801.7862	11.38	24.04	35.42	46.00	-10.58	QP
Н	942.1304	8.82	27.55	36.37	46.00	-9.63	QP

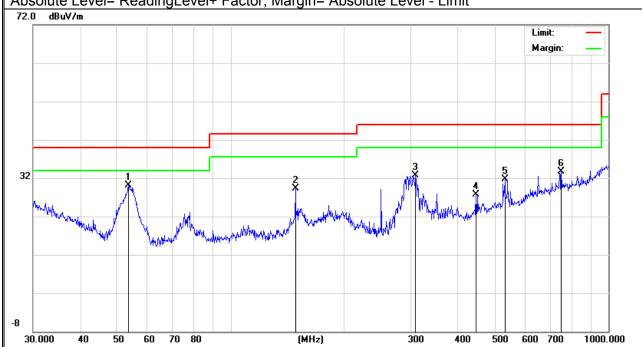
Remark:



Temperature:	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX (802.11n)		

All the modulation modes have been tested, and the worst result was report as below:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	34.6385	18.36	18.04	36.40	40.00	-3.60	QP
V	38.8878	20.35	15.85	36.20	40.00	-3.80	QP
V	52.9453	26.13	9.17	35.30	40.00	-4.70	QP
V	150.0107	17.78	12.83	30.61	43.50	-12.89	QP
V	446.4141	17.95	17.27	35.22	46.00	-10.78	QP
V	625.0778	13.64	21.13	34.77	46.00	-11.23	QP
V	938.8324	9.54	27.44	36.98	46.00	-9.02	QP


Remark:

Meter **Emission** Frequency Factor Limits Margin **Polar** Reading Level Remark (H/V) (MHz) (dBuV) (dBuV/m) (dBuV/m) (dB) (dB) Н 53.6932 21.25 8.85 30.10 40.00 -9.90 QP 29.22 43.50 QΡ Η 148.4410 16.53 12.69 -14.28QΡ 14.22 46.00 -13.23 Η 308.9126 18.55 32.77 Н 446.4141 10.34 17.27 27.61 46.00 -18.39 QΡ 531.9633 12.64 18.97 46.00 -14.39 QΡ Η 31.61 Н 750.1082 10.20 23.42 33.62 -12.38 QP 46.00

Remark:

3.2.8 TEST RESULTS (1GHZ-18GHZ)

Temperature:	20 ℃	Relative Humidity:	48%		
Pressure:	1010 hPa	Test Voltage :	DC 3.7V		
Test Mode :	TX (5.8G)-802.11a 5745-5825MHz				

Report No.: POCE- 20170203217R2

All the modulation modes have been tested, and the worst result was report as below:

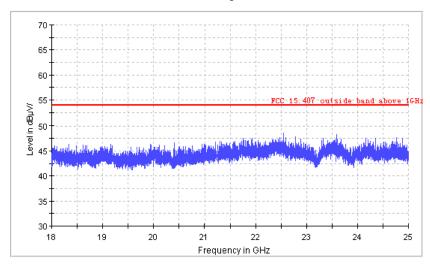
ne medala	tion modes	liave been	testeu, ai	id tile wor	St iesuit w		as below.		
Polar	Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector Type
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Low Channel (5745 MHz)-Above 1G									
Vertical	4679.234	52.13	5.94	35.40	44.00	49.47	74.00	-24.53	Pk
Vertical	4679.234	45.59	5.94	35.40	44.00	42.93	54.00	-11.07	AV
Vertical	11490.227	60.67	8.46	39.75	44.50	64.38	74.00	-9.62	Pk
Vertical	11490.227	44.15	8.46	39.75	44.50	47.86	54.00	-6.14	AV
Vertical	17235.265	56.84	10.12	38.80	44.10	61.66	74.00	-12.34	Pk
Vertical	17235.154	40.26	10.12	38.80	42.70	46.48	54.00	-7.52	AV
Horizontal	4679.639	57.51	5.94	35.18	44.00	54.63	74.00	-19.37	Pk
Horizontal	4679.639	44.18	5.94	35.18	44.00	41.3	54.00	-12.7	AV
Horizontal	11490.128	59.86	8.46	38.71	44.50	62.53	74.00	-11.47	Pk
Horizontal	10360.605	44.31	8.46	38.71	44.50	46.98	54.00	-7.02	AV
Horizontal	17235.111	58.16	10.12	38.38	44.10	62.56	74.00	-11.44	Pk
Horizontal	17235.109	42.86	10.12	38.38	44.10	47.26	54.00	-6.74	AV
		r	niddle Cha	annel (578	5 MHz)-Ab	ove 1G			
Vertical	4592.256	58.64	6.48	36.35	44.05	57.42	74.00	-16.58	Pk
Vertical	4592.256	43.18	6.48	36.35	44.05	41.96	54.00	-12.04	AV
Vertical	11570.199	59.85	8.47	37.88	44.51	61.69	74.00	-12.31	Pk
Vertical	11570.199	43.85	8.47	37.88	44.51	45.69	54.00	-8.31	AV
Vertical	17355.128	57.18	10.12	38.8	44.10	62	74.00	-12	Pk
Vertical	17355.128	40.16	10.12	38.8	42.70	46.38	54.00	-7.62	AV
Horizontal	4592.535	59.88	6.48	36.37	44.05	58.68	74.00	-15.32	Pk
Horizontal	4592.535	43.27	6.48	36.37	44.05	42.07	54.00	-11.93	AV
Horizontal	11570.271	60.56	8.47	38.64	44.50	63.17	74.00	-10.83	Pk
Horizontal	11570.271	46.26	8.47	38.64	44.50	48.87	54.00	-5.13	AV
Horizontal	17355.247	59.86	10.12	38.38	44.10	64.26	74.00	-9.74	Pk
Horizontal	17356.721	44.31	10.12	38.38	44.10	48.71	54.00	-5.29	AV
			High Char	nnel (5825	MHz)-Abo	ve 1G			
Vertical	6039.235	58.96	7.10	37.24	43.50	59.8	74.00	-14.2	Pk
Vertical	6039.235	46.62	7.10	37.24	43.50	47.46	54.00	-6.54	AV
Vertical	11652.838	55.53	8.46	37.68	44.50	57.17	74.00	-16.83	Pk
Vertical	11652.838	42.27	8.46	37.68	44.50	43.91	54.00	-10.09	AV
Vertical	17473.128	59.86	10.12	38.8	44.10	64.68	74.00	-9.32	Pk
Vertical	17473.107	39.97	10.12	38.8	42.70	46.19	54.00	-7.81	AV
Horizontal	6039.101	66.69	7.10	37.24	43.50	67.53	74.00	-6.47	Pk
Horizontal	6039.101	42.2	7.10	37.24	43.50	43.04	54.00	-10.96	AV
Horizontal	11652.283	56.63	8.46	38.57	44.50	59.16	74.00	-14.84	Pk
Horizontal	11652.283	43.77	8.46	38.57	44.50	46.3	54.00	-7.7	AV
Horizontal	17474.247	59.86	10.12	38.38	44.10	64.26	74.00	-9.74	Pk
Horizontal	17474.721	44.31	10.12	38.38	44.10	48.71	54.00	-5.29	AV

Note:"802.11a (5G)" mode is the worst mode. PK value is lower than the Average value limit, So average didn't record.

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

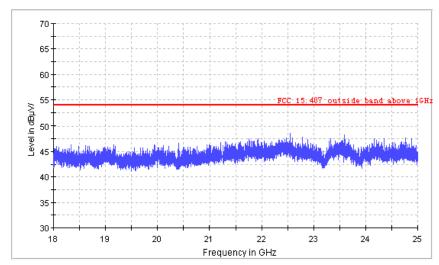
Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.


TEST RESULTS (18GHz-40GHz)

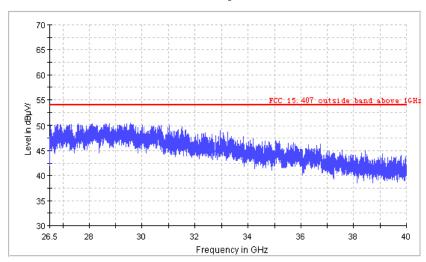
Temperature :	20 ℃	Relative Humidi	ty: 48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX (5.8G) -802.11N(20)	5745MHz~5825MHz	

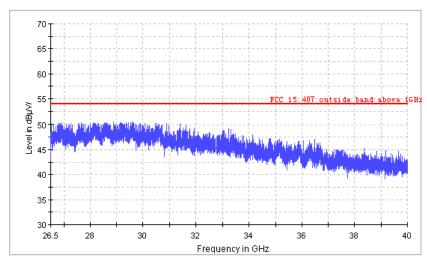
All the modulation modes have been tested, and the worst result was report as below: Low Channel (802.11N(20) 5180 MHz)-Above 1G


Horizontal

FCC Electric Field Strength 18-26.5GHz

Vertical


FCC Electric Field Strength 18-26.5GHz



FCC Electric Field Strength 26.5-40GHz

Vertical

FCC Electric Field Strength 26.5-40GHz

POCE Technology

Report No.: POCE- 20170203217R2

11. POWER SPECTRAL DENSITY TEST

11.1 APPLIED PROCEDURES / LIMIT

According to FCC §15.407(a)(3)

For the band 5.15-5.25 GHz,

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz

(3)For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

,

11.2 TEST PROCEDURE

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

Report No.: POCE- 20170203217R2

- a) Set RBW \geq 1/T, where T is defined in section II.B.l.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

11.3 DEVIATION FROM STANDARD

No deviation.

11.4 TEST SETUP

11.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

11.6 TEST RESULTS

Temperature :	25 ℃	Relative Humidity:	56%		
Pressure:	1015 hPa	Test Voltage :	DC 3.7V		
Test Mode :	TX Frequency Band III (5725-5825MHz)				

Mode	Measured Power Density Frequency		Limit (dBm)	Result
		(dBm)		
	5745 MHz	1.662	30	PASS
802.11 a	5785 MHz	0.727	30	PASS
	5825 MHz	-0.121	30	PASS
	5745 MHz	1.568	30	PASS
802.11 n20	5785 MHz	1.029	30	PASS
	5825 MHz	0.071	30	PASS
802.11 n40	5755 MHz	-3.637	30	PASS
	5795 MHz	-4.17	30	PASS

(802.11a) PSD plot on channel 149

(802.11n20) PSD plot on channel 149

(802.11a) PSD plot on channel 157

(802.11n20) PSD plot on channel 157


(802.11a) PSD plot on channel 165

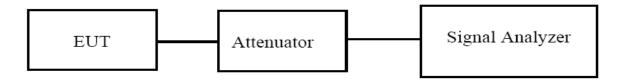
(802.11n20) PSD plot on channel 165

(802.11n40) PSD plot on channel 159

12. 26 DB & 99% EMISSION BANDWIDTH

12.1 APPLIED PROCEDURES / LIMIT

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.


12.2 TEST PROCEDURE

- Report No.: POCE- 20170203217R2
- a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
 - 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

12.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

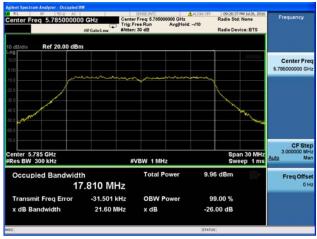
12.4 TEST RESULTS

Temperature :	25 ℃	Relative Humidity:	56%	
Pressure:	1012 hPa	Test Voltage :	DC 3.7V	
Test Mode :	TX Frequency Band III (5745-5850MHz)			

Mode	Channel	Frequenc y (MHz)	26dB bandwidth	99% bandwidth	P/F
802.11a	CH149	5745	16.775	21.22	Pass
	CH157	5785	16.776	21.10	Pass
	CH165	5825	16.758	21.03	Pass
802.11 n20	CH149	5745	17.808	21.69	Pass
	CH157	5785	17.810	21.60	Pass
	CH165	5825	17.820	21.81	Pass
802.11 n40	CH 151	5755	36.207	42.21	Pass
	CH 159	5795	36.199	42.42	Pass

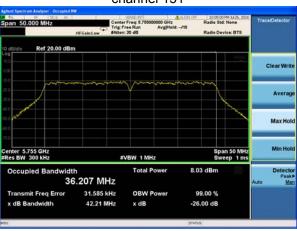
(802.11a) -26dB&99% Bandwidth plot on channel 149


(802.11a) -26dB&99% Bandwidth plot on channel 157


(802.11a) -26dB&99% Bandwidth plot on channel 165

(802.11n20) -26dB&99% Bandwidth plot on channel 149

(802.11n20) -26dB&99% Bandwidth plot on channel 157



(802.11n20) -26dB&99% Bandwidth plot on channel 165

(802.11n40) -26dB&99% Bandwidth plot on channel 151

(802.11n40) -26dB&99% Bandwidth plot on channel 159

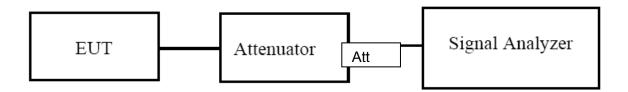
13. MINIMUM 6 DB BANDWIDTH

13.1 APPLIED PROCEDURES / LIMIT

According to FCC §15.407(e)

(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

13.2 TEST PROCEDURE


Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

13.3 DEVIATION FROM STANDARD

No deviation.

13.4 TEST SETUP

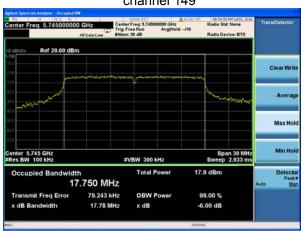
13.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

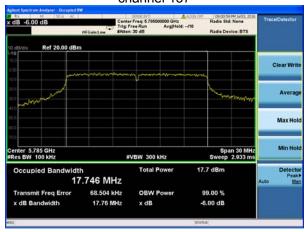
13.6 TEST RESULTS

Temperature :	25 ℃	Relative Humidity:	60%			
Pressure:	1012 hPa	Test Voltage :	DC 3.7V			
Test Mode :	TX (5G) Mode Frequency Band III (5725-5825MHz)					

Mode	Channel	Frequency (MHz)	6dB Bandwidth	Limit (KHz)	Result
	149	5745	16.57	500	Pass
802.11a	157	5785	16.57	500	Pass
	165	5825	16.57	500	Pass
	149	5745	17.78	500	Pass
802.11 n20	157	5785	17.76	500	Pass
	165	5825	17.80	500	Pass
802.11 n40	151	5755	36.47	500	Pass
	159	5795	36.48	500	Pass



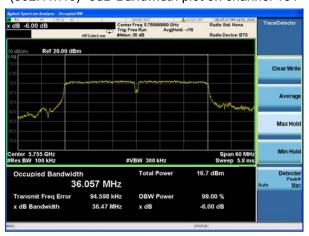
(802.11a) -6dB Bandwidth plot on channel 149


(802.11n20) -6dB Bandwidth plot on channel 149

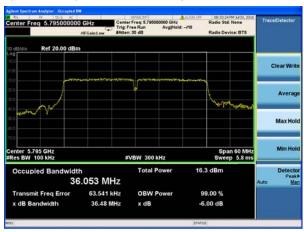
(802.11a) -6dB Bandwidth plot on channel 157

(802.11n20) -6dB Bandwidth plot on channel 157

(802.11a) -6dB Bandwidth plot on channel 165



(802.11n20) -6dB Bandwidth plot on channel 165



(802.11n40) -6dB Bandwidth plot on channel 151

(802.11n40) -6dB Bandwidth plot on channel 159

POCE Technology

Report No.: POCE- 20170203217R2

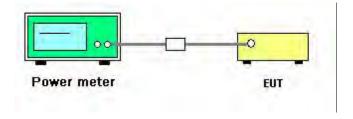
14. MAXIMUM CONDUCTED OUTPUT POWER

14.1 PPLIED PROCEDURES / LIMIT

According to FCC §15.407

The maximum conduced output power should not exceed:

Fred	quency Band		Limit				
5.72	25-5.85 GHz						
X	client devices	addition, the r transmittir conducted amount in dB t U-NII device greater than point-to-p applications, a of the U-NII d	ducted output power over the frequency band of operation shall not exceed 1 W. In maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If no antennas of directional gain greater than 6 dBi are used, both the maximum output power and the maximum power spectral density shall be reduced by the that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point deso operating in this band may employ transmitting antennas with directional gain 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, oint operations exclude the use of point-to-multipoint systems, omnidirectional and multiple collocated transmitters transmitting the same information. The operator evice, or if the equipment is professionally installed, the installer, is responsible for a systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.				


14.2 TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Test was performed in accordance with KDB789033 D02 v01r02 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- 3. Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems,add every result of the values by mathematic formula.

14.3 DEVIATION FROM STANDARD

No deviation.

14.4 TEST SETUP

14.5 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

14.6 TEST RESULTS

Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX (5G) Mode Frequency Band	d III (5725-5825MHz)	

Test	Frequency	Maximum	LIMIT						
Channel	rrequericy	(dBm)	LIIVII I						
Orianner	(MHz)	(dbiii)	dBm						
	TX 802.1	1a Mode							
CH 149	5745	17.15	30						
CH 157	5785	17.29	30						
CH 165	5825	17.38	30						
	TX 802.11 r	n20M Mode							
CH 149	5745	17.31	30						
CH 157	5785	17.37	30						
CH 165	5825	17.22	30						
	TX 802.11 n40M Mode								
CH 151	5755	17.28	30						
CH 159	5795	17.16	30						

15. OUT OF BAND EMISSIONS

15.1 APPLICABLE STANDARD

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

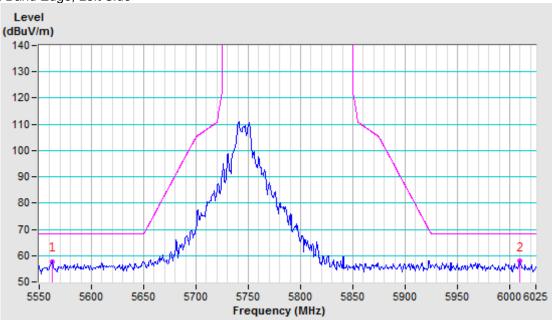
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

15.2 TEST PROCEDURE

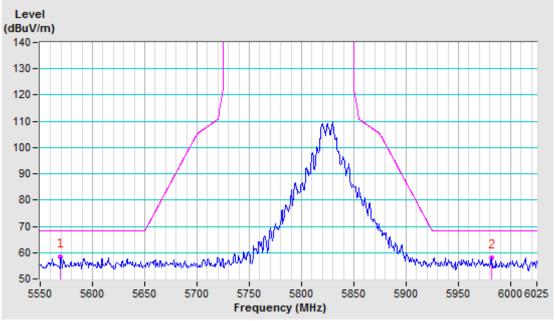
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Catch the final spectrum test results by software.

15.3 DEVIATION FROM STANDARD

No deviation.

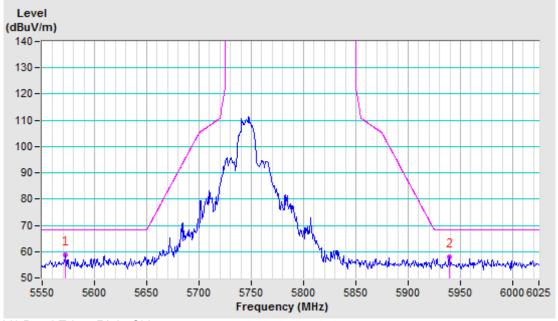

15.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

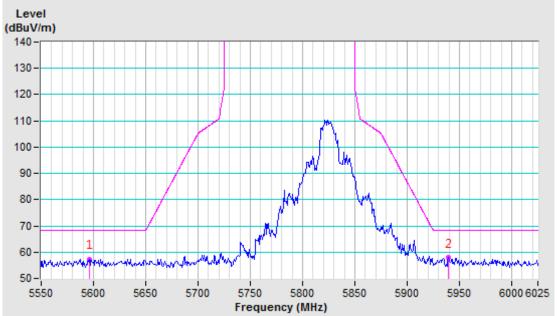

15.5 TEST RESULTS

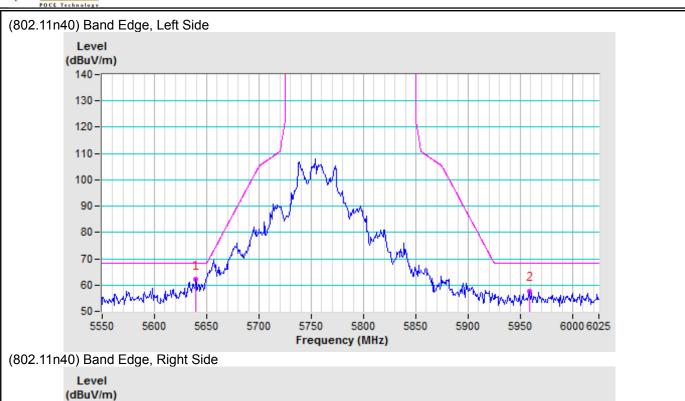
5.725-5.85 GHz

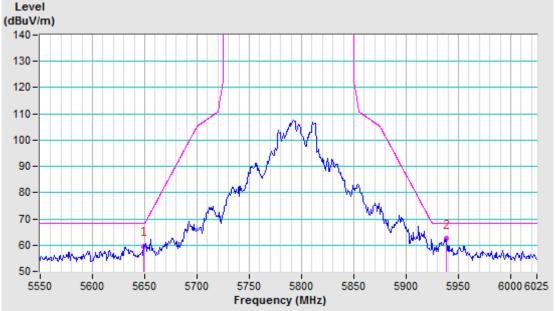
(802.11a) Band Edge, Left Side



(802.11a) Band Edge, Right Side







(802.11n20) Band Edge, Right Side

16. Frequency Stability Measurement

16.1 LIMIT

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

Report No.: POCE- 20170203217R2

The transmitter center frequency tolerance shall be ± 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

16.2 TEST PROCEDURES

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 10₆ ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is -20°C~70°C.

16.3 TEST SETUP LAYOUT

16.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously un-modulation transmitting mode.

16.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	56%
Pressure:	1015 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX (5G) Mode Frequency Band	d III (5725-5825MHz)	

Report No.: POCE- 20170203217R2

Voltage vs. Frequency Stability:

				Refer	ence Freque	ncy: 5745M	ИHz
	TEST COI	NDITIONS				Max.	Max.
	TEST COI	NDITIONS		F	Fc	Deviation	Deviation
						(MHz)	(ppm)
		V nom	3.7V	5745.0123	5745	0.0123	2.141
		(V)	3.1 V				
T nom	20°C	V max	4.2V	5745.0146	5745	0.0146	2.541
(°C)	200	(V)	4.2V				
		V min	3.3V	5745.0133	5745	0.0133	2.315
		(V)	3.34				
Limits				+- 20 p	pm		
	Result				Comp	lies	

Temperature vs. Frequency Stability:

Temperature vs. Frequency Stability:									
	TEST CO	NDITIONS		Reference Frequency: 5745MHz					
						Max.	Max.		
				F	Fc	Deviation	Deviation		
						(MHz)	(ppm)		
		T (°C)	-20	5745.0113	5745	0.0113	1.967		
		T (°C)	-10	5745.0116	5745	0.0116	2.019		
\/ n a ma		T (°C)	0	5745.0113	5745	0.0113	1.967		
V nom	3.7V	T (°C)	10	5745.0132	5745	0.0132	2.298		
(V)		T (°C)	20	5745.0123	5745	0.0123	2.141		
		T (°C)	30	5745.0142	5745	0.0142	2.472		
		T (°C)	40	5745.0153	5745	0.0153	2.663		
Limits				+- 20 բ	ppm				
Result				Comp	lies				

Voltage vs. Frequency Stability:

				Refere	ence Frequ	ency: 5785	5MHz
	TEST COL	NDITIONS				Max.	Max.
	1231 001	NDITIONS		F	Fc	Deviation	Deviation
						(MHz)	(ppm)
	V nom 3.7V			5785.0149	5785	0.0149	2.576
		(V)	3.7 V				
T nom	20°C	V max	4.2V	5785.0189	5785	0.0189	3.267
(°C)	20 0	(V)	4.2V				
		V min	3.3V	5785.0169	5785	0.0169	2.921
		(V)	3.34				
Limits				+- 20	ppm		
	Re	sult			Com	plies	_

Temperature vs. Frequency Stability:

TEST CONDITIONS				Refere	Reference Frequency: 5785MHz		
						Max.	Max.
				F	Fc	Deviation	Deviation
						(MHz)	(ppm)
		T (°C)	-20	5785.0153	5785	0.0153	2.645
		T (°C)	-10	5785.0121	5785	0.0121	2.092
V nom		T (°C)	0	5785.0111	5785	0.0111	1.919
(V)	3.7V	T (°C)	10	5785.0131	5785	0.0131	2.264
()		T (°C)	20	5785.0149	5785	0.0149	2.576
		T (°C)	30	5785.0122	5785	0.0122	2.109
		T (°C)	40	5785.0121	5785	0.0121	2.092
Limits				+- 20	ppm		
	Re	sult			Com	plies	

Voltage vs. Frequency Stability:

				Refere	ence Frequ	ency : 5825	MHz
	TEST CO	NDITIONS				Max.	Max.
	1231 001	NDITIONS		F	Fc	Deviation	Deviation
						(MHz)	(ppm)
	V nom			5825.0133	5825	0.0133	2.283
		(V)	3.7V				
T nom	20°C	V max	4.2V	5825.0132	5825	0.0132	2.266
(°C)	20 0	(V)	4.2V				
		V min	3.3V	5825.0123	5825	0.0123	2.112
		(V)	3.3 V				
Limits				+- 20	ppm		
	Re	sult			Com	plies	

Temperature vs. Frequency Stability:

	TEST COI	NDITIONS		Refere	ence Frequ	ency: 5825	5MHz
						Max.	Max.
				F	Fc	Deviation	Deviation
						(MHz)	(ppm)
		T (°C)	-20	5825.0143	5825	0.0143	2.455
		T (°C)	-10	5825.0112	5825	0.0112	1.923
\/ nom		T (°C)	0	5825.0123	5825	0.0123	2.112
V nom	3.7V	T (°C)	10	5825.0131	5825	0.0131	2.249
(V)		T (°C)	20	5825.0133	5825	0.0133	2.283
		T (°C)	30	5825.0141	5825	0.0141	2.421
		T (°C)	40	5825.0121	5825	0.0121	2.077
	Limits				+- 20	ppm	

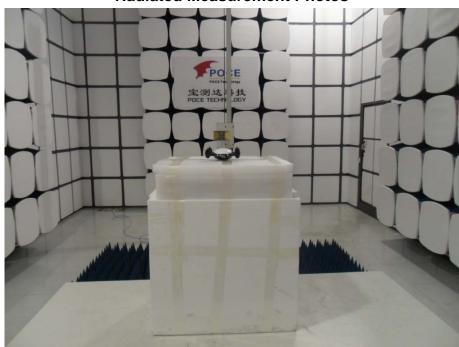
17. ANTENNA REQUIREMENT

17.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

17.2 EUT ANTENNA

The EUT antenna is Integrated antenna, It comply with the standard requirement.



18. EUT TEST PHOTO

Radiated Measurement Photos

