

## FCC Test Report

**Report No.:** FCC\_RF\_SL18062902-FCB-011 Rev 1.0

**FCC ID:** 2AK7S-FBC2001

**Product:** 60GHz backhaul transmitter

**Model:** FBC-2001

**Received Date:** 01/06/2020

**Test Date:** 01/06/2020 to 01/07/2020

**Issued Date:** 02/21/2020

**Applicant:** FCL Tech, Inc

**Address:** 1601 Willow Road, Menlo Park, CA94025

**Manufacturer:** FCL Tech, Inc.

**Address:** 1601 Willow Road, Menlo Park, CA94025

**Issued By:** Bureau Veritas Consumer Products Services, Inc.

**Test Lab Address:** 775 Montague Expressway, Milpitas, CA 95035, USA

**Test Location:** 775 Montague Expressway, Milpitas, CA 95035, USA

**FCC/ IC Test Site Number:** 540430/4842D

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. The test report shall not be reproduced except in full, without written approval of the laboratory. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies.

## Table of Contents

|                                                                 |           |
|-----------------------------------------------------------------|-----------|
| <b>Release Control Record .....</b>                             | <b>4</b>  |
| <b>1      Certificate of Conformity.....</b>                    | <b>5</b>  |
| <b>2      Summary of Test Results .....</b>                     | <b>6</b>  |
| 2.1    Measurement Uncertainty .....                            | 6         |
| 2.2    Modification Record .....                                | 6         |
| <b>3      General Information.....</b>                          | <b>7</b>  |
| 3.1    General Description of EUT .....                         | 7         |
| 3.2    Description of Test Modes .....                          | 8         |
| 3.2.1 Test Mode Applicability and Tested Channel Detail.....    | 9         |
| 3.3    Description of Support Units .....                       | 11        |
| 3.4    General Description of Applied Standards .....           | 12        |
| <b>4      Test Types and Results .....</b>                      | <b>13</b> |
| 4.1    Radiated Emission Measurement .....                      | 13        |
| 4.1.1 Limits of Radiated Emission Measurement.....              | 13        |
| 4.1.2 Test Instruments .....                                    | 14        |
| 4.1.3 Test Procedures.....                                      | 15        |
| 4.1.4 Deviation from Test Standard .....                        | 16        |
| 4.1.5 Test Setup.....                                           | 17        |
| 4.1.6 EUT Operating Conditions.....                             | 18        |
| 4.1.7 Test Results .....                                        | 19        |
| 4.2    Conducted Emission Measurement .....                     | 23        |
| 4.2.1 Limits of Conducted Emission Measurement.....             | 23        |
| 4.2.2 Test Instruments .....                                    | 23        |
| 4.2.3 Test Procedures.....                                      | 23        |
| 4.2.4 Deviation from Test Standard .....                        | 23        |
| 4.2.5 Test Setup.....                                           | 24        |
| 4.2.6 EUT Operating Conditions.....                             | 24        |
| 4.2.7 Test Results .....                                        | 25        |
| 4.3    6dB Bandwidth Measurement .....                          | 27        |
| 4.3.1 Limits of 6dB Bandwidth Measurement.....                  | 27        |
| 4.3.2 Test Setup.....                                           | 27        |
| 4.3.3 Test Instruments .....                                    | 27        |
| 4.3.4 Test Procedure .....                                      | 27        |
| 4.3.5 Deviation from Test Standard .....                        | 27        |
| 4.3.6 EUT Operating Conditions.....                             | 27        |
| 4.3.7 Test Result.....                                          | 28        |
| 4.4    Output Power Measurement .....                           | 29        |
| 4.4.1 Limits of Output Power Measurement.....                   | 29        |
| 4.4.2 Test Setup.....                                           | 30        |
| 4.4.3 Test Instruments .....                                    | 30        |
| 4.4.4 Test Procedures.....                                      | 31        |
| 4.4.5 Deviation from Test Standard .....                        | 31        |
| 4.4.6 EUT Operating Conditions.....                             | 32        |
| 4.4.7 Test Results .....                                        | 32        |
| 4.5    Frequency Stability Measurement.....                     | 33        |
| 4.5.1 Limits of Conducted Out of Band Emission Measurement..... | 33        |
| 4.5.2 Test Setup.....                                           | 33        |
| 4.5.3 Test Instruments .....                                    | 33        |
| 4.5.4 Test Procedure .....                                      | 33        |
| 4.5.5 Deviation from Test Standard .....                        | 33        |
| 4.5.6 EUT Operating Condition .....                             | 33        |
| 4.5.7 Test Results .....                                        | 34        |

|                                                                 |           |
|-----------------------------------------------------------------|-----------|
| <b>5 Pictures of Test Arrangements.....</b>                     | <b>35</b> |
| <b>Appendix – Information of the Testing Laboratories .....</b> | <b>36</b> |

### Release Control Record

| Issue No.                         | Description          | Date Issued |
|-----------------------------------|----------------------|-------------|
| FCC_RF_SL18062902-FCB-011         | Original             | 02/12/2020  |
| FCC_RF_SL18062902-FCB-011 Rev 1.0 | Updated per reviewer | 02/21/2020  |

## 1 Certificate of Conformity

**Product:** 60GHz backhaul transmitter

**Brand:** FCL Tech, Inc

**Model:** FBC-2001

**Series Model:** N/A

**Sample Status:** Engineering Sample

**Applicant:** FCL Tech, Inc

**Test Date:** 01/06/2020 – 01/07/2020

**Standards:** 47 CFR FCC Part 15, Subpart C (Section 15.255)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services, Inc. Milpitas Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

*Gary Chou*

**Prepared by :** \_\_\_\_\_, **Date:** 02/12/2020  
Gary Chou Test Engineer

*Chen*

**Approved by :** \_\_\_\_\_, **Date:** 02/12/2020  
Chen Ge Engineering Reviewer

## 2 Summary of Test Results

| 47 CFR FCC Part 15, Subpart C (Section 15.255) |                             |        |                                |
|------------------------------------------------|-----------------------------|--------|--------------------------------|
| FCC Clause                                     | Test Item                   | Result | Remarks                        |
| 15.207                                         | AC Power Conducted Emission | PASS   | Meet the requirement of limit. |
| 15.255(e)                                      | 6dB Bandwidth               | -      | Reference only.                |
| 15.255 (c) & (e)                               | Output Power                | PASS   | Meet the requirement of limit. |
| 15.255(d)                                      | Spurious Emissions          | PASS   | Meet the requirement of limit. |
| 15.255(f)                                      | Frequency Stability         | PASS   | Meet the requirement of limit. |

### 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| Measurement                        | Frequency      | Expanded Uncertainty (k=2) (±) |
|------------------------------------|----------------|--------------------------------|
| Conducted Emissions at mains ports | 150kHz ~ 30MHz | 3.51dB                         |
| Radiated Emissions up to 1 GHz     | 30MHz ~ 1GHz   | 3.73dB                         |
| Radiated Emissions above 1 GHz     | 1GHz ~ 6GHz    | 4.64dB                         |
|                                    | 6GHz ~ 18GHz   | 4.82dB                         |
|                                    | 18GHz ~ 40GHz  | 4.91dB                         |

### 2.2 Modification Record

There were no modifications required for compliance.

### 3 General Information

#### 3.1 General Description of EUT

|                       |                                                                                               |
|-----------------------|-----------------------------------------------------------------------------------------------|
| Product               | 60GHz backhaul transmitter                                                                    |
| Brand                 | FCL Tech, Inc                                                                                 |
| Test Model            | FBC-2001                                                                                      |
| Status of EUT         | Engineering sample                                                                            |
| Power Supply Rating   | PoE 120V 60Hz Through RJ-45 Ethernet to EUT, and AC/DC Transformer 2.1A 120V 60Hz = +48V 3.9A |
| Modulation Type       | 16QAM, QPSK, BPSK                                                                             |
| Modulation Technology | OFDM                                                                                          |
| Operating Frequency   | 58.32GHz ~ 64.80GHz                                                                           |
| Output Power          | 43 dBm E.I.R.P                                                                                |
| Antenna Type          | Integrated(4 antenna)                                                                         |
| Antenna Gain          | 28 dBi                                                                                        |
| Antenna Connector     | NA                                                                                            |
| Accessory Device      | NA                                                                                            |
| Data Cable Supplied   | NA                                                                                            |

Note:

1. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

### 3.2 Description of Test Modes

| LRP MODE |           |         |           |         |           |         |           |
|----------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel  | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1        | 58.32GHz  | 2       | 60.48GHz  | 3       | 62.64GHz  | 4       | 64.80GHz  |

The power setting of EUT is 22 for all channels.

All data rate MCS1-MCS12 are verified, only worst case data (MCS9) is presented.

### 3.2.1 Test Mode Applicability and Tested Channel Detail

| EUT<br>CONFIGURE<br>MODE | APPLICABLE TO |    |    |    |         |         | DESCRIPTION |
|--------------------------|---------------|----|----|----|---------|---------|-------------|
|                          | PLC           | BW | OP | FS | RE < 1G | RE ≥ 1G |             |
| L                        | √             | √  | √  | √  | √       | √       | LRP Mode    |

Where PLC: Power Line Conducted Emission

BW: 6dB Bandwidth

OP: Output Power

FS: Frequency Stability

RE < 1G: Radiated Emission below 1GHz

RE ≥ 1G: Radiated Emission above 1GHz

**NOTE:** The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **X-plane**.

#### Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| EUT CONFIGURE<br>MODE | AVAILABLE<br>CHANNEL | TESTED CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE |
|-----------------------|----------------------|----------------|--------------------------|--------------------|
| L                     | 4                    | 1              | OFDM                     | BPSK               |

#### 6dB Bandwidth Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| EUT CONFIGURE<br>MODE | AVAILABLE<br>CHANNEL | TESTED CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE |
|-----------------------|----------------------|----------------|--------------------------|--------------------|
| L                     | 4                    | 1, 2, 3, 4     | OFDM                     | BPSK               |

#### Frequency stability test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| EUT CONFIGURE<br>MODE | AVAILABLE<br>CHANNEL | TESTED CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE |
|-----------------------|----------------------|----------------|--------------------------|--------------------|
| L                     | 4                    | 1              | OFDM                     | QPSK               |

#### Radiated Emission Test (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| EUT CONFIGURE<br>MODE | AVAILABLE<br>CHANNEL | TESTED CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE |
|-----------------------|----------------------|----------------|--------------------------|--------------------|
| L                     | 4                    | 1              | OFDM                     | BPSK               |

**Radiated Emission Test (Above 1GHz):**

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| EUT CONFIGURE MODE | AVAILABLE CHANNEL | TESTED CHANNEL | MODULATION TECHNOLOGY | MODULATION TYPE |
|--------------------|-------------------|----------------|-----------------------|-----------------|
| L                  | 4                 | 1, 2, 3, 4     | OFDM                  | BPSK            |

**Test Condition:**

| APPLICABLE TO | ENVIRONMENTAL CONDITIONS | INPUT POWER  | TESTED BY |
|---------------|--------------------------|--------------|-----------|
| RE $\geq$ 1G  | 25deg. C, 65%RH          | 120Vac, 60Hz | Gary Chou |
| RE<1G         | 25deg. C, 65%RH          | 120Vac, 60Hz | Gary Chou |
| PLC           | 25deg. C, 68%RH          | 120Vac, 60Hz | Gary Chou |
| APCM          | 21deg. C, 60%RH          | 120Vac, 60Hz | Gary Chou |

### 3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| ID | Product           | Brand     | Model No.    | Serial No. | FCC ID | Remarks           |
|----|-------------------|-----------|--------------|------------|--------|-------------------|
| A. | SwtichingPoE      | Ubiquiti  | GP-1540-150G | N/A        | N/A    | Not sold with EUT |
| B. | AC/DC Transformer | Mean Well | HEP-185-48A  | RB5A058794 | N/A    | Not sold with EUT |

| ID | Description           | Qty. | Length (m) | Shielding<br>(Yes/No) | Cores (Qty.) | Remarks               |
|----|-----------------------|------|------------|-----------------------|--------------|-----------------------|
| 1. | Gigabit Ethernet port | 4    | <1         | No                    | None         | All Cables Loopbacked |
| 2. | SFP+ port Fiber Optic | 1    | N/A        | No                    | None         | Loopbacked            |

### **3.4 General Description of Applied Standards**

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

**FCC Part 15, Subpart C (15.255)**

**ANSI C63.10-2013**

All test items have been performed and recorded as per the above standards.

## 4 Test Types and Results

### 4.1 Radiated Emission Measurement

#### 4.1.1 Limits of Radiated Emission Measurement

| Spurious Emission              |                                   |
|--------------------------------|-----------------------------------|
| Frequency Range                | Average                           |
| Radiated emissions below 40GHz | Part 15.209                       |
| Between 40GHz and 200GHz       | 90pW/cm <sup>2</sup> (at 3 meter) |

Note:

The levels of the spurious emissions shall not exceed the level of the fundamental emission

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

| Frequencies (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) |
|-------------------|-----------------------------------|-------------------------------|
| 0.009-0.490       | 2400/F(kHz)                       | 300                           |
| 0.490-1.705       | 24000/F(kHz)                      | 30                            |
| 1.705-30.0        | 30                                | 30                            |
| 30-88             | 100                               | 3                             |
| 88-216            | 150                               | 3                             |
| 216-960           | 200                               | 3                             |
| Above 960         | 500                               | 3                             |

**NOTE:**

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB<sub>uV</sub>/m) = 20 log Emission level (uV/m).
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
4. Section 15.205 restricted bands of operation shall compliance with the limits in Section 15.209.

## 4.1.2 Test Instruments

| DESCRIPTION & MANUFACTURER                            | MODEL NO.   | SERIAL NO.  | DATE OF CALIBRATION | DUE DATE OF CALIBRATION |
|-------------------------------------------------------|-------------|-------------|---------------------|-------------------------|
| EMI Test Receiver<br>ROHDE & SCHWARZ                  | ESIB 40     | 100179      | 08/28/2019          | 08/28/2020              |
| Spectrum Analyzer<br>KEYSIGHT                         | N9030B      | MY57140374  | 07/22/2019          | 07/22/2020              |
| Hybrid Antenna<br>SUNAR                               | JB6         | A111717     | 03/09/2019          | 03/09/2020              |
| Horn Antenna<br>ETS-Lindgren                          | 3117        | 218554      | 11/06/2019          | 11/06/2020              |
| Preamplifier<br>RF-LAMBDA                             | RAMP00M50GA | 17032300047 | 09/19/2019          | 09/19/2020              |
| HORN ANTENNA<br>(18-40GHZ)<br>KEYSIGHT                | SAS-574     | 579         | 07/27/2018          | 07/27/2020              |
| HORN ANTENNA<br>(40-60GHZ)<br>OML,INC.                | M19RH       | 1708-1101   | 08/11/2019          | 08/11/2020              |
| 40GHZ TO 60GHZ<br>HARMONIC MIXER/<br>OML,INC.         | M19HWA      | 170811-1    | 08/11/2019          | 08/11/2020              |
| HORN ANTENNA<br>(60-90GHZ)<br>OML,INC.                | M12RH       | 1708-1101   | 08/11/2019          | 08/11/2020              |
| WAVEGUIDE HARMONIC<br>MIXER(60GHZ-90GHZ)/<br>KEYSIGHT | M1970E      | MY52230298  | 08/11/2019          | 08/11/2020              |
| HORN ANTENNA<br>(90-140GHZ)<br>OML,INC.               | M08RH       | 17081101    | 08/11/2019          | 08/11/2020              |
| 90GHZ TO 140GHZ<br>HARMONIC MIXER<br>OML,INC.         | M08HWA      | 170811-1    | 08/11/2019          | 08/11/2020              |
| HORN ANTENNA<br>(140-220GHZ)<br>OML,INC.              | M05RH       | 17081101    | 08/ 11/2019         | 08/11/2020              |
| 140GHZ TO 220GHZ<br>HARMONIC MIXER<br>OML,INC.        | M05HWA      | 170811-1    | 08/11/2019          | 08/11/2020              |

#### 4.1.3 Test Procedures

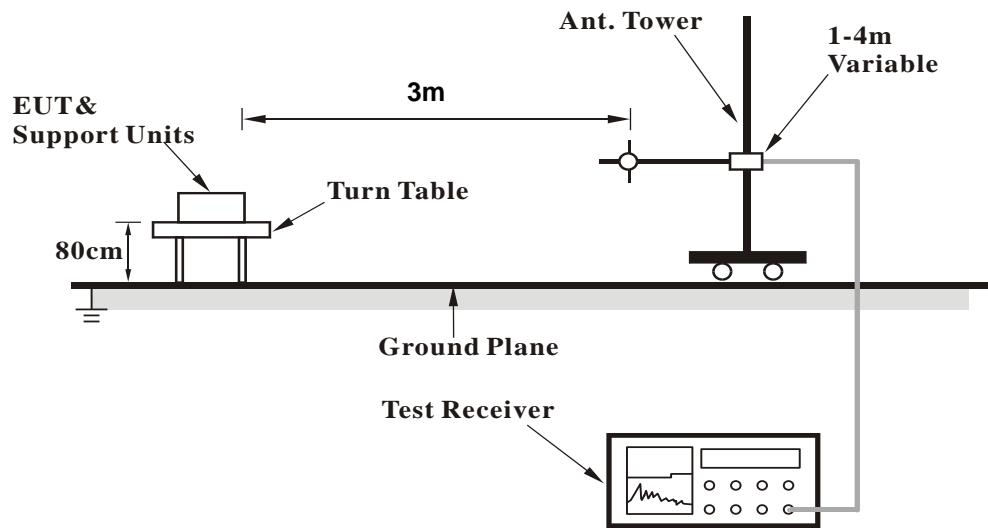
##### For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

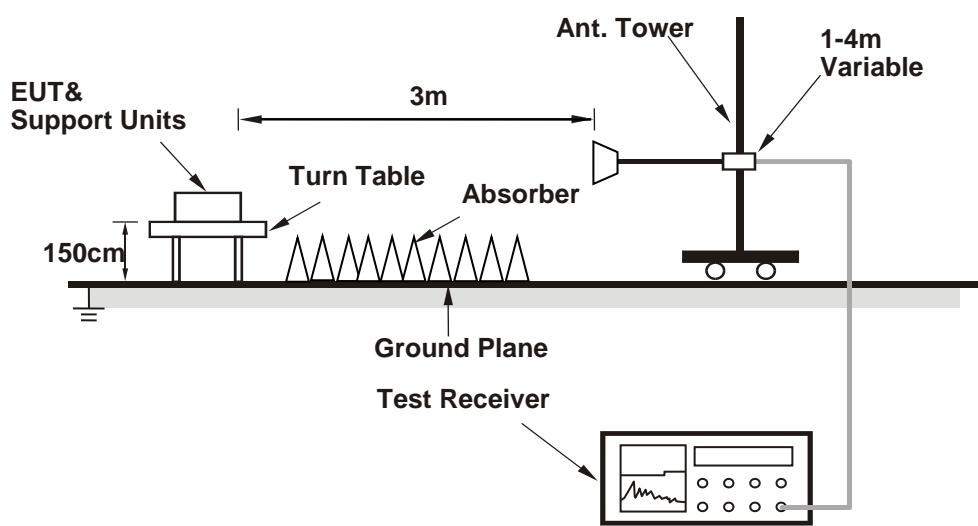
##### Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is  $\geq 1/T$  (Duty cycle < 98%) or 10Hz (Duty cycle  $\geq 98\%$ ) for Average detection (AV) at frequency above 1GHz.
4. All modes of operation were investigated and the worst-case emissions are reported.

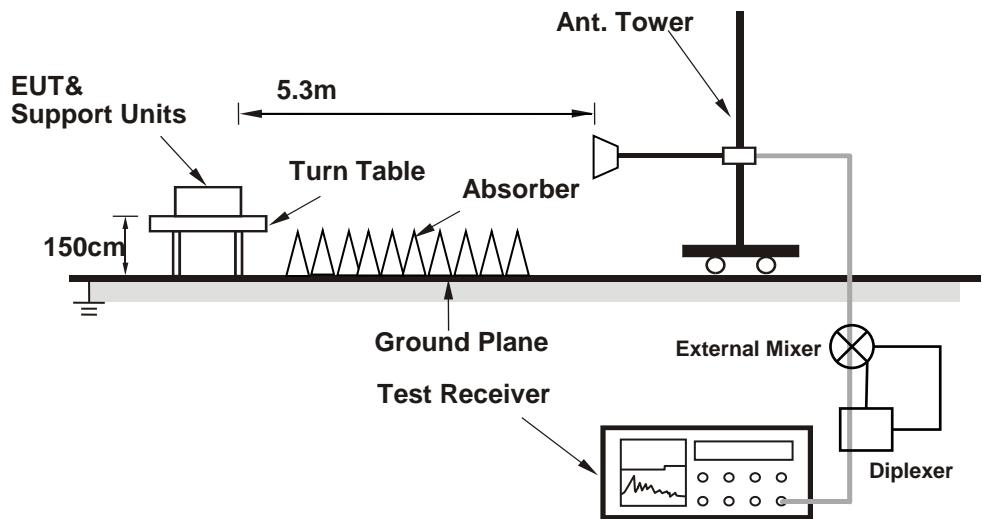
**For Radiated emission above 40GHz**


- a. Connect the test antenna covering the appropriate frequency range to a spectrum analyzer via an external mixer to the spectrum analyzer.
- b. Set spectrum analyzer RBW = 1 MHz, VBW = 3 MHz, average detector.
- c. Calculate the distance to the far field boundary and determine the maximum measurement distance.
- d. Perform an exploratory search for emissions and determine the approximate direction at which each observed emission emanates from the EUT.
- e. Exploratory measurements be made at a closer distance than the validated maximum measurement distance.
- f. Perform a final measurement; begin with the test antenna at the approximate position where the maximum level occurred during the exploratory scan.
- g. Slowly scan the test antenna around this position, slowly vary the test antenna polarization by rotating through at least 0° to 180°, and slowly vary the orientation of the test antenna to find the final position, polarization, and orientation at which the maximum level of the emission is observed.
- h. Record the measured reading with the test antenna fixed at this maximized position, polarization, and orientation. Record the measurement distance.
- i. Calculate the maximum field strength of the emission at the measurement distance and the adjusted/corrected power at the output of the test antenna.
- j. Calculate the EIRP from the measured field strength and then convert to the linear.
- k. Extrapolate the maximum measured field strength to the field strength at the distance specified by the limit, and then convert to the field strength in V/m.
- l. Calculate the power density at the distance specified by the limit from the field strength at the distance specified by the limit.
- m. Repeat the preceding sequence for every emission observed in the frequency band under investigation.

**4.1.4 Deviation from Test Standard**


No deviation.

#### 4.1.5 Test Setup


##### For Radiated emission 30MHz to 1GHz

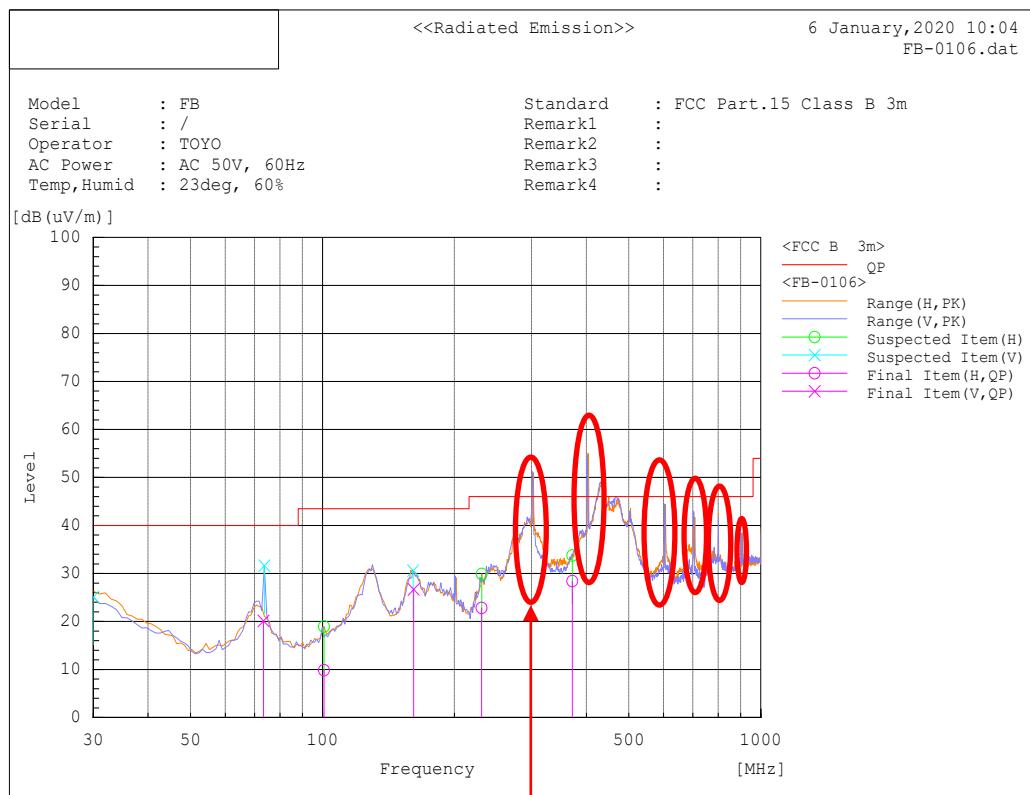


##### For Radiated emission 1GHz to 40GHz



**For Radiated emission above 40 GHz**




For the actual test configuration, please refer to the attached file (Test Setup Photo).

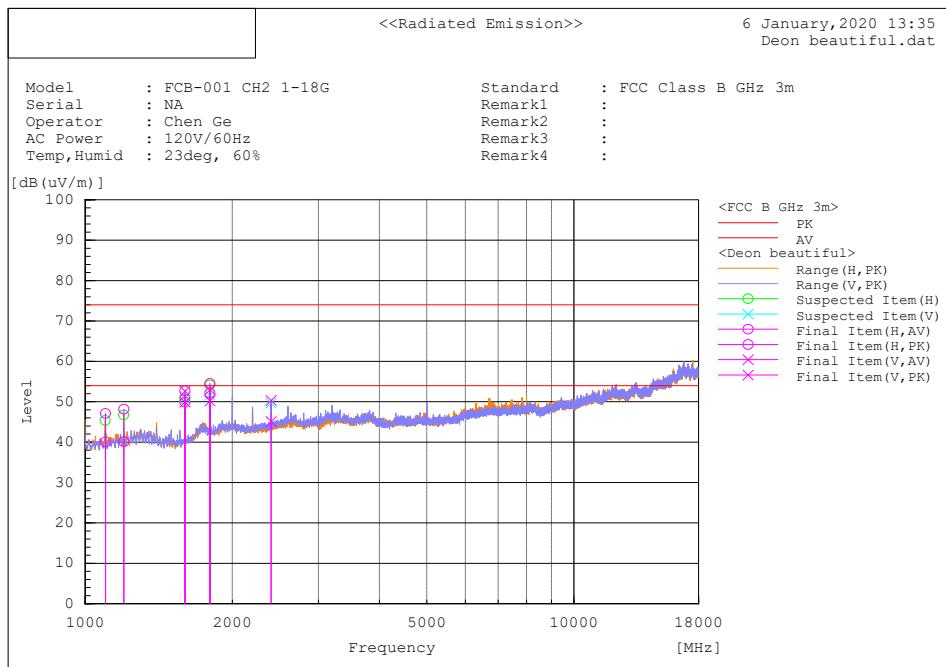
#### 4.1.6 EUT Operating Conditions

#### 4.1.7 Test Results

##### Below 1GHz Data:

|                        |              |                          |                 |
|------------------------|--------------|--------------------------|-----------------|
| <b>CHANNEL</b>         | TX Channel 1 | <b>DETECTOR FUNCTION</b> | Quasi-Peak (QP) |
| <b>FREQUENCY RANGE</b> | 30MHz ~ 1GHz |                          |                 |



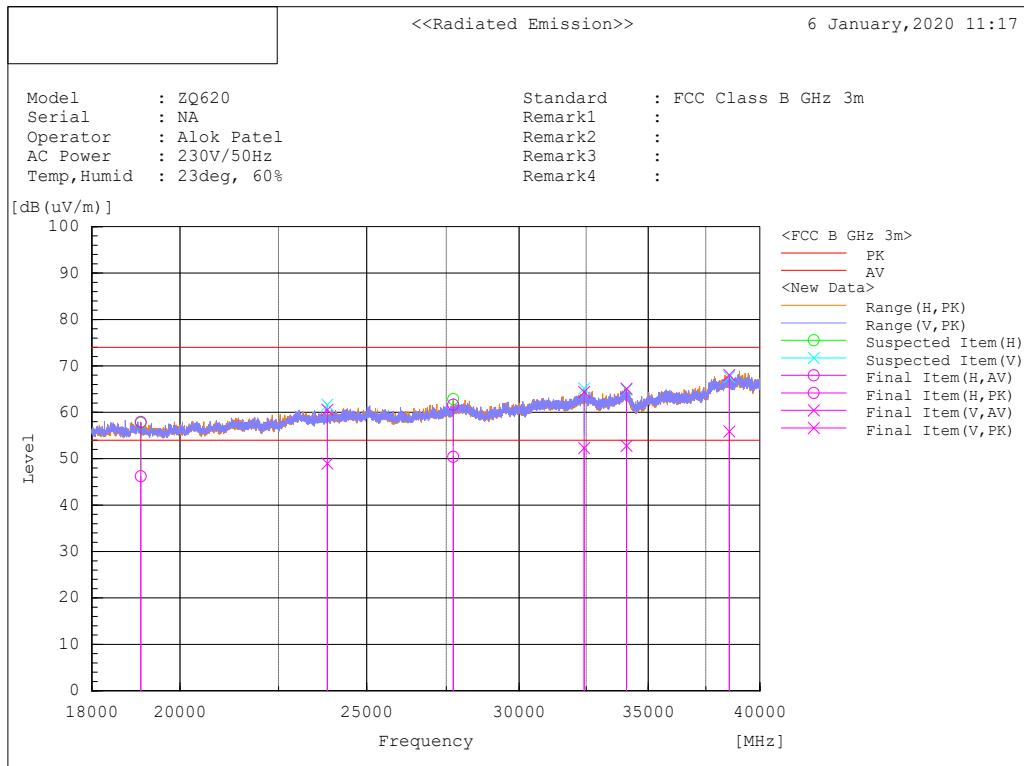

| Antenna Polarity & Test Distance: Vertical and Horizontal at 3m |                    |                     |                  |                     |                   |                |             |             |            |
|-----------------------------------------------------------------|--------------------|---------------------|------------------|---------------------|-------------------|----------------|-------------|-------------|------------|
| Frequency (MHz)                                                 | Polarization (H/V) | Reading QP [dB(uV)] | Factor [dB(1/m)] | Level QP [dB(uV/m)] | Limit\QP dB(uV/m) | Margin QP [dB] | Height (cm) | Angle (Deg) | Pass/ Fail |
| 73.342                                                          | V                  | 6.8                 | 13.3             | 20.1                | 40                | -19.9          | 252         | 177.1       | PASS       |
| 100.789                                                         | H                  | -6                  | 15.8             | 9.8                 | 43.5              | -33.7          | 252         | 231.2       | PASS       |
| 161.353                                                         | V                  | 8.9                 | 17.8             | 26.7                | 43.5              | -16.8          | 152         | 275.2       | PASS       |
| 230.711                                                         | H                  | 5.5                 | 17.3             | 22.8                | 46                | -23.2          | 143         | 291.9       | PASS       |
| 371.648                                                         | H                  | 6.9                 | 21.5             | 28.4                | 46                | -17.6          | 290         | 238.4       | PASS       |

##### REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. Emissions in red circles are coming from unintentional radiator

**Above 1GHz Data:**

|                        |              |                          |              |
|------------------------|--------------|--------------------------|--------------|
| <b>CHANNEL</b>         | TX Channel 1 | <b>DETECTOR FUNCTION</b> | Peak (PK)    |
| <b>FREQUENCY RANGE</b> | 1GHz ~ 18GHz |                          | Average (AV) |




| Antenna Polarity & Test Distance: Vertical and Horizontal at 3m |                    |                     |                     |                  |                     |                   |                  |                    |                |                |             |             |            |
|-----------------------------------------------------------------|--------------------|---------------------|---------------------|------------------|---------------------|-------------------|------------------|--------------------|----------------|----------------|-------------|-------------|------------|
| Frequency (MHz)                                                 | Polarization (H/V) | Reading AV [dB(uV)] | Reading PK [dB(uV)] | Factor [dB(1/m)] | Level AV [dB(uV/m)] | Level PK dB(uV/m) | LimitAV dB(uV/m) | LimitPK [dB(uV/m)] | Margin AV [dB] | Margin PK [dB] | Height (cm) | Angle (Deg) | Pass/ Fail |
| 1100.096                                                        | H                  | 55.2                | 62.3                | -15.2            | 40                  | 47.1              | 54               | 74                 | -14            | -26.9          | 162         | 68.8        | PASS       |
| 1199.912                                                        | H                  | 54.2                | 62.2                | -14.1            | 40.1                | 48.1              | 54               | 74                 | -13.9          | -25.9          | 208         | 291.1       | PASS       |
| 1600.015                                                        | V                  | 64.1                | 66.9                | -14.2            | 49.9                | 52.7              | 54               | 74                 | -4.1           | -21.3          | 253         | 258.7       | PASS       |
| 1599.962                                                        | H                  | 64.1                | 66.9                | -14.2            | 49.9                | 52.7              | 54               | 74                 | -4.1           | -21.3          | 177         | 229.2       | PASS       |
| 1800.002                                                        | H                  | 64                  | 66.4                | -11.9            | 52.1                | 54.5              | 54               | 74                 | -1.9           | -19.5          | 162         | 220.4       | PASS       |
| 1800.032                                                        | V                  | 62.1                | 64.9                | -11.9            | 50.2                | 53                | 54               | 74                 | -3.8           | -21            | 291         | 178.7       | PASS       |
| 2400.022                                                        | V                  | 54.9                | 60.1                | -9.8             | 45.1                | 50.3              | 54               | 74                 | -8.9           | -23.7          | 238         | 145.9       | PASS       |

**REMARKS:**

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value

|                        |               |                          |              |
|------------------------|---------------|--------------------------|--------------|
| <b>CHANNEL</b>         | TX Channel 1  | <b>DETECTOR FUNCTION</b> | Peak (PK)    |
| <b>FREQUENCY RANGE</b> | 18GHz ~ 40GHz |                          | Average (AV) |



| Antenna Polarity & Test Distance: Vertical and Horizontal at 3m |                    |                     |                     |                  |                     |                   |                  |                  |                |                |             |             |            |
|-----------------------------------------------------------------|--------------------|---------------------|---------------------|------------------|---------------------|-------------------|------------------|------------------|----------------|----------------|-------------|-------------|------------|
| Frequency (MHz)                                                 | Polarization (H/V) | Reading AV [dB(uV)] | Reading PK [dB(uV)] | Factor [dB(1/m)] | Level AV [dB(uV/m)] | Level PK dB(uV/m) | LimitAV dB(uV/m) | LimitPK dB(uV/m) | Margin AV [dB] | Margin PK [dB] | Height (cm) | Angle (Deg) | Pass/ Fail |
| 19084.63                                                        | H                  | 33.9                | 45.6                | 12.3             | 46.2                | 57.9              | 54               | 74               | -7.8           | -16.1          | 132         | 209.4       | PASS       |
| 23851.64                                                        | V                  | 35.8                | 47.4                | 13.2             | 49                  | 60.6              | 54               | 74               | -5             | -13.4          | 140         | 182.6       | PASS       |
| 27724.8                                                         | H                  | 36                  | 47.2                | 14.4             | 50.4                | 61.6              | 54               | 74               | -3.6           | -12.4          | 359         | 251.2       | PASS       |
| 32421.12                                                        | V                  | 37.6                | 49.7                | 14.7             | 52.3                | 64.4              | 54               | 74               | -1.7           | -9.6           | 306         | 73          | PASS       |
| 34107.02                                                        | V                  | 35.8                | 48.1                | 17               | 52.8                | 65.1              | 54               | 74               | -1.2           | -8.9           | 201         | 178.8       | PASS       |

**REMARKS:**

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value

|                        |                |                          |              |
|------------------------|----------------|--------------------------|--------------|
| <b>CHANNEL</b>         | All Channels   | <b>DETECTOR FUNCTION</b> | Peak (PK)    |
| <b>FREQUENCY RANGE</b> | 40GHz ~ 200GHz |                          | Average (AV) |

| Frequency (GHz) | Polarization (H/V) | E.I.R.P (dBm) | Reading (dBm) | Receiver antenna gain (dBi) | Power density (pW/cm <sup>2</sup> ) | Power density limit (pW/cm <sup>2</sup> ) |
|-----------------|--------------------|---------------|---------------|-----------------------------|-------------------------------------|-------------------------------------------|
| 114.37          | H                  | -19.59        | -69.2         | 24                          | 9.72                                | 90                                        |
| 114.37          | V                  | -19.19        | -68.8         | 24                          | 10.70                               | 90                                        |
| 203             | H                  | -20.6         | -75.2         | 24                          | 7.7                                 | 90                                        |
| 203             | V                  | -21.2         | -75.8         | 24                          | 6.71                                | 90                                        |

**Note: All emissions above 40GHz are at noise floor level.**

The measured power level is converted to EIRP using the equation:

$$\text{EIRP} = \text{Raw Value} - \text{Receiver Antenna Gain} + 20 \cdot \log(4 \cdot 3.1416 \cdot D/\lambda)$$

where:

D is the measurement distance

$\lambda$  is the wavelength

\*Measurements made at 1-meter distance.

## 4.2 Conducted Emission Measurement

### 4.2.1 Limits of Conducted Emission Measurement

| Frequency (MHz) | Conducted Limit (dBuV) |         |
|-----------------|------------------------|---------|
|                 | Quasi-peak             | Average |
| 0.15 - 0.5      | 66 - 56                | 56 - 46 |
| 0.50 - 5.0      | 56                     | 46      |
| 5.0 - 30.0      | 60                     | 50      |

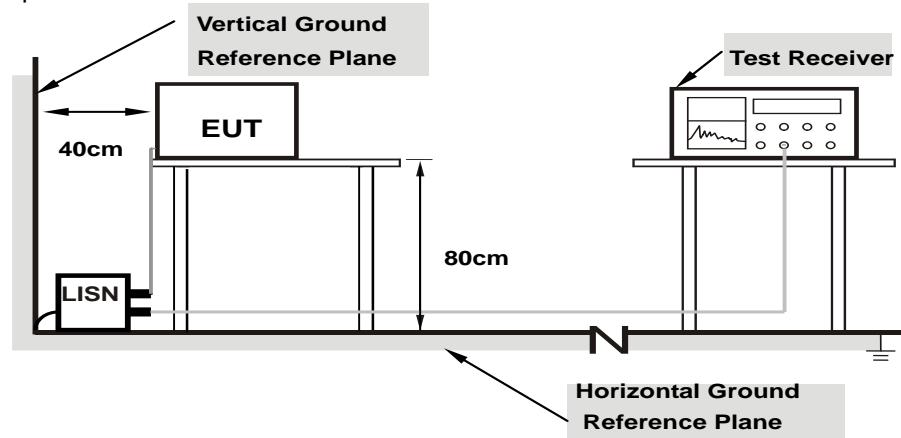
Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

### 4.2.2 Test Instruments

| Description & Manufacturer           | Model No. | Serial No. | Date Of Calibration | Due Date Of Calibration |
|--------------------------------------|-----------|------------|---------------------|-------------------------|
| EMI Test Receiver<br>ROHDE & SCHWARZ | ESIB 40   | 100179     | 08/28/2019          | 08/28/2020              |
| Transient Limiter<br>ELECTRO-METRICS | EM-7600-5 | 106        | 12/31/2019          | 12/31/2020              |
| LISN<br>EMCO                         | 3816/2NM  | 214372     | 01/14/2020          | 01/14/2021              |

### 4.2.3 Test Procedures


- The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.

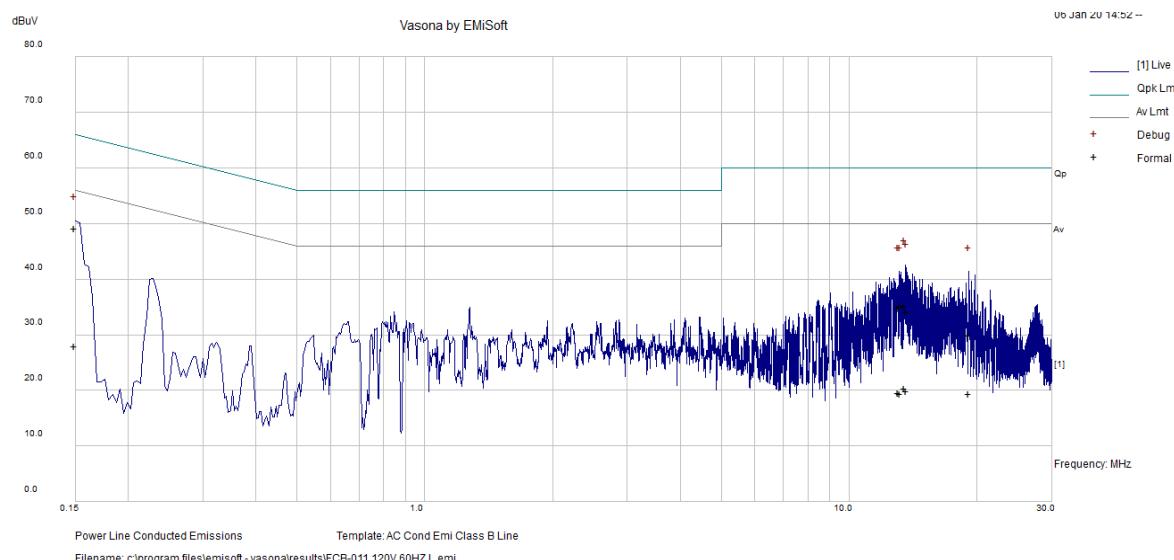
**NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

### 4.2.4 Deviation from Test Standard

No deviation.

#### 4.2.5 Test Setup

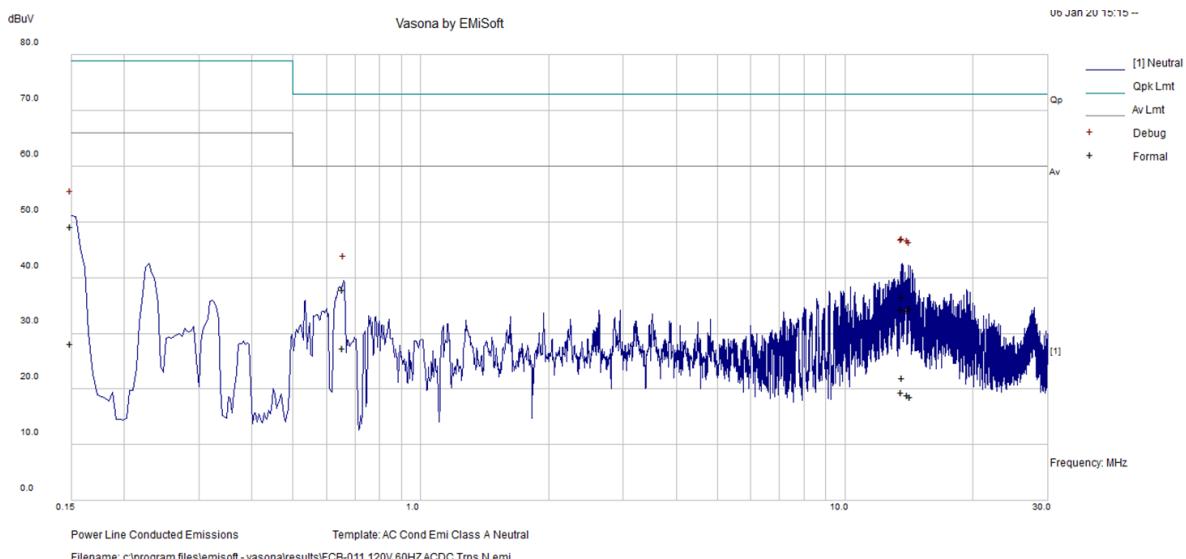



For the actual test configuration, please refer to the attached file (Test Setup Photo).

#### 4.2.6 EUT Operating Conditions

Same as 4.1.6.

#### 4.2.7 Test Results


|                           |                         |         |                                          |
|---------------------------|-------------------------|---------|------------------------------------------|
| Test specification:       | Conducted Emissions     | Result: | <input checked="" type="checkbox"/> Pass |
| Environmental Conditions: | Temp(°C): 21            |         |                                          |
|                           | Humidity (%): 42        |         |                                          |
|                           | Atmospheric(mbar): 1021 |         |                                          |
| Mains Power:              | 120Vac, 60Hz            |         |                                          |
| Tested by:                | John Plotner            |         |                                          |
| Test Date:                | 01/06/2020              |         |                                          |
| Remarks                   | Live                    |         |                                          |



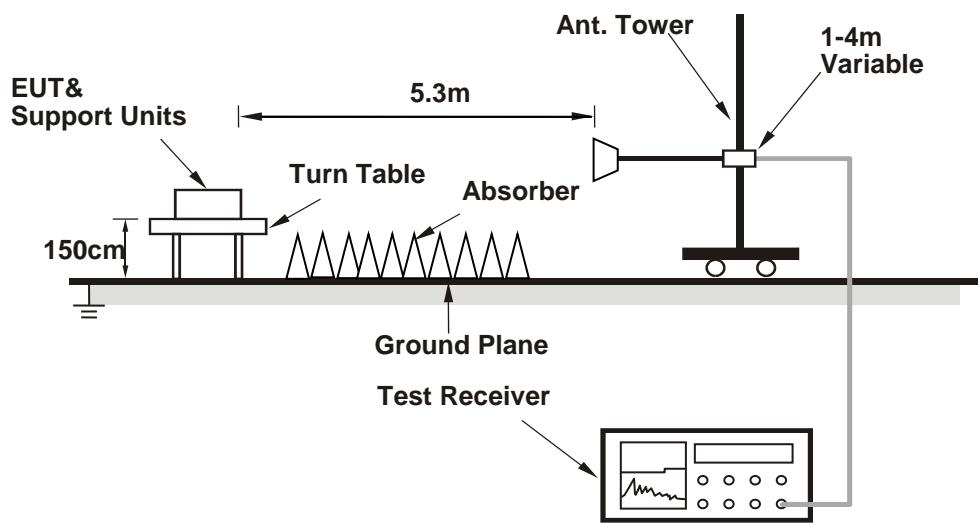
Live Plot at 120Vac, 60Hz

| Frequency (MHz) | Raw (dBuV) | Cable Loss (dB) | Factors (dB) | Level (dBuV) | Measurement Type | Line / Neutral | Limit (dBuV) | Margin (dB) | Pass /Fail |
|-----------------|------------|-----------------|--------------|--------------|------------------|----------------|--------------|-------------|------------|
| 0.15            | 41.93      | 7.11            | 0.05         | 49.09        | Quasi Peak       | Live           | 66           | -16.91      | Pass       |
| 13.56723        | 26.16      | 8.78            | 0.33         | 35.26        | Quasi Peak       | Live           | 60           | -24.74      | Pass       |
| 13.65076        | 25.08      | 8.78            | 0.33         | 34.19        | Quasi Peak       | Live           | 60           | -25.81      | Pass       |
| 19.16046        | 20.65      | 8.88            | 0.45         | 29.97        | Quasi Peak       | Live           | 60           | -30.03      | Pass       |
| 13.11054        | 25.63      | 8.77            | 0.31         | 34.71        | Quasi Peak       | Live           | 60           | -25.29      | Pass       |
| 13.20654        | 26.02      | 8.77            | 0.32         | 35.11        | Quasi Peak       | Live           | 60           | -24.89      | Pass       |
| 0.15            | 20.75      | 7.11            | 0.05         | 27.91        | Average          | Live           | 56           | -28.09      | Pass       |
| 13.56723        | 11.21      | 8.78            | 0.33         | 20.31        | Average          | Live           | 50           | -29.69      | Pass       |
| 13.65076        | 10.82      | 8.78            | 0.33         | 19.92        | Average          | Live           | 50           | -30.08      | Pass       |
| 19.16046        | 10.12      | 8.88            | 0.45         | 19.44        | Average          | Live           | 50           | -30.56      | Pass       |
| 13.11054        | 10.44      | 8.77            | 0.31         | 19.53        | Average          | Live           | 50           | -30.47      | Pass       |
| 13.20654        | 10.3       | 8.77            | 0.32         | 19.39        | Average          | Live           | 50           | -30.61      | Pass       |

|                           |              |                     |      |                   |
|---------------------------|--------------|---------------------|------|-------------------|
| Test specification:       |              | Conducted Emissions |      |                   |
| Environmental Conditions: |              | Temp(°C):           | 21   | Result:<br>☒ Pass |
|                           |              | Humidity (%):       | 42   |                   |
|                           |              | Atmospheric(mbar):  | 1021 |                   |
| Mains Power:              | 120Vac, 60Hz |                     |      |                   |
| Tested by:                | John Plotner |                     |      |                   |
| Test Date:                | 01/06/2020   |                     |      |                   |
| Remarks                   | Neutral      |                     |      |                   |



### Neutral Plot at 120Vac, 60Hz


| Frequency (MHz) | Raw (dBuV) | Cable Loss (dB) | Factors (dB) | Level (dBuV) | Measurement Type | Line / Neutral | Limit (dBuV) | Margin (dB) | Pass /Fail |
|-----------------|------------|-----------------|--------------|--------------|------------------|----------------|--------------|-------------|------------|
| 0.15            | 41.97      | 7.11            | 0.04         | 49.13        | Quasi Peak       | Neutral        | 66           | -16.87      | Pass       |
| 0.655142        | 30.29      | 7.47            | 0.04         | 37.79        | Quasi Peak       | Neutral        | 56           | -18.21      | Pass       |
| 13.66257        | 27.41      | 8.78            | 0.33         | 36.52        | Quasi Peak       | Neutral        | 60           | -23.48      | Pass       |
| 13.58604        | 25.23      | 8.78            | 0.33         | 34.34        | Quasi Peak       | Neutral        | 60           | -25.66      | Pass       |
| 14.08417        | 24.92      | 8.79            | 0.34         | 34.04        | Quasi Peak       | Neutral        | 60           | -25.96      | Pass       |
| 14.25929        | 25.23      | 8.8             | 0.34         | 34.37        | Quasi Peak       | Neutral        | 60           | -25.63      | Pass       |
| 0.15            | 20.97      | 7.11            | 0.04         | 28.12        | Average          | Neutral        | 56           | -27.88      | Pass       |
| 0.655142        | 19.87      | 7.47            | 0.04         | 27.37        | Average          | Neutral        | 46           | -18.63      | Pass       |
| 13.66257        | 12.91      | 8.78            | 0.33         | 22.02        | Average          | Neutral        | 50           | -27.98      | Pass       |
| 13.58604        | 10.27      | 8.78            | 0.33         | 19.38        | Average          | Neutral        | 50           | -30.62      | Pass       |
| 14.08417        | 9.83       | 8.79            | 0.34         | 18.96        | Average          | Neutral        | 50           | -31.04      | Pass       |
| 14.25929        | 9.38       | 8.8             | 0.34         | 18.52        | Average          | Neutral        | 50           | -31.48      | Pass       |

### 4.3 6dB Bandwidth Measurement

#### 4.3.1 Limits of 6dB Bandwidth Measurement

None: For reporting purposes only.

#### 4.3.2 Test Setup



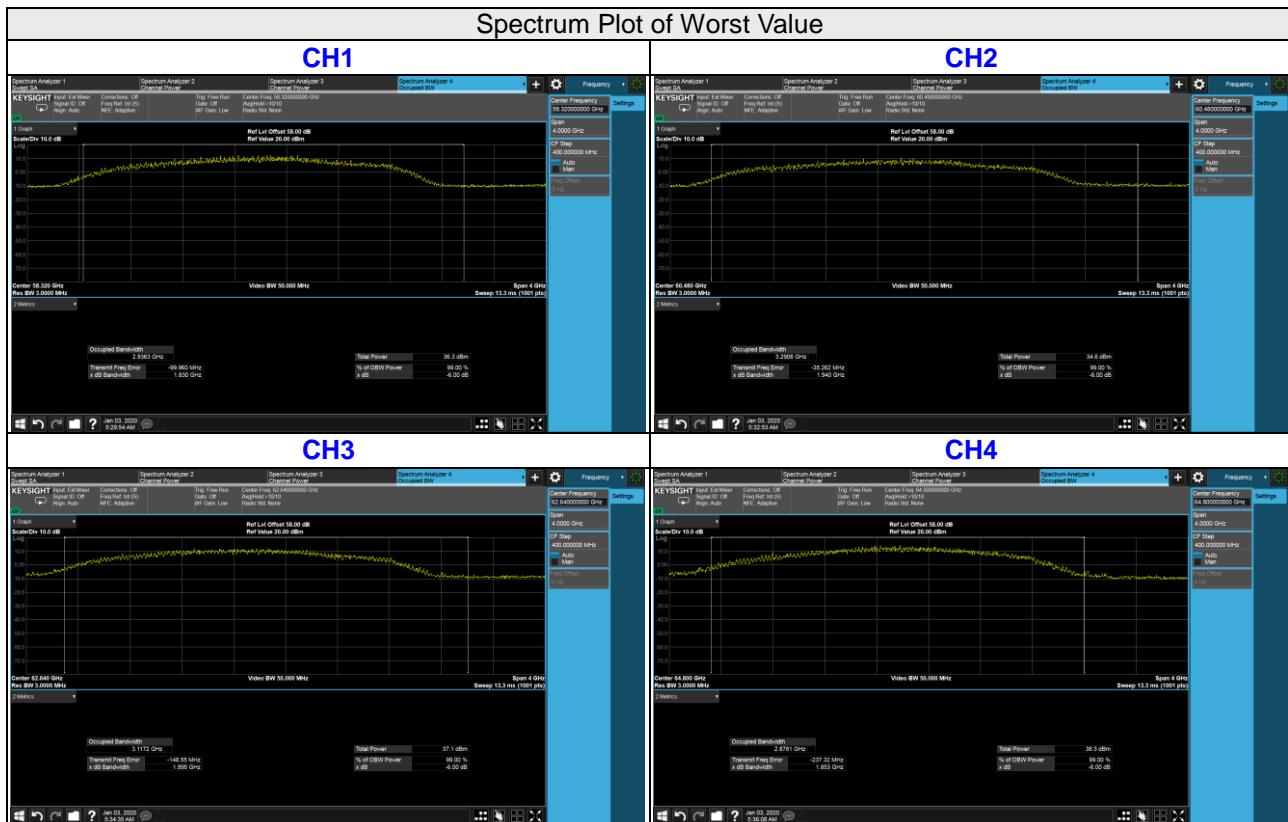
#### 4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

#### 4.3.4 Test Procedure

The spectrum analyzer and external mixer are set up to measure the radiated output of the transmitter.

#### 4.3.5 Deviation from Test Standard


No deviation.

#### 4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

#### 4.3.7 Test Result

| Channel | Frequency (GHz) | 6dB Bandwidth (GHz) |
|---------|-----------------|---------------------|
| 1       | 58.32           | 1.83                |
| 2       | 60.48           | 1.94                |
| 3       | 62.64           | 1.99                |
| 4       | 64.80           | 1.85                |



#### 4.4 Output Power Measurement

##### 4.4.1 Limits of Output Power Measurement

15.255 (c) & (e)

| Output Power (EIRP) |                                                                                                |                                                                                                                      |                 |                 |
|---------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|
| Applicable          | Type                                                                                           | Peak Power                                                                                                           | Average Power   |                 |
| V                   | Within the 57-71 GHz band (Other than fixed field disturbance sensors and short-range devices) | Other than fixed point to point transmitters located outdoors                                                        | 43dBm           | 40dBm           |
|                     | Fixed field disturbance sensors (61-61.5GHz)                                                   | Fixed point-to-point transmitters located outdoors                                                                   | 85dBm (*Note 1) | 82dBm (*Note 2) |
|                     | Fixed field disturbance sensors                                                                | Occupy 500 MHz or less of bandwidth                                                                                  | 43dBm (*Note 3) | 40dBm (*Note 3) |
|                     | short-range devices for interactive motion sensing                                             | Other than occupy 500 MHz or less of bandwidth and that are contained wholly within the frequency band 61.0-61.5 GHz | 10dBm           | -               |

Note:

1. The average power of any emission shall not exceed 82 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi.
2. The peak power of any emission shall not exceed 85 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi.
3. In addition, the average power of any emission outside of the 61.0-61.5 GHz band, measured during the transmit interval, but still within the 57-71 GHz band, shall not exceed 10 dBm, and the peak power of any emission shall not exceed 13 dBm.

#### Peak Output Power (Conducted Power)

| Applicable | Type                                                 | 6dB Bandwidth    | Maximum Conducted Power |
|------------|------------------------------------------------------|------------------|-------------------------|
|            | Fixed field disturbance sensors (Exclude 61-61.5GHz) | -                | $\leq 0.1\text{mW}$     |
| V          | Other                                                | Other            | 500mW                   |
| V          |                                                      | Less than 100MHz | 500mW x (B/100)         |

Note:

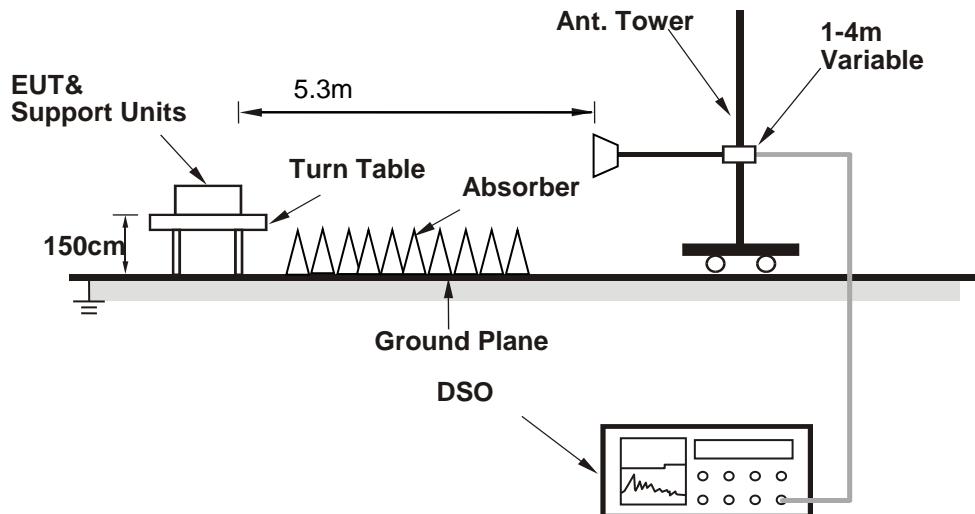
1. B is 6dB Bandwidth (measured with a 100kHz resolution bandwidth)
2. Peak transmitter output power shall be measured with an RF detector that has a detection bandwidth that encompasses the 57-64 GHz band and has a video bandwidth of at least 10 MHz, or using an equivalent measurement method.
3. For purposes of demonstrating complained with this paragraph (e), corrections to the transmitter output power may be made due to the antenna and circuit loss.

## Far field boundary calculations

The far-field boundary is given as:

$$R = (2 * L^2) / \lambda$$

Where,


$L$  = Largest Antenna Dimension, including the reflector, in meters

$\lambda$  = Wavelength in meters

| Channel | Frequency (GHz) | L (m) | $\lambda$ (m) | R (m) |
|---------|-----------------|-------|---------------|-------|
| 1       | 58.32           | 0.11  | 0.0051        | 4.75  |
| 2       | 60.48           | 0.11  | 0.0050        | 4.84  |
| 3       | 62.64           | 0.11  | 0.0048        | 5.04  |
| 4       | 64.80           | 0.11  | 0.0046        | 5.26  |

Radiated power measurements are performed at 5.3 meters distance.

### 4.4.2 Test Setup



### 4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

#### 4.4.4 Test Procedures

- a. Place the EUT in a continuous transmission mode.
- b. For radiated emission measurements, attach a test receive antenna for the fundamental frequency band to the RF input of an RF detector or a downconverter with an RF detector at the output.
- c. Connect the video output of the detector to the 50 ohm input of the DSO.
- d. Place the test receive antenna in the main beam of the EUT at a distance which will provide a signal within the operating range of the RF detector.
- e. Set the sampling rate of the DSO to the required value. Adjust the memory depth, the triggering and the sweep speed to obtain a display which is representative of the signal considering the type of modulation.
- f. For radiated emission measurements, calculate the distance to the far field boundary of the fundamental emission using following equation

$$d_{\text{farfield}} = \frac{2D^2}{\lambda}$$

where:

$D$  = largest dimension of the transmit antenna

$\lambda$  = wavelength

- g. Perform radiated emission measurements to keep maximize the received signal from the EUT in the far field.
- h. Record the average and peak from the DSO and the measurement distance.
- i. Disconnect the EUT from the RF input port of the instrumentation system.
- j. Connect a mm-wave source to the RF input port of the instrumentation system via a waveguide variable attenuator. The mm-wave source is unmodulated.
- k. Using substitution measurement.
- l. Measure and note the power.
- m. For conducted power measurements, calculate the conducted power using following equation

$$P_{\text{cond}} = \text{EIRP} \cdot G_{\text{dBi}}$$

#### 4.4.5 Deviation from Test Standard

No deviation.

#### 4.4.6 EUT Operating Conditions

The EUT is 5m away from the measurement antenna.

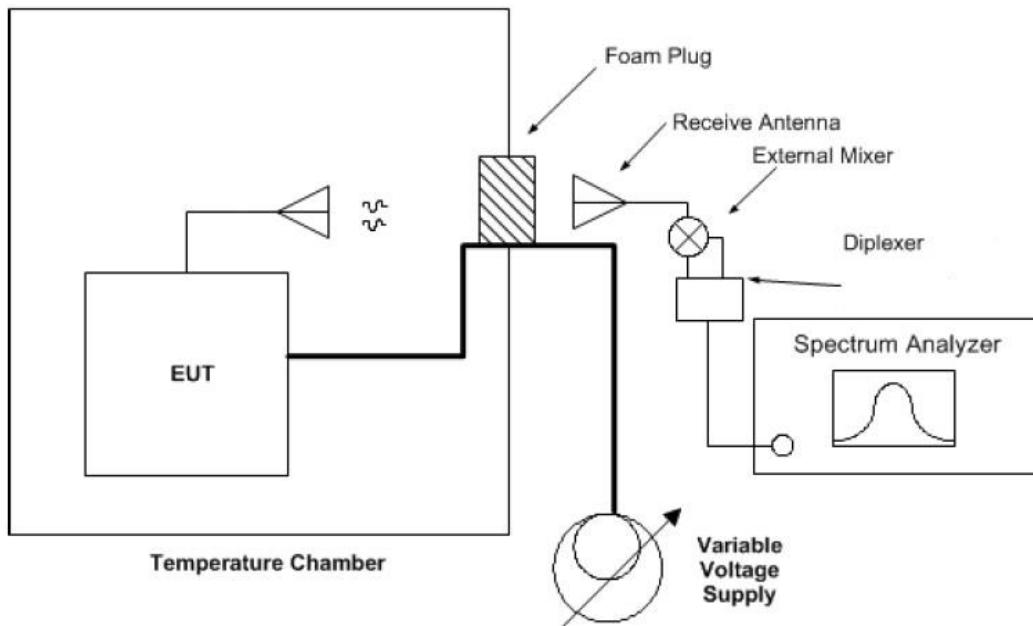
#### 4.4.7 Test Results

##### E.I.R.P

| Channel | Frequency (GHz) | EIRP Peak (dBm) | EIRP Avg Raw (dBm) | Duty Cycle | Duty Cycle Factor | EIRP Avg Corrected (dBm) | EIRP Limit Peak (dBm) | EIRP Limit Avg (dBm) | Pass /Fail |
|---------|-----------------|-----------------|--------------------|------------|-------------------|--------------------------|-----------------------|----------------------|------------|
| 1       | 58.32           | 42.59           | 29.32              | 50%        | 3.01              | 32.33                    | 43                    | 40                   | Pass       |
| 2       | 60.48           | 42.98           | 29.50              | 50%        | 3.01              | 32.51                    | 43                    | 40                   | Pass       |
| 3       | 62.64           | 42.21           | 28.86              | 50%        | 3.01              | 31.87                    | 43                    | 40                   | Pass       |
| 4       | 64.80           | 27.50           | 15.10              | 50%        | 3.01              | 18.11                    | 43                    | 40                   | Pass       |

##### Conducted Power

| Channel | Frequency (GHz) | EIRP Peak (dBm) | Antenna Gain (dBi) | Conducted Power (dBm) | Conducted Power Peak (dBm) | Pass /Fail |
|---------|-----------------|-----------------|--------------------|-----------------------|----------------------------|------------|
| 1       | 58.32           | 42.59           | 28                 | 14.59                 | 27                         | Pass       |
| 2       | 60.48           | 42.98           | 28                 | 14.98                 | 27                         | Pass       |
| 3       | 62.64           | 42.21           | 28                 | 14.21                 | 27                         | Pass       |
| 4       | 64.80           | 27.50           | 28                 | -0.50                 | 27                         | Pass       |


Note: 500mW = 27dBm.

## 4.5 Frequency Stability Measurement

### 4.5.1 Limits of Conducted Out of Band Emission Measurement

15.255(f) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

### 4.5.2 Test Setup



### 4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

### 4.5.4 Test Procedure

- Arrange EUT and test equipment as above setup configuration.
- With the EUT at ambient temperature and voltage source set to the EUT nominal operating voltage (100%), record the spectrum mask of the EUT emission on the spectrum analyzer.
- Vary EUT power supply between 85% and 115% of nominal, and record the frequency excursion of the EUT emission mask.
- Set the power supply to 100% nominal setting, and raise EUT operating temperature to 50 °C. Record the frequency excursion of the EUT emission mask.
- Repeat step d) at each 10 °C increment down to -20 °C

### 4.5.5 Deviation from Test Standard

No deviation.

### 4.5.6 EUT Operating Condition

Same as Item 4.3.6

#### 4.5.7 Test Results

| Frequency Stability Versus Temp. |                       |                             |           |
|----------------------------------|-----------------------|-----------------------------|-----------|
| Operating Frequency: 60480 MHz   |                       |                             |           |
| TEMP.<br>(°C)                    | Power Supply<br>(Vdc) | Measured Frequency<br>(MHz) | Pass/Fail |
| -40                              | 50                    | 60480.12                    | Pass      |
| -30                              | 50                    | 60480.10                    | Pass      |
| -20                              | 50                    | 60480.09                    | Pass      |
| -10                              | 50                    | 60480.00                    | Pass      |
| 0                                | 50                    | 60480.00                    | Pass      |
| 10                               | 50                    | 60480.00                    | Pass      |
| 20                               | 50                    | 60480.00                    | Pass      |
| 30                               | 50                    | 60480.02                    | Pass      |
| 40                               | 50                    | 60480.04                    | Pass      |
| 50                               | 50                    | 60480.02                    | Pass      |
| 55                               | 50                    | 60480.02                    | Pass      |

| Frequency Stability Versus Voltage |                    |                         |           |
|------------------------------------|--------------------|-------------------------|-----------|
| Operating Frequency: 60480 MHz     |                    |                         |           |
| TEMP.<br>(°C)                      | Power Supply (Vdc) | Measured Frequency(MHz) | Pass/Fail |
| 25                                 | 44                 | 60480.00                | Pass      |
|                                    | 48                 | 60480.00                | Pass      |
|                                    | 57                 | 60480.00                | Pass      |

## 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

## Appendix – Information of the Testing Laboratories

Bureau Veritas is a global leader in testing, inspection and certification (TIC) services. We help businesses improve safety, sustainability and productivity; and our clients include the majority of leading brands in retail, manufacturing and other industries. With a presence in every major country around the world, our quality assurance and compliance solutions are vital in helping our customers enhance product quality and concept-to-consumer journeys. We also assist with increasing speed to market, profitability and brand equity throughout the supply chain. Bureau Veritas is a leading wireless/IoT testing, inspection, audit and certification provider, with a global network of test laboratories to support the IoT industry in areas of connectivity, security, interoperability as well as quality, health & safety, and environmental/chemical requirements.

If you have any comments, please feel free to contact us at the following:

**Milpitas EMC/RF/Safety/Telecom Lab**

775 Montague Expressway, Milpitas, CA 95035  
Tel: +1 408 526 1188

**Sunnyvale OTA/Bluetooth Lab**

1293 Anvilwood Avenue, Sunnyvale, CA  
94089  
Tel: +1 669 600 5293

**Littleton EMC/RF/Safety/Environmental Lab**

1 Distribution Center Cir #1, Littleton, MA 01460  
Tel: +1 978 486 8880

**Irvine OTA/PTCRB/Bluetooth/V2X Lab**

15 Musick, Irvine, CA 92618  
Tel: +1 949 716 6512

**Email:** [sales.eaw@us.bureauveritas.com](mailto:sales.eaw@us.bureauveritas.com)

**Web Site:** [www.cpsusa-bureauveritas.com](http://www.cpsusa-bureauveritas.com)

The address and road map of all our labs can be found in our web site also.

--- END ---