

Product Name: Smart phone	Report No: FCC022022-06440RF13
Product Model: TickTock-S, Golden Eye	Security Classification: Open
Version: V1.0	Total Page: 37

TIRT Testing Report

Prepared By:	Checked By:	Approved By:	chnology Se
Stone Tang	Randy Lv	Daniel Chen	Kee TRT E
Stone Tang	Randy LV	Daniel Chen	Shenzhen S

FCC Radio Test Report

FCC ID: 2AK6CTICKTOCK-S

This report concerns: Original Grant

Equipment : Smart phone

Brand Name Unihertz, iHunt, 8849

Test Model TickTock-S Series Model : Golden Eye

Applicant Shanghai Unihertz E-Commerce Co., Ltd

Address Room 308, Building C, 508 Chundong Rd, Minhang district Shanghai,

China 201108

Manufacturer : OBLUE Communication Technology Co.,Ltd.

Address Room 702, Hepingdayou industrial and trade industrial park, No. 41,

Yonghe Road, Heping Community, Fuhai Street, Baoan District,

Shenzhen City, China

2022.12.19 Date of Receipt:

Date of Test 2022.12.19 ~ 2023.01.31

Issued Date : 2023.02.06

Report Version: V1.0

Test Sample : Engineering Sample No.: 20221219021870

Standard(s) : 47 CFR FCC Part 2

47 CFR FCC Part 22 47 CFR FCC Part 24 47 CFR FCC Part 27 ANSI C63.26-2015

ANSI/TIA/EIA-603-E-2016

FCC KDB 971168 D01 Power Meas License Digital Systems v03r01

- The test result referred exclusively to the presented test model /sample.
- Without written approval of TIRT Inc. the test report shall not reproduced except in full.

Lab: Beijing TIRT Technology Service Co.,Ltd Shenzhen

Add: 101, 3 # Factory Building, Gongjin Electronics, Shatin Community, Kengzi Street,

Pingshan District, Shenzhen City, China

TEL: +86-0755-27087573

Table of Contents	Page
REPORT ISSUED HISTORY	5
1 . SUMMARY OF TEST RESULTS	6
1.1 TEST FACILITY	7
1.2 MEASUREMENT UNCERTAINTY	7
1.3 TEST ENVIRONMENT CONDITIONS	7
2 . GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF SUPPORT UNITS	8
3 . TEST RESULT	9
3.1 OUTPUT POWER MEASUREMENT	9
3.1.1 LIMIT 3.1.2 TEST PROCEDURE	9 9
3.1.3 TEST SETUP LAYOUT	9
3.1.4 TEST DEVIATION	9
3.1.5 TEST RESULTS	9
3.2 RADIATED SPURIOUS EMISSIONS MEASUREMENT 3.2.1 LIMIT	10 10
3.2.2 TEST PROCEDURES	10
3.2.3 TEST SETUP LAYOUT	11
3.2.4 TEST RESULTS (9KHZ TO 30MHZ) 3.2.5 TEST RESULTS (30MHZ TO 1000MHZ)	12 12
3.2.6 TEST RESULTS (ABOVE 1000MHZ)	12
3.3 CONDUCTED SPURIOUS EMISSIONS	13
3.4 OCCUPIED BANDWIDTH	14
3.4.1 LIMIT 3.4.2 TEST PROCEDURES USED	14 14
3.4.3 TEST SETTINGS	14
3.4.4 TEST SETUP LAYOUT	14
3.4.5 TEST RESULTS 3.5 BAND EDGE MEASUREMENTS	14
3.5 BAND EDGE MEASUREMENTS 3.5.1 TEST PROCEDURES USED	15 15
3.5.2 TEST SETTINGS	15
3.5.3 TEST SETUP LAYOUT 3.5.4 TEST RESULTS	15 15
3.6 PEAK TO AVERAGE RATIO	16
3.6.1 TEST PROCEDURES USED	16
3.6.2 TEST SETTINGS	16
3.6.3 TEST SETUP LAYOUT 3.6.4 TEST RESULTS	16 16
O.O. TEOT NEODETO	10

Table of Contents	Page
3.7 FREQUENCY STABILITY 3.7.1 TIME PERIOD AND PROCEDURE: 3.7.2 TEST PROCEDURES USED 3.7.3 TEST SETUP LAYOUT 3.7.4 TEST RESULTS	17 17 17 17 17
4. LIST OF MEASUREMENT EQUIPMENTS	18
5. EUT TEST PHOTO	19
5. EUT PHOTO	20
APPENDIX B - RADIATED SPURIOUS EMISSIONS (9KHZ TO 30MHZ)	23
APPENDIX C - RADIATED SPURIOUS EMISSIONS (30MHZ TO 1GHZ)	24
APPENDIX D - RADIATED SPURIOUS EMISSIONS (ABOVE 1GHZ)	31

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
FCC022022-06440RF13	V1.0		2023.02.06	Valid

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part 2 & Part 22 & Part 24 & Part 27					
Standard(s) Section	Standard(s) Section Test Item				
2.1046 22.913(a)(5) 24.232(c) 27.50(c) 27.50(d) 27.50(h) 27.50(j)	Output Power & Equivalent Isotropic Radiated Power & Equivalent Radiated Power	PASS			
2.1049	Occupied Bandwidth	PASS			
2.1051 22.917(a) 24.238(a) 27.53	Conducted Spurious Emissions	PASS			
2.1053 22.917(a) 24.238(a) 27.53	Radiated Spurious Emissions	PASS			
2.1051 22.917(a) 24.238(a) 27.53(h) 27.53(g) 27.53(m)	Band Edge Measurements	PASS			
22.913(d) 24.232(d) 27.50(d) 27.50(j)	Peak To Average Ratio	PASS			
2.1055 22.355 24.235 27.54	Frequency Stability	PASS			

Note:

^{(1) &}quot;N/A" denotes test is not applicable in this test report.

1.1 TEST FACILITY

Company:	Beijing TIRT Technology Service Co.,Ltd Shenzhen
Address:	101, 3 # Factory Building, Gongjin Electronics, Shatin Community, Kengzi Street, Pingshan District, Shenzhen City, China
CNAS Registration Number:	CNAS L14158
A2LA Registration Number:	6049.01
Telephone:	+86-0755-27087573

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

The TIRT measurement uncertainty as below table:

Uncertainty	
Parameter	Uncertainty
Occupied Channel Bandwidth	±142.12 KHz
RF power conducted	±0.74 dB
RF power radiated	±3.25dB
Spurious emissions, conducted	±1.78dB
Spurious emissions, radiated (30MHz~1GHz)	±4.6dB
Spurious emissions, radiated (1GHz ~ 18GHz)	±4.9dB
Conduction Emissions(150kHz~30MHz)	±3.1 dB
Humidity	±4.6%
Temprature	±0.7°C
Time	±1.25%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
Output Power & ERP & EIRP	24.3°C	49%	DC 3.7V	Stone Tang
Radiated Spurious Emissions (9 kHz to 30 MHz)	24.5°C	52%	AC 120V/60Hz	Stone Tang
Radiated Spurious Emissions (30 MHz to 1000 MHz)	24.5°C	52%	AC 120V/60Hz	Stone Tang
Radiated Spurious Emissions (Above 1000 MHz)	24.5°C	52%	AC 120V/60Hz	Stone Tang
Conducted Spurious Emissions	24.3°C	49%	DC 3.7V	Stone Tang
Occupied Bandwidth	24.3°C	49%	DC 3.7V	Stone Tang
Band Edge Measurements	24.3°C	49%	DC 3.7V	Stone Tang
Peak To Average Ratio	24.3°C	49%	DC 3.7V	Stone Tang
Frequency Stability	24.3°C	49%	DC 3.7V	Stone Tang

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart phone
Brand Name	Unihertz, iHunt, 8849
Test Model	TickTock-S
Series Model	Golden Eye
Model Difference(s)	The back of the TickTock-S is a 1.3-inch diameter circular screen with a resolution of 360*360. The back of the Golden Eye is a 500-lumen 1.3-inch diameter circular LED light (camping light).
Power Source	DC 3.7V from battery or DC5V from adapter
Frequency Range	5G NR N2: 1850 ~ 1910MHz (TX); 1930 ~ 1900MHz (RX) 5G NR N5: 824 ~ 849MHz (TX); 869 ~ 894MHz (RX) 5G NR N7: 2500 ~ 2570MHz (TX); 2620 ~ 2690MHz (RX) 5G NR N25: 1850 ~ 1915MHz (TX); 1930 ~ 1995MHz (RX) 5G NR N38: 2570 ~ 2620MHz (TX); 2570 ~ 2620MHz (RX) 5G NR N41: 2500 ~ 2690MHz (TX); 2500 ~ 2690MHz (RX) 5G NR N66: 1710 ~ 1780MHz (TX); 2110 ~ 2180MHz (RX) 5G NR N77: 3700 ~ 3980MHz (TX); 3700 ~ 3980MHz (RX)
Bandwidth	5G NR N2, 5G NR N5: 5MHz / 15MHz / 20MHz 5G NR N7: 5MHz / 25MHz / 50MHz 5G NR N25: 5MHz / 15MHz 5G NR N38: 10MHz / 15MHz / 20MHz 5G NR N41: 10MHz / 60MHz / 100MHz 5G NR N66: 5MHz / 20MHz 5G NR N77: 10MHz / 50MHz / 100MHz
NR Mode	SA: N2/N5/N7/N25/N38/N41/N66/N77 NSA: N5/N7/N41
Type of Modulation	CP-OFDM: QPSK/16QAM/64QAM/256QAM DFT-s-OFDM: PI/2 BPSK/ QPSK/ 16QAM/ 64QAM/256QAM

2.2 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Support Equipment					
No. Equipment Manufacturer Model Name Rer						
1	SIM Card	/	Anli 5G Card	/		
2	Adapter	Shenzhen Huajin Electronics Co.,Ltd	HJ-PD33W-US	/		

3. TEST RESULT

3.1 OUTPUT POWER MEASUREMENT

3.1.1 LIMIT

Mobile / Portable station are limited to 1 watts e.i.r.p. (Part 27.50)

Mobile / Portable station are limited to 2 watts e.i.r.p. (Part 27.50)

Mobile / Portable station are limited to 3 watts e.r.p (Part 27.50)

3.1.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 5.

EIRP:

EIRP = Output Power + Antenan gain

ERP:

ERP = EIRP-2.15

Output Power:

The EUT was set up for the maximum power with 5G NR link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

3.1.3 TEST SETUP LAYOUT

Output Power Measurement

3.1.4 TEST DEVIATION

No deviation.

3.1.5 TEST RESULTS

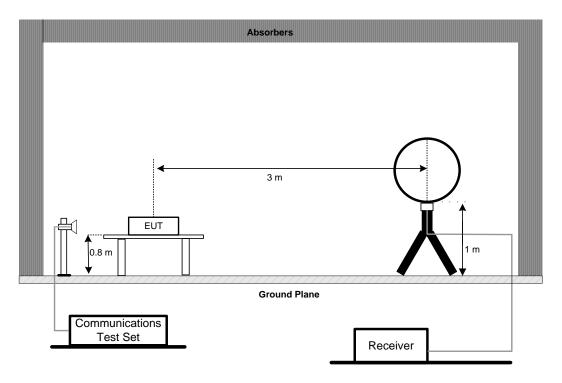
3.2 RADIATED SPURIOUS EMISSIONS MEASUREMENT

3.2.1 **LIMIT**

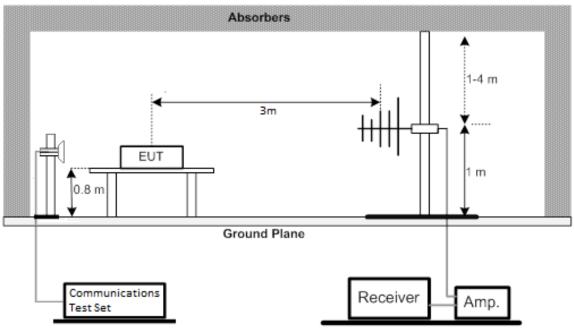
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit equal to -13dBm.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $55 + 10 \log(P)$ dB. The emission limit equal to -25dBm.

3.2.2 TEST PROCEDURES

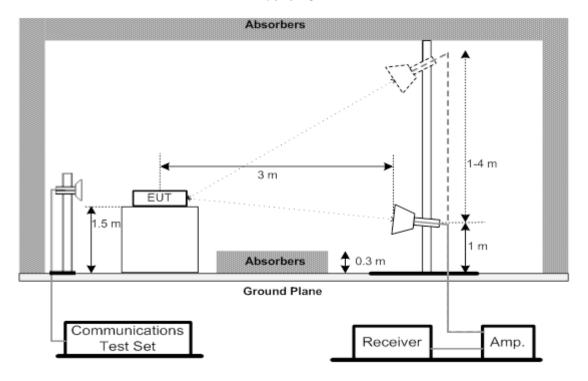

The testing follows FCC KDB 971168 v03r01 Section 6.2.

- 1. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- 2. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- 3. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- 4. ERP can be calculated form EIRP by subtracting the gain of dipole, ERP = EIPR 2.15dBi.
- 5. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.



3.2.3 TEST SETUP LAYOUT

Below 30MHz



30MHz to 1GHz

Above 1GHz

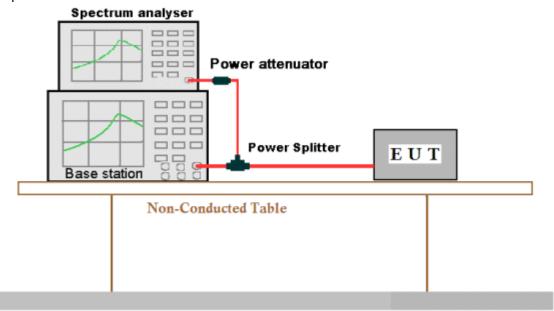
3.2.4 TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the APPENDIX B.

3.2.5 TEST RESULTS (30MHZ TO 1000MHZ)

Please refer to the APPENDIX C.

3.2.6 TEST RESULTS (ABOVE 1000MHZ)


Please refer to the APPENDIX D.

Note: We tested all modes and only the worst case was recorded.

3.3 CONDUCTED SPURIOUS EMISSIONS

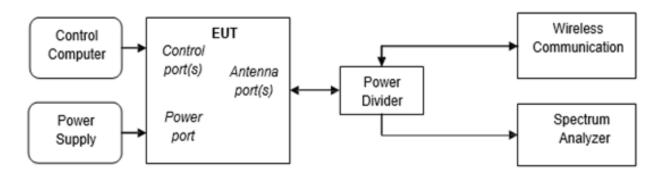
The transmitter output was connected to a calibrated coaxial cable, attenuator and power meter, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The power output at the transmitter antenna port was determined by adding the value of the cable insertion loss to the power reading. The tests were performed at three frequencies (low channel, middle channel and high channel) and on the highest power levels, which can be setup on the transmitters.

Ground Reference Plane

3.4 OCCUPIED BANDWIDTH

3.4.1 **LIMIT**

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth.


3.4.2 TEST PROCEDURES USED

KDB 971168 v02r02-Section 4.2

3.4.3 TEST SETTINGS

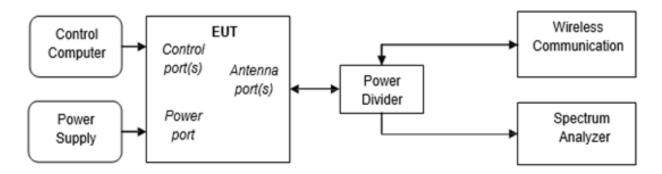
- 1. SET RBW=1-5% of OBW
- 2. SET VBW ≥ 3*RBW
- 3. Detector: Peak
- 4. Trace mode= max hold.
- 5. Sweep= auto couple
- 6. Steps 1-5 were repeated after it is stable

3.4.4 TEST SETUP LAYOUT

3.4.5 TEST RESULTS

3.5 BAND EDGE MEASUREMENTS

The 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission power must be attenuated below the transmitting power (P) by a factor of at least 43+10log10P dB.


3.5.1 TEST PROCEDURES USED

KDB 971168 v02r02-Section 6.0

3.5.2 TEST SETTINGS

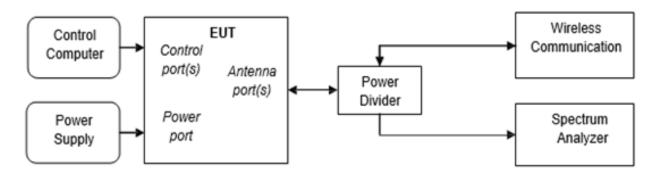
- SET RBW ≥ 1% of Emission BW.
- 2. SET VBW about three times of RBW
- 3. Detector: RMS
- 4. Trace mode= max hold.
- 5. Span= 2MHz

3.5.3 TEST SETUP LAYOUT

3.5.4 TEST RESULTS

3.6 PEAK TO AVERAGE RATIO

A peak to average ratio measurement is performed at the conducted port of the EUT. For WCDMA signals, the spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level. For GSM signals, an average and a peak trace are used on a spectrum analyzer to determine the largest deviation between the average and the peak power of the EUT in a bandwidth greater than the emission bandwidth. The traces are generated with the spectrum analyzer set to zero span mode.


3.6.1 TEST PROCEDURES USED

KDB 971168 v02r02-Section 5.7.1

3.6.2 TEST SETTINGS

- 1. The signal analyzer's CCDF measurement profile enabled
- 2. Frequency= carrier center frequency
- 3. Measurement BW > EBW of signal
- 4. for continuous transmissions, set to 1ms
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

3.6.3 TEST SETUP LAYOUT

3.6.4 TEST RESULTS

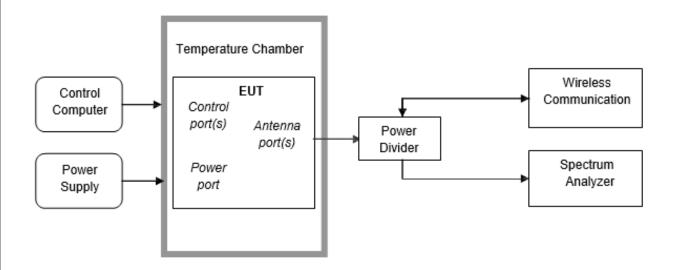
3.7 FREQUENCY STABILITY

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a. Temperature: The temperature is varied from -30°C to +65°C in 10°C increments using an environmental chamber.
- b. Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

3.7.1 TIME PERIOD AND PROCEDURE:


The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference). The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

3.7.2 TEST PROCEDURES USED

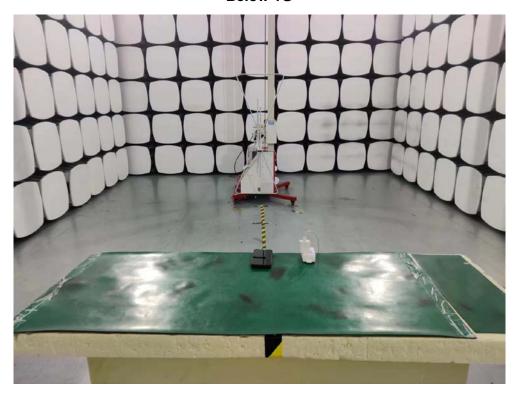
ANSI/TIA-603-E-2016

3.7.3 TEST SETUP LAYOUT

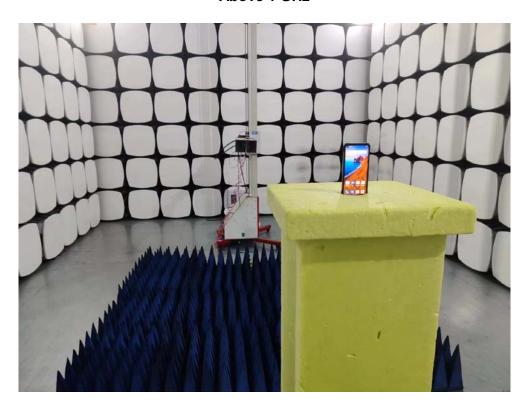
3.7.4 TEST RESULTS

4. LIST OF MEASUREMENT EQUIPMENTS

Equipment Name	Manufacturer	Model	Serial Number	Calibrated date	Calibrated until
Signal Generator	Anritsu	MG3694C	#213104	2022/5/4	2023/5/3
Vector Signal Generator	Anritsu	MG3710E	6272323212	2022/5/4	2023/5/3
Signal Analyzer	Anritsu	MS2850A	6272347524	2022/5/4	2023/5/3
AR2000 Control Unit	Anritsu	N/A	862200013 / 862200014	2022/5/4	2023/5/3
Radio Communication Analyzer	Anritsu	MT8821C	6272278400	2022/5/4	2023/5/3
Radio Communication Test Station	Anritsu	MT8000A	6272337398	2022/5/4	2023/5/3
EMI Receiver	Rohde&Schwarz	ESR7	102013	2022/10/15	2023/10/14
Spectrum analyzer	Rohde&Schwarz	FSV30	103741	2022/10/18	2023/10/17
Spectrum analyzer	KEYSIGHT	N9010A-44	MY5144015 8	2022/10/18	2023/10/17
Integral Antenna	Schwarzbeck	VULB 9163	VULB 9163-361	2022/10/21	2023/10/20
Integral Antenna	Schwarzbeck	BBHA 9120D	BBHA 9120D 1201	2022/10/16	2023/10/15
Integral Antenna	Schwarzbeck	BBHA 9170	9170#685	2022/10/15	2023/10/14
Preamplifier	CD Systems Inc	PAP-03036-30	85060000	2022/10/16	2023/10/15
Preamplifier	Schwarzbeck	BBV9721	9721-019	2022/10/16	2023/10/15
Preamplifier	emci	EMC012630SE	980417	2022/10/16	2023/10/15
ECSI RF IN RF Cable	Rohde&Schwarz	AP-X1	\	2022/10/17	2023/10/16
ECSI RF IN RF Cable	HAOXUN	Z-108	\	2022/10/17	2023/10/16

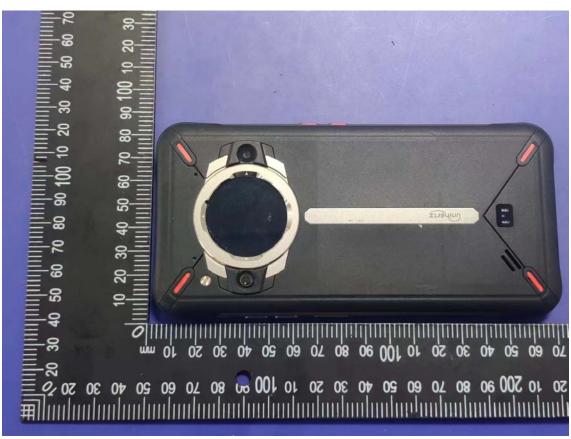

Remark: "N/A" denotes no model name, serial no. or calibration specified. Except * item, all calibration period of equipment list is one year.

"*" calibration period of equipment list is three year.

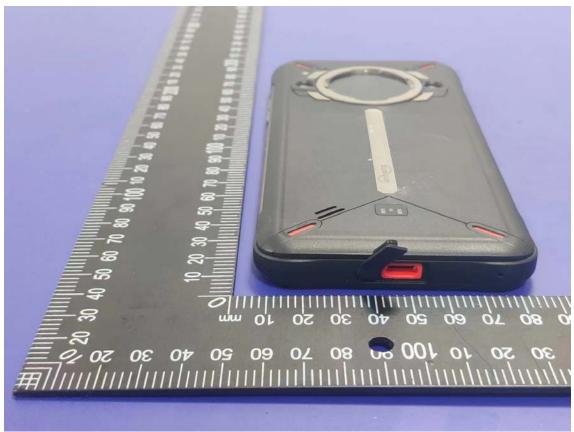


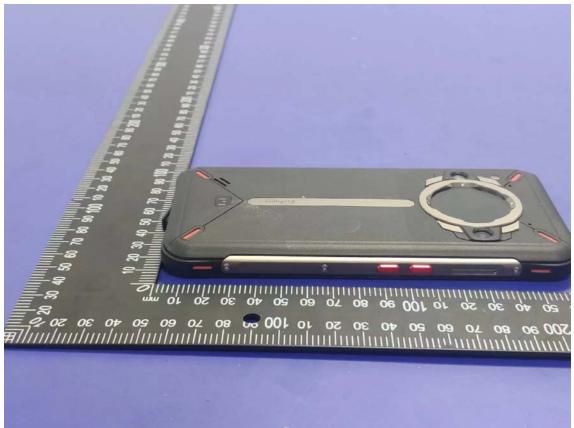
5. EUT TEST PHOTO

Radiated Emissions Test Photos Below 1G


Above 1 GHz




5. EUT PHOTO

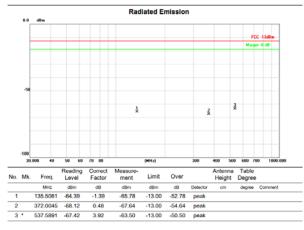


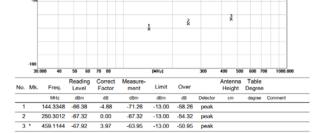
APPENDIX B - RADIATED SPURIOUS EMISSIONS (9KHZ TO 30MHZ)

Radiated emission: 9KHz-30MHz

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

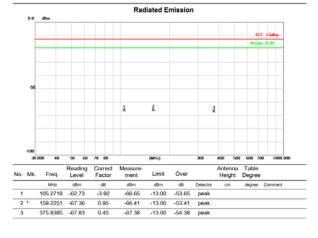
There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.


APPENDIX C - RADIATED SPURIOUS EMISSIONS (30MHZ TO 1GHZ)


Test Mode: 5G NR N2_TX Mid CH

Test Mode: 5G NR N2_TX Mid CH

Vertical

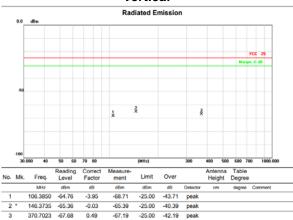

Horizontal Radiated Emission

Test Mode: 5G NR N5_TX Mid CH

Test Mode: 5G NR N5_TX Mid CH

Vertical

Horizontal



Test Mode: 5G NR N7_TX Mid CH

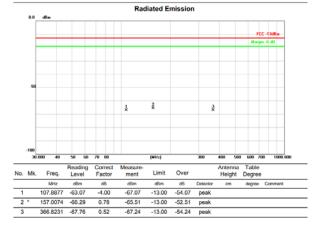
Test Mode: 5G NR N7_TX Mid CH

Vertical

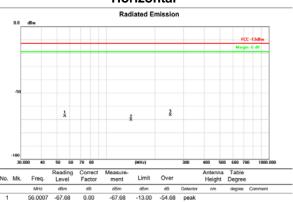
Horizontal Radiated Emission 100 dillin FEC 25 Maign 4 dill 100

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBm	dB	dBm	dBm	dB	Detector	cm	degree	Comment
1		52.0251	-68.19	0.20	-67.99	-25.00	-42.99	peak			
2		250.3012	-67.78	0.00	-67.78	-25.00	-42.78	peak			
3	•	472.1760	-68.03	3.39	-64.64	-25.00	-39.64	peak			

Test Mode: 5G NR N25_TX Mid CH


Test Mode: 5G NR N25_TX Mid CH

142.8243 -65.69 -4.84


0.00

247.6820 -66.95

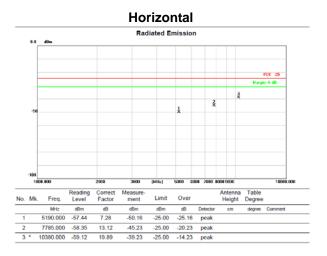
Vertical

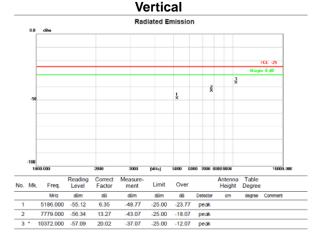
Horizontal

-13.00 -57.53 peak

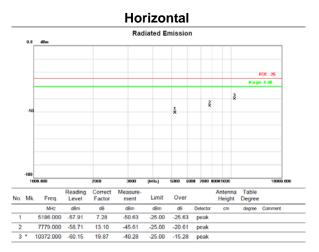
-13.00 -53.95 peak

-70.53


-66.95


Test Mode: 5G NR N38_TX Mid CH

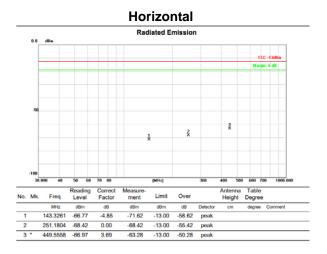
| Radiated Emission | Fcc 36 | Margin 4-48 | | Sept. |


Test Mode: 5G NR N38_TX Mid CH

Test Mode: 5G NR N41_TX Mid CH

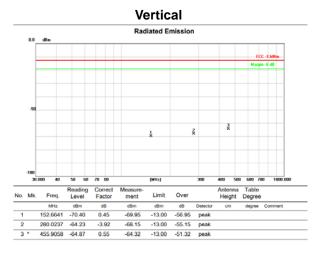
Test Mode: 5G NR N41_TX Mid CH

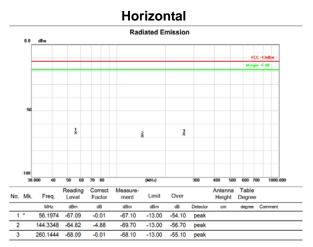
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



Test Mode: 5G NR N66_TX Mid CH

-13.00 -54.35 peak

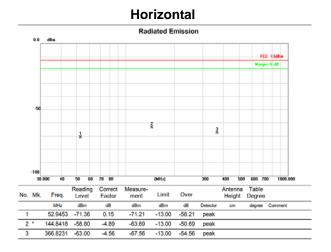

Test Mode: 5G NR N66_TX Mid CH

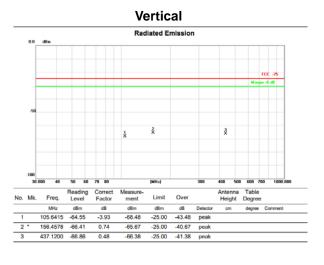

Test Mode: 5G NR N77_TX Mid CH

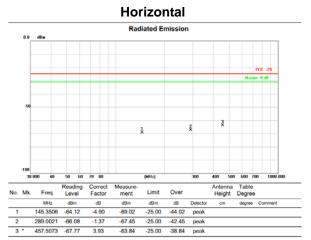
0.36

-67.35

Test Mode: 5G NR N77_TX Mid CH

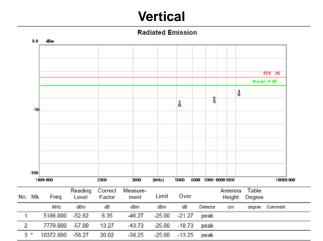

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

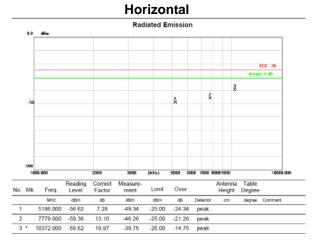

Test Mode: 5G NR DC-N5_TX Mid CH


Test Mode: 5G NR DC-N5_TX Mid CH

Test Mode: 5G NR DC-N7_TX Mid CH

Test Mode: 5G NR DC-N7_TX Mid CH



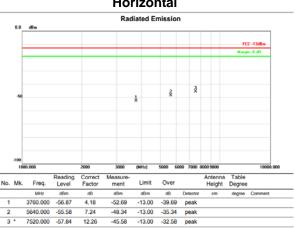

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode: 5G NR DC-N41_TX Mid CH

Test Mode: 5G NR DC-N41_TX Mid CH

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX D - RADIATED SPURIOUS EMISSIONS (ABOVE 1GHZ)

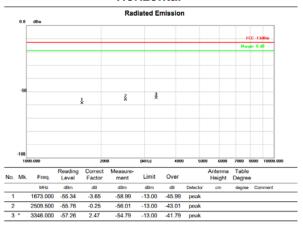


Test Mode: 5G NR N2_TX Mid CH

Test Mode: 5G NR N2_TX Mid CH Horizontal

Vertical Radiated Emission

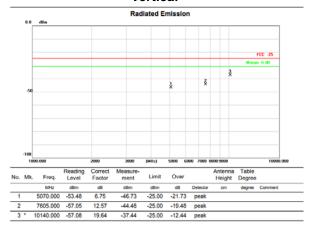
	-100			2000	3000	(MH2)			8000 9000		
		00.000					5000 60	7000			18000.000
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	ďβm	dB	dBm	dBm	dΒ	Detector	cm	degree	Comment
1		3760.000	-54.25	4.28	-49.97	-13.00	-36.97	peak			
2		5640.000	-54.71	8.31	-46.40	-13.00	-33.40	peak			
3	•	7520.000	-56.48	12.33	-44.15	-13.00	-31.15	peak			

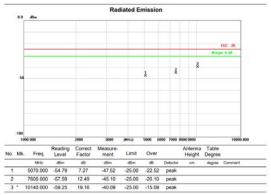

Test Mode: 5G NR N5_TX Mid CH

Test Mode: 5G NR N5_TX Mid CH

Vertical Radiated Emission

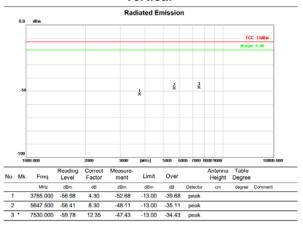
Horizontal

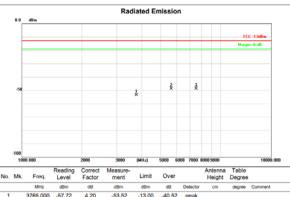



Test Mode: 5G NR N7_TX Mid CH

Test Mode: 5G NR N7_TX Mid CH

Vertical

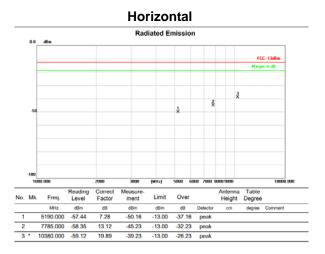

Horizontal

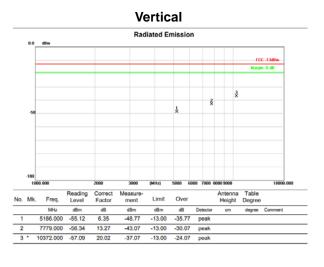

Test Mode: 5G NR N25_TX Mid CH

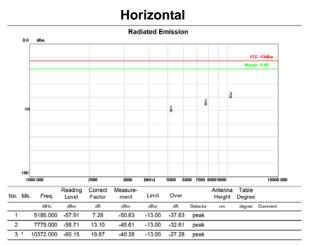
Test Mode: 5G NR N25_TX Mid CH

Vertical

Horizontal

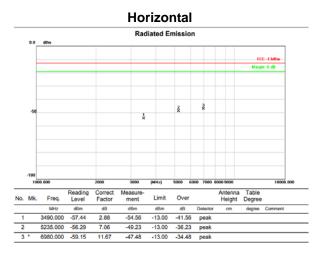


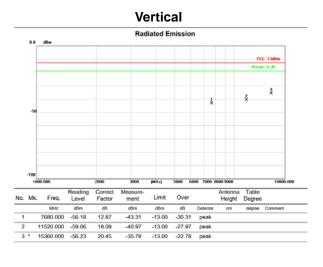

Test Mode: 5G NR N38_TX Mid CH

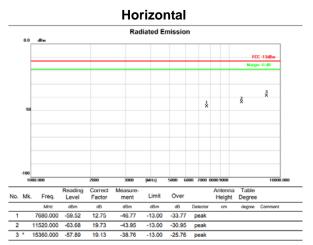

Test Mode: 5G NR N38_TX Mid CH

Test Mode: 5G NR N41_TX Mid CH

Test Mode: 5G NR N41_TX Mid CH


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


Test Mode: 5G NR N66_TX Mid CH


Test Mode: 5G NR N66_TX Mid CH

Test Mode: 5G NR N77_TX Mid CH

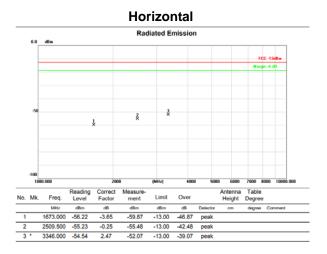
Test Mode: 5G NR N77_TX Mid CH

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

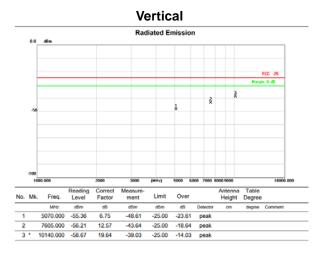
3346.000 -53.12

2.75

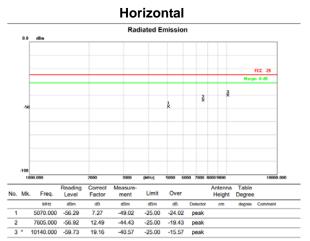
Test Mode: 5G NR NSA-N5_TX Mid CH



-13.00

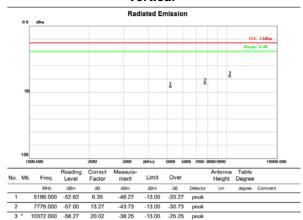

-13.00 -37.37 peak

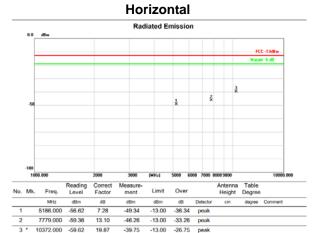
-50.37


Test Mode: 5G NR NSA-N5_TX Mid CH

Test Mode: 5G NR NSA-N7_TX Mid CH

Test Mode: 5G NR NSA-N7_TX Mid CH


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



Test Mode: 5G NR NSA-N41_TX Mid CH

Test Mode: 5G NR NSA-N41_TX Mid CH

Vertical

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

End of Test Report