

APANA Inc.

PK1276

FCC 15.207:2017

FCC 15.247:2018

902.3 – 914.9 MHz Transceiver

Report # APAN0004

NVLAP Lab Code: 200629-0

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

More: <https://www.bis.doc.gov/index.php/forms-documents/regulations-docs/14-commerce-country-chart/fileT>

CERTIFICATE OF TEST

Last Date of Test: January 16, 2018
APANA Inc.
Model: PK1276

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2017	
FCC 15.247:2018	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6, 11.12.1, 11.13.2	Spurious Radiated Emissions	Yes	Pass	
7.8.2	Carrier Frequency Separation	Yes	Pass	
7.8.3	Number of Hopping Frequencies	Yes	Pass	
7.8.4	Dwell Time	Yes	Pass	
7.8.6	Band Edge Compliance - Hopping Mode	Yes	Pass	
11.6	Duty Cycle	Yes	N/A	Characterization of radio operation.
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.1.1	Output Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

A handwritten signature in blue ink that reads 'Rod Munro'.

Rod Munro, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission – Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

<http://portlandcustomer.element.com/ts/scope/scope.htm>

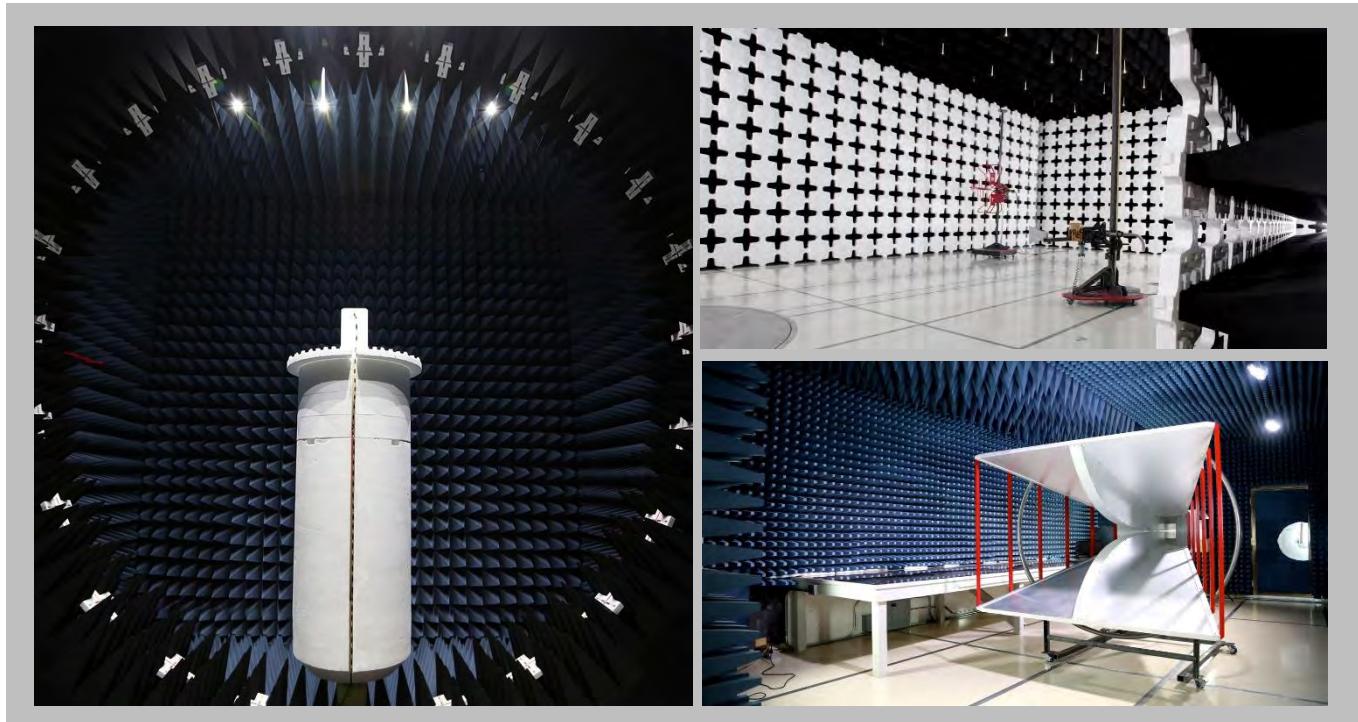
<http://gsi.nist.gov/global/docs/cabs/designations.html>

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

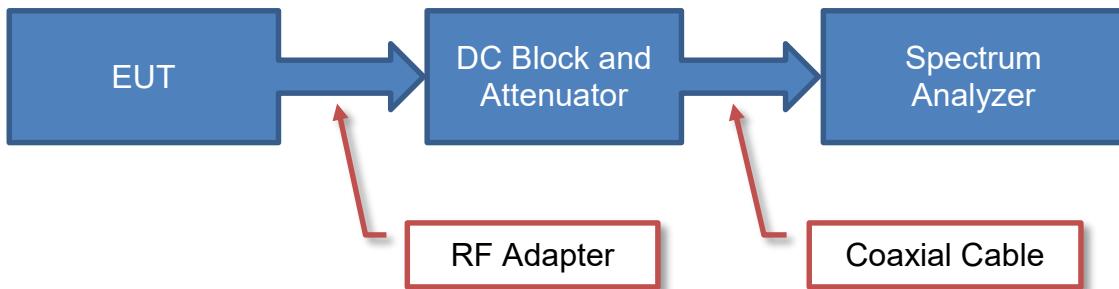
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

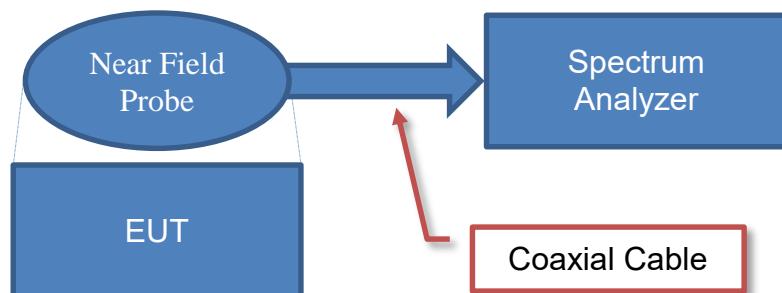

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

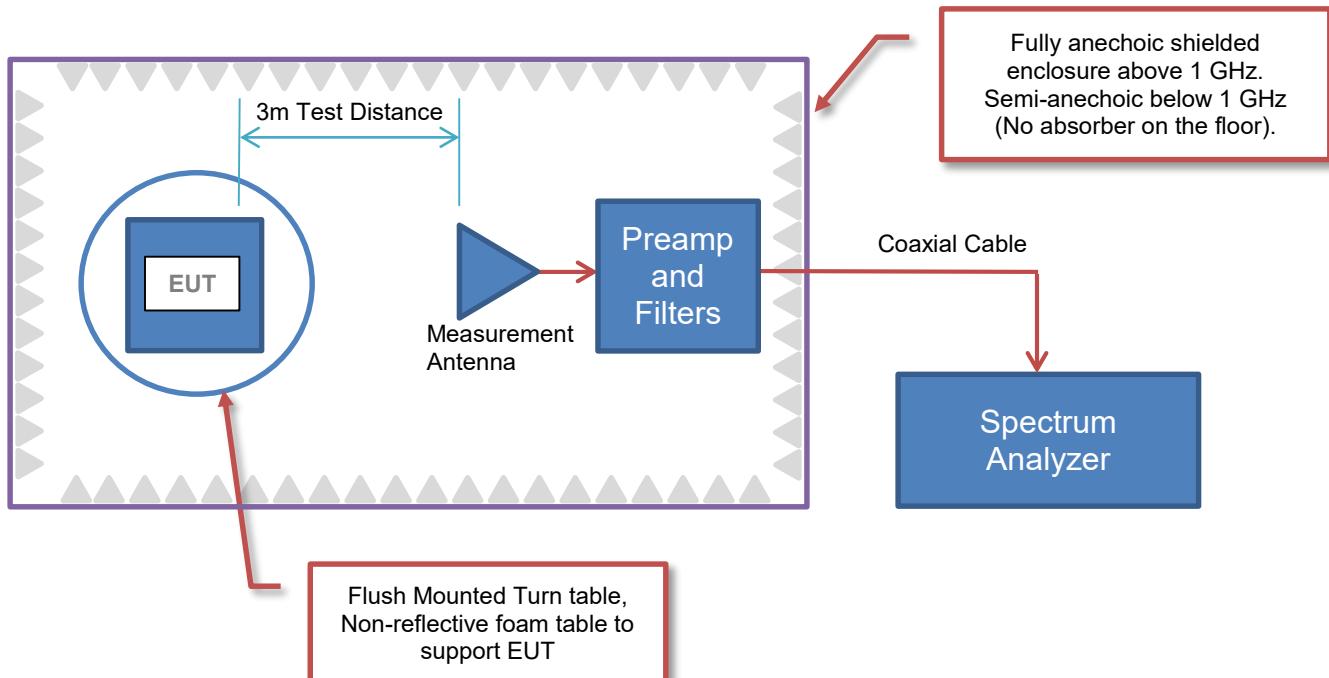
FACILITIES



California	Minnesota	New York	Oregon	Texas	Washington
Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425) 984-6600
NVLAP					
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code: 201049-0	NVLAP Lab Code: 200629-0
Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1
BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
VCCI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157



Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	APANA Inc.
Address:	4290 Pacific Highway Ste A
City, State, Zip:	Bellingham, WA 98226
Test Requested By:	Matt W. Maher Peterson
Model:	PK1276
First Date of Test:	March 29, 2017
Last Date of Test:	January 16, 2018
Receipt Date of Samples:	March 2, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The PK1276 is a LoRa end node, which reads data from a water meter (once per 5 seconds is most frequent), and transmits the data at roughly 17 dBm in the 902 to 928 MHz range. The radio operates as a Hybrid radio. The PK1276 includes 3x Li-SOCL2 batteries size AA, and can operate for over 20 years on battery power (RF output +20dBm max). Alternatively, the device can be powered from wall power.

Testing Objective:

Seeking to demonstrate compliance under FCC 15.247:2018 for Hybrid operation.

CONFIGURATIONS

Configuration PECK0001- 1

Software/Firmware Running during test	
Description	Version
RealTerm	3.0.0.30

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Transmitter (Puck) Unit 2	APANA Inc	PK1276	7
Internal Antenna Chip	Antenova	A10472	None
External Antenna Dipole	2J-Antenna USA	2J2024B-915	None

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
USB HUB	Sabrant	HB-UM43	60013224614621
AD/DC Adapter USB HUB	FLY Power	PS36A120K300UD	None

Remote Equipment Outside of Test Setup Boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Laptop	Microsoft	Surface Pro 3	025613450653
AC/DC Adapter Laptop	Microsoft	1625	0D130C0WZSF51
DC Power Supply	TOPWARD Electronics	TPD	None

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB Cable	Yes	1.0m	No	USB HUB	PK1276 (Puck)
DC Power Cable USB HUB	No	1.52m	No	AC/DC Power Adapter	USB HUB
Antenna Cable	Unknown	5.1m	No	External Antenna	PK1276 (Puck)
Battery External DC Leads	No	9.1 m	Yes	DC Power Supply	PK1276 (Puck)
Nicor Cable	Yes	1.8 m	No	Unterminated	PK1276 (Puck)

CONFIGURATIONS

Configuration PECK0001- 8

Software/Firmware Running during test	
Description	Version
RealTerm	3.0.0.30

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Transmitter (Puck) Unit 3	APANA Inc	PK1276	12
Internal Antenna Chip	Antenova	A10472	None

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
USB HUB	Sabrant	HB-UM43	60013224614621
AD/DC Adapter USB HUB	FLY Power	PS36A120K300UD	None
50ohm load	None	None	None

Remote Equipment Outside of Test Setup Boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Laptop	Microsoft	Surface Pro 3	025613450653
AC/DC Adapter Laptop	Microsoft	1625	0D130C0WZSF51
DC Power Supply	TOPWARD Electronics	TPD	None

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB Cable	Yes	1.0m	No	USB HUB	PK1276 (Puck)
DC Power Cable USB HUB	No	1.52m	No	AC/DC Power Adapter	USB HUB
Battery External DC Leads	No	9.1 m	Yes	DC Power Supply	PK1276 (Puck)
Nicor Cable	Yes	1.8 m	No	Unterminated	PK1276 (Puck)

CONFIGURATIONS

Configuration PECK0001- 13

Software/Firmware Running during test	
Description	Version
RealTerm	3.0.0.30

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Transmitter (Puck) Unit 3	APANA Inc	PK1276	12
Internal Antenna Chip	Antenova	A10472	None
External Antenna Dipole	2J-Antenna USA	2J2024B-915	None

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
AC/DC Adapter (Unit 1)	PHIHONG	PSA10F-050Q	None

Remote Equipment Outside of Test Setup Boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Laptop	Microsoft	Surface Pro 3	025613450653
DC Power Supply	TOPWARD Electronics	TPD	None

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Antenna cable	Unknown	5.1m	No	External Antenna	PK1276 (Puck)
Nicor Cable	Yes	1.8 m	No	Unterminated	PK1276 (Puck)
USB Cable	Yes	1.0m	No	AC/DC Adapter	PK1276 (Puck)

CONFIGURATIONS

Configuration PECK0001- 14

Software/Firmware Running during test	
Description	Version
RealTerm	3.0.0.30

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Transmitter (Puck) Unit 3	APANA Inc.	PK1276	12
Internal Antenna Chip	Antenova	A10472	None
External Antenna Dipole	2J-Antenna USA	2J2024B-915	None

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
AC/DC Adapter (Unit 2)	Qualtek	QFAW-05-05	None

Remote Equipment Outside of Test Setup Boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Laptop	Microsoft	Surface Pro 3	025613450653
DC Power Supply	TOPWARD Electronics	TPD	None

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Antenna cable	Unknown	5.1m	No	External Antenna	PK1276 (Puck)
Nicor Cable	Yes	1.8 m	No	Unterminated	PK1276 (Puck)
USB Cable	Yes	1.0m	No	AC/DC Adapter	PK1276 (Puck)

CONFIGURATIONS

Configuration APAN0004- 1

Software/Firmware Running during test	
Description	Version
RealTerm	3.0.0.33
Firmware	6.2.3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Transmitter (Puck)	Peckham Technology Inc.	PK1276	18-9B-A5-90-02-7B

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Laptop	Microsoft	Surface Pro 3	025613450653
USB HUB	Sabrant	HB-UM43	60013224614621
AD/DC Adapter USB HUB	FLY Power	PS36A120K300UD	None

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB Cable	Yes	1.0m	No	USB HUB	PK1276 (Puck)
DC Power Cable USB HUB	No	1.52m	No	AC/DC Power Adapter	USB HUB
Nicor Cable	Yes	1.8 m	No	Unterminated	PK1276 (Puck)
USB Cable	Yes	1.0m	Yes	USB HUB	Surface Pro 3

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	3/29/2017	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	4/14/2017	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT was taken home by the client following the test.
3	1/16/2018	Dwell Time	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	1/16/2018	Band Edge Compliance – Hopping Mode	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	1/16/2018	Carrier Frequency Separation	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	1/16/2018	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	1/16/2018	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
8	1/16/2018	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
9	1/16/2018	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
10	1/16/2018	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
11	1/16/2018	Number of Hopping Frequencies	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

POWERLINE CONDUCTED EMISSIONS

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
LISN	Solar Electronics	9252-50-R-24-BNC	LIP	10/4/2016	10/4/2018
Cable - Conducted Cable Assembly	Element	EVG, HHD, RKA	EVGA	5/10/2016	5/10/2017
Receiver	Rohde & Schwarz	ESCI	ARH	3/27/2017	3/27/2018

MEASUREMENT UNCERTAINTY

Description			
Expanded k=2	2.4 dB		-2.4 dB

CONFIGURATIONS INVESTIGATED

PECK0001-13
PECK0001-14

MODES INVESTIGATED

Tx, FHSS Single Channel Mode 125 kHz BW, Ext Antenna, Mid Ch. 908.7 MHz

POWERLINE CONDUCTED EMISSIONS

EUT:	PK1276	Work Order:	PECK0001
Serial Number:	12	Date:	04/14/2017
Customer:	APANA Inc	Temperature:	23.2°C
Attendees:	Matt Maher Peterson	Relative Humidity:	34.5%
Customer Project:	None	Bar. Pressure:	1025 mb
Tested By:	Brandon Hobbs	Job Site:	EV07
Power:	5 VDC Nominal via 120VAC/60Hz	Configuration:	PECK0001-14

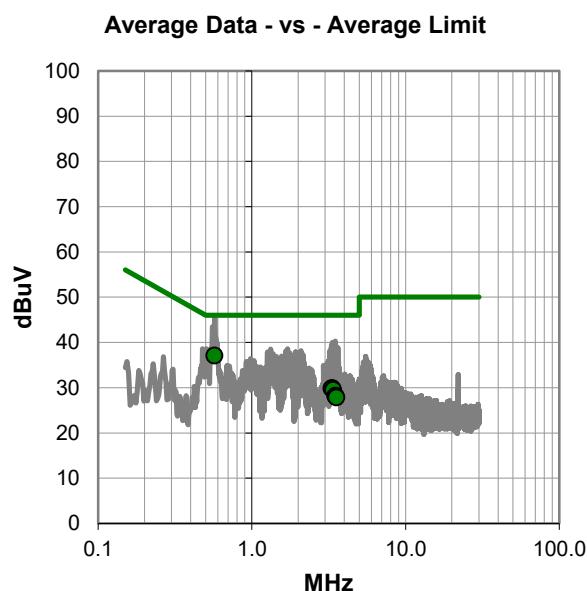
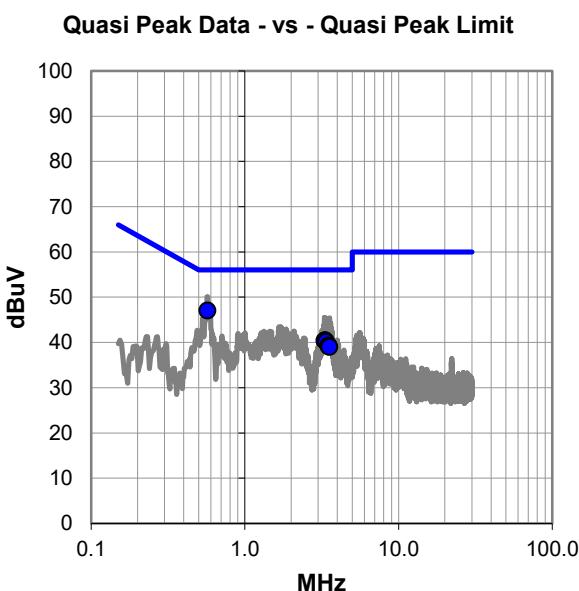
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2017	ANSI C63.10:2013

TEST PARAMETERS

Run #:	9	Line:	High Line	Add. Ext. Attenuation (dB):	0
--------	---	-------	-----------	-----------------------------	---

COMMENTS



Customer provided software to control the radio Worst case antenna path was used for all measurements. An Attenuation setting of 10 was used for all measurements. Unit 2 power supply was used.

EUT OPERATING MODES

Tx, FHSS Single Channel Mode 125 kHz BW, Ext Antenna, Mid Ch. 908.7 MHz

DEVIATIONS FROM TEST STANDARD

None

POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #9

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.571	27.5	19.5	47.0	56.0	-9.0
3.334	20.7	19.8	40.5	56.0	-15.5
3.307	20.6	19.8	40.4	56.0	-15.6
3.390	20.3	19.8	40.1	56.0	-15.9
3.494	19.5	19.8	39.3	56.0	-16.7
3.518	19.4	19.8	39.2	56.0	-16.8
3.550	19.2	19.8	39.0	56.0	-17.0

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.571	17.6	19.5	37.1	46.0	-8.9
3.334	10.1	19.8	29.9	46.0	-16.1
3.307	10.0	19.8	29.8	46.0	-16.2
3.390	9.7	19.8	29.5	46.0	-16.5
3.494	8.4	19.8	28.2	46.0	-17.8
3.518	8.3	19.8	28.1	46.0	-17.9
3.550	8.0	19.8	27.8	46.0	-18.2

CONCLUSION

Pass

Tested By

POWERLINE CONDUCTED EMISSIONS

EUT:	PK1276	Work Order:	PECK0001
Serial Number:	12	Date:	04/14/2017
Customer:	APANA Inc	Temperature:	23.2°C
Attendees:	Matt Maher Peterson	Relative Humidity:	34.5%
Customer Project:	None	Bar. Pressure:	1025 mb
Tested By:	Brandon Hobbs	Job Site:	EV07
Power:	5 VDC Nominal via 120VAC/60Hz	Configuration:	PECK0001-14

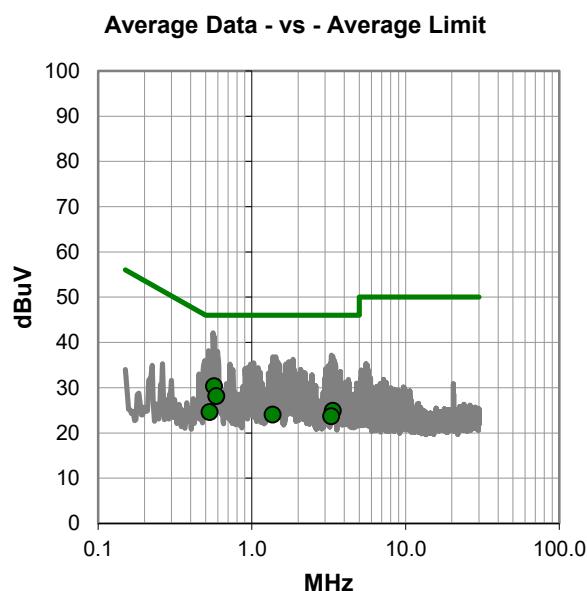
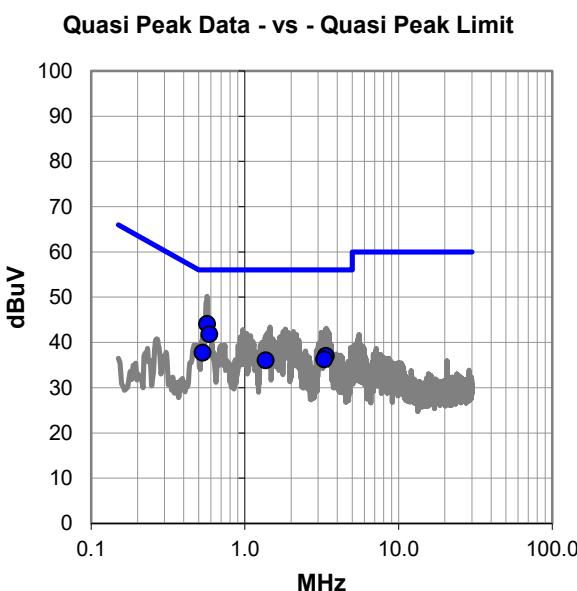
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2017	ANSI C63.10:2013

TEST PARAMETERS

Run #:	10	Line:	Neutral	Add. Ext. Attenuation (dB):	0
--------	----	-------	---------	-----------------------------	---

COMMENTS



Customer provided software to control the radio Worst case antenna path was used for all measurements. An Attenuation setting of 10 was used for all measurements. Unit 2 power supply was used.

EUT OPERATING MODES

Tx, FHSS Single Channel Mode 125 kHz BW, Ext Antenna, Mid Ch. 908.7 MHz

DEVIATIONS FROM TEST STANDARD

None

POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #10

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.569	24.6	19.5	44.1	56.0	-11.9
0.588	22.3	19.5	41.8	56.0	-14.2
0.532	18.2	19.5	37.7	56.0	-18.3
3.365	17.2	19.8	37.0	56.0	-19.0
3.285	16.4	19.8	36.2	56.0	-19.8
1.368	16.5	19.5	36.0	56.0	-20.0

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.569	10.8	19.5	30.3	46.0	-15.7
0.588	8.6	19.5	28.1	46.0	-17.9
3.365	5.1	19.8	24.9	46.0	-21.1
0.532	5.1	19.5	24.6	46.0	-21.4
1.368	4.5	19.5	24.0	46.0	-22.0
3.285	3.9	19.8	23.7	46.0	-22.3

CONCLUSION

Pass

Tested By

POWERLINE CONDUCTED EMISSIONS

EUT:	PK1276	Work Order:	PECK0001
Serial Number:	12	Date:	04/14/2017
Customer:	APANA Inc	Temperature:	23.2°C
Attendees:	Matt Maher Peterson	Relative Humidity:	34.5%
Customer Project:	None	Bar. Pressure:	1025 mb
Tested By:	Brandon Hobbs	Job Site:	EV07
Power:	5 VDC Nominal via 120VAC/60Hz	Configuration:	PECK0001-13

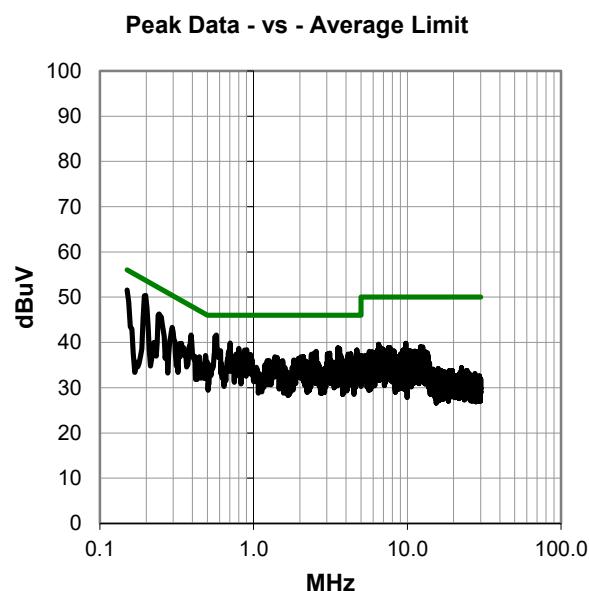
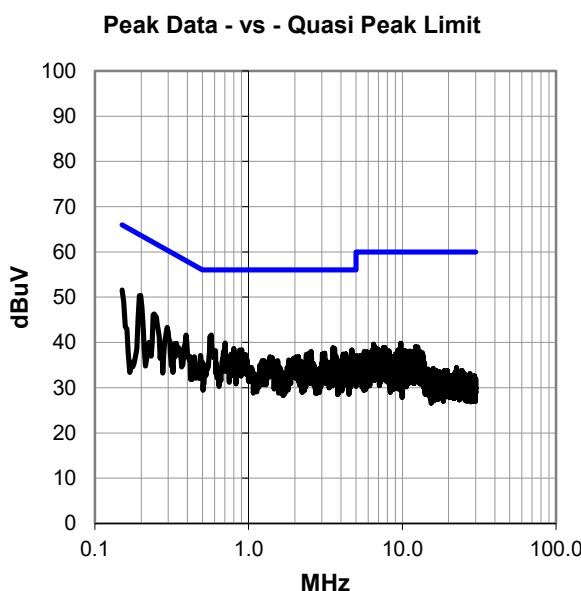
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2017	ANSI C63.10:2013

TEST PARAMETERS

Run #:	11	Line:	Neutral	Add. Ext. Attenuation (dB):	0
--------	----	-------	---------	-----------------------------	---

COMMENTS



Customer provided software to control the radio Worst case antenna path was used for all measurements. An Attenuation setting of 10 was used for all measurements. Unit 1 power supply was used

EUT OPERATING MODES

Tx, FHSS Single Channel Mode 125 kHz BW, Ext Antenna, Mid Ch. 908.7 MHz

DEVIATIONS FROM TEST STANDARD

None

POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #11

Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.199	30.8	19.6	50.4	63.7	-13.3
0.150	31.9	19.7	51.6	66.0	-14.4
0.572	22.1	19.5	41.6	56.0	-14.4
0.243	26.7	19.6	46.3	62.0	-15.7
0.702	20.4	19.5	39.9	56.0	-16.1
0.393	22.1	19.5	41.6	58.0	-16.4
0.296	23.7	19.6	43.3	60.4	-17.1
3.541	19.0	19.8	38.8	56.0	-17.2
0.803	19.2	19.5	38.7	56.0	-17.3
3.623	18.8	19.8	38.6	56.0	-17.4
0.904	18.9	19.5	38.4	56.0	-17.6
0.874	18.8	19.5	38.3	56.0	-17.7
4.694	18.5	19.8	38.3	56.0	-17.7
0.687	18.5	19.5	38.0	56.0	-18.0
2.553	18.3	19.7	38.0	56.0	-18.0
2.485	18.0	19.7	37.7	56.0	-18.3
3.123	17.8	19.8	37.6	56.0	-18.4
4.284	17.7	19.8	37.5	56.0	-18.5
0.766	17.9	19.5	37.4	56.0	-18.6
2.374	17.8	19.6	37.4	56.0	-18.6
3.023	17.6	19.8	37.4	56.0	-18.6
3.038	17.6	19.8	37.4	56.0	-18.6
4.127	17.6	19.8	37.4	56.0	-18.6
0.777	17.8	19.5	37.3	56.0	-18.7
4.836	17.4	19.8	37.2	56.0	-18.8
3.691	17.3	19.8	37.1	56.0	-18.9

Peak Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.199	30.8	19.6	50.4	53.7	-3.3
0.150	31.9	19.7	51.6	56.0	-4.4
0.572	22.1	19.5	41.6	46.0	-4.4
0.243	26.7	19.6	46.3	52.0	-5.7
0.702	20.4	19.5	39.9	46.0	-6.1
0.393	22.1	19.5	41.6	48.0	-6.4
0.296	23.7	19.6	43.3	50.4	-7.1
3.541	19.0	19.8	38.8	46.0	-7.2
0.803	19.2	19.5	38.7	46.0	-7.3
3.623	18.8	19.8	38.6	46.0	-7.4
0.904	18.9	19.5	38.4	46.0	-7.6
0.874	18.8	19.5	38.3	46.0	-7.7
4.694	18.5	19.8	38.3	46.0	-7.7
0.687	18.5	19.5	38.0	46.0	-8.0
2.553	18.3	19.7	38.0	46.0	-8.0
2.485	18.0	19.7	37.7	46.0	-8.3
3.123	17.8	19.8	37.6	46.0	-8.4
4.284	17.7	19.8	37.5	46.0	-8.5
0.766	17.9	19.5	37.4	46.0	-8.6
2.374	17.8	19.6	37.4	46.0	-8.6
3.023	17.6	19.8	37.4	46.0	-8.6
3.038	17.6	19.8	37.4	46.0	-8.6
4.127	17.6	19.8	37.4	46.0	-8.6
0.777	17.8	19.5	37.3	46.0	-8.7
4.836	17.4	19.8	37.2	46.0	-8.8
3.691	17.3	19.8	37.1	46.0	-8.9

CONCLUSION

Pass

Tested By

POWERLINE CONDUCTED EMISSIONS

EUT:	PK1276	Work Order:	PECK0001
Serial Number:	12	Date:	04/14/2017
Customer:	APANA Inc	Temperature:	23.2°C
Attendees:	Matt Maher Peterson	Relative Humidity:	34.5%
Customer Project:	None	Bar. Pressure:	1025 mb
Tested By:	Brandon Hobbs	Job Site:	EV07
Power:	5 VDC Nominal via 120VAC/60Hz	Configuration:	PECK0001-13

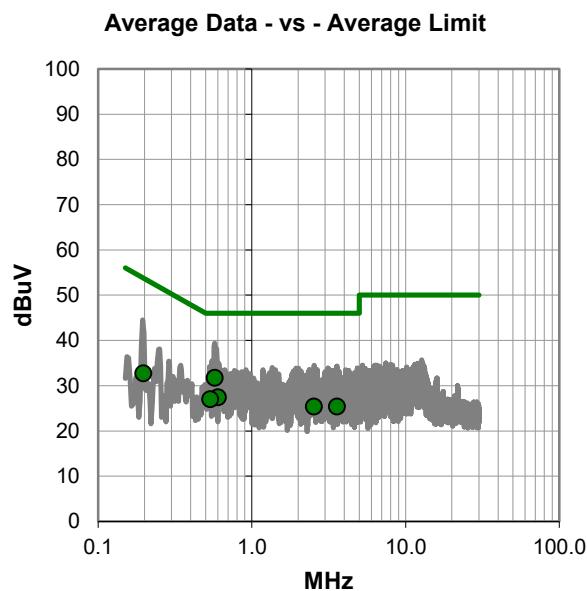
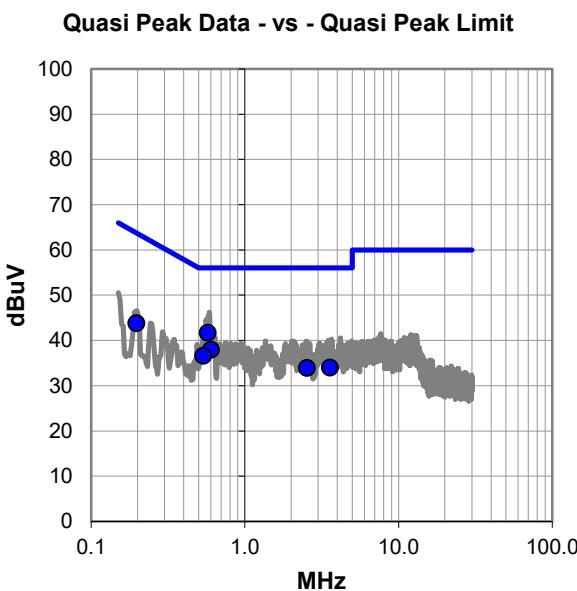
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2017	ANSI C63.10:2013

TEST PARAMETERS

Run #:	12	Line:	High Line	Add. Ext. Attenuation (dB):	0
--------	----	-------	-----------	-----------------------------	---

COMMENTS



Customer provided software to control the radio Worst case antenna path was used for all measurements. An Attenuation setting of 10 was used for all measurements Unit 1 power supply was used

EUT OPERATING MODES

Tx, FHSS Single Channel Mode 125 kHz BW, Ext Antenna, Mid Ch. 908.7 MHz

DEVIATIONS FROM TEST STANDARD

None

POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #12

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.574	22.2	19.5	41.7	56.0	-14.3
0.601	18.4	19.5	37.9	56.0	-18.1
0.536	17.1	19.5	36.6	56.0	-19.4
0.197	24.2	19.6	43.8	63.7	-19.9
3.583	14.2	19.8	34.0	56.0	-22.0
2.537	14.2	19.7	33.9	56.0	-22.1

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.574	12.2	19.5	31.7	46.0	-14.3
0.601	7.9	19.5	27.4	46.0	-18.6
0.536	7.5	19.5	27.0	46.0	-19.0
3.583	5.6	19.8	25.4	46.0	-20.6
2.537	5.7	19.7	25.4	46.0	-20.6
0.197	13.1	19.6	32.7	53.7	-21.0

CONCLUSION

Pass

Tested By

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx continuous FHSS 125 kHz BW, Spreading Factor 7

CHANNEL OF OPERATION

Low Ch. 902.3 MHz

Mid Ch. 908.7 MHz

High Ch. 914.9 MHz

ANTENNA TYPES

Internal Chip Antenna (P/N A10472) Peak 1.6 dBi

External Dipole Antenna (P/N 2J2024B-915) Peak 3.0 dBi

POWER SETTINGS INVESTIGATED

5 VDC Nominal via 120VAC/60Hz

CONFIGURATIONS INVESTIGATED

PECK0001 - 1

PECK0001 - 8

FREQUENCY RANGE INVESTIGATED

Start Frequency | 30 MHz | Stop Frequency | 12400 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	None	Standard Gain Horns Cable	EVF	2/6/2017	12 mo
Amplifier - Pre-Amplifier	L-3 Narda-MITEQ	AMF-6F-08001200-30-10P	PAO	2/7/2017	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AHU	NCR	0 mo
Filter - High Pass	Micro-Tronics	HPM50108	HFV	2/6/2017	12 mo
Attenuator	Coaxicom	3910-20	AXZ	5/18/2016	12 mo
Cable	N/A	Double Ridge Horn Cables	EVB	2/6/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	2/6/2017	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AIZ	2/3/2016	24 mo
Filter - Low Pass	Micro-Tronics	LPM50003	LFB	5/18/2016	12 mo
Filter - Band Pass/Notch	K&L Microwave	3TNF-500/1000-N/N	HFT	1/4/2017	12 mo
Cable	N/A	Bilog Cables	EVA	2/6/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	2/6/2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AXR	6/30/2016	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	4/22/2016	12 mo

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

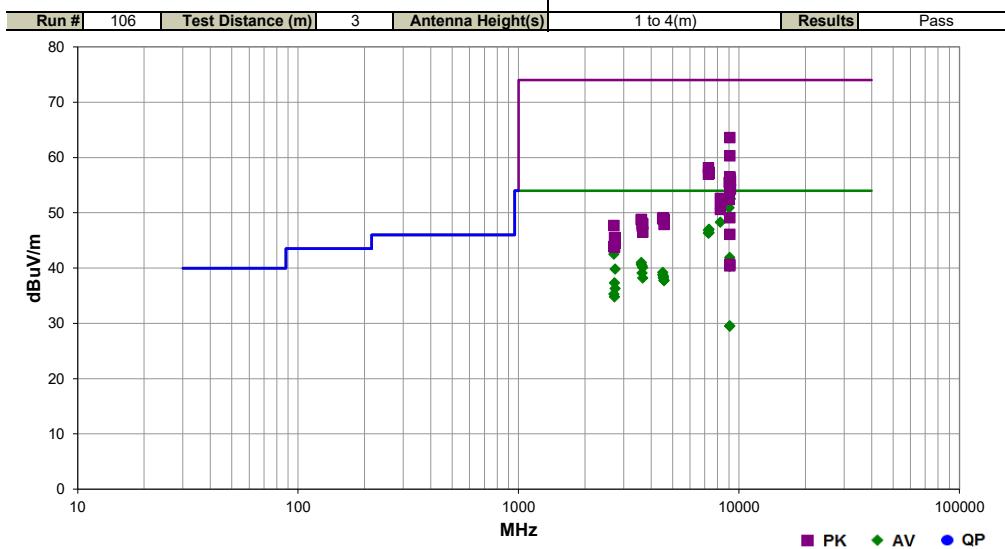
PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.


SPURIOUS RADIATED EMISSIONS

EmIRS 2017.01.25 PSA-ESCI 2017.01.26

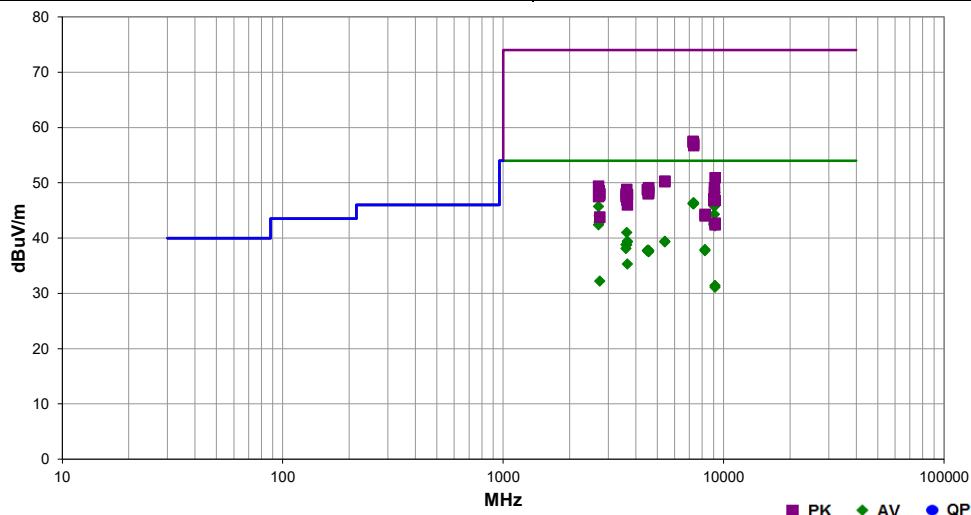
Work Order:	PECK0001	Date:	03/29/17	
Project:	None	Temperature:	22.3 °C	
Job Site:	EV01	Humidity:	43.6% RH	
Serial Number:	07	Barometric Pres.:	1018 mbar	
EUT:	PK1276	Tested by:	Brandon Hobbs	
Configuration:	1			
Customer:	APANA Inc			
Attendees:	Canyon Peckam, Matt Maher-Peterson, David Humphrey			
EUT Power:	5 VDC Nominal via 120VAC/60Hz			
Operating Mode:	Tx continuous FHSS 125 kHz BW Please reference the data comments for additional operating mode conditions			
Deviations:	None			
Comments:	Please reference the data comments for EUT orientation, Antenna type, power applied and frequency. Internal Antenna completed need external antenna info now.			

Test Specifications	Test Method
FCC 15.247:2017	ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
9149.085	54.3	-0.3	2.1	272.0	3.0	0.0	Horz	AV	0.0	54.0	54.0	0.0	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
9086.700	53.4	-0.3	1.0	166.0	3.0	0.0	Vert	AV	0.0	53.1	54.0	-0.9	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 8, EUT Vert
9086.970	52.8	-0.3	3.9	163.0	3.0	0.0	Vert	AV	0.0	52.5	54.0	-1.5	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 8, EUT On Side
9148.645	52.8	-0.3	1.8	267.0	3.0	0.0	Vert	AV	0.0	52.5	54.0	-1.5	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
9022.535	51.2	-0.3	2.1	267.0	3.0	0.0	Horz	AV	0.0	50.9	54.0	-3.1	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
8233.705	53.8	-3.0	2.2	284.0	3.0	0.0	Horz	AV	0.0	50.8	54.0	-3.2	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
9022.540	49.8	-0.3	1.8	276.0	3.0	0.0	Vert	AV	0.0	49.5	54.0	-4.5	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
8233.700	51.3	-3.0	1.9	303.0	3.0	0.0	Vert	AV	0.0	48.3	54.0	-5.7	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
7319.045	28.2	18.8	1.0	243.0	3.0	0.0	Horz	AV	0.0	47.0	54.0	-7.0	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
7269.345	28.2	18.6	2.3	221.0	3.0	0.0	Horz	AV	0.0	46.8	54.0	-7.2	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
7318.867	27.6	18.8	1.0	341.0	3.0	0.0	Vert	AV	0.0	46.4	54.0	-7.6	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
7269.640	27.7	18.6	1.0	220.0	3.0	0.0	Vert	AV	0.0	46.3	54.0	-7.7	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
9087.245	63.9	-0.3	2.0	265.0	3.0	0.0	Horz	PK	0.0	63.6	74.0	-10.4	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 8, EUT On Side
2706.785	41.0	1.5	1.0	332.0	3.0	0.0	Vert	AV	0.0	42.5	54.0	-11.5	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
9086.975	42.2	-0.3	1.2	9.0	3.0	0.0	Horz	AV	0.0	41.9	54.0	-12.1	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
3609.285	34.1	6.9	1.0	211.0	3.0	0.0	Horz	AV	0.0	41.0	54.0	-13.0	Low Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
3609.215	33.8	6.9	1.0	179.0	3.0	0.0	Vert	AV	0.0	40.7	54.0	-13.3	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
3634.700	33.3	7.1	1.0	219.0	3.0	0.0	Horz	AV	0.0	40.4	54.0	-13.6	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
9086.410	60.6	-0.3	2.9	192.0	3.0	0.0	Vert	PK	0.0	60.3	74.0	-13.7	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 8, EUT Horz
9087.010	40.6	-0.3	2.1	265.0	3.0	0.0	Horz	AV	0.0	40.3	54.0	-13.7	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
3659.605	33.0	7.1	1.0	243.0	3.0	0.0	Horz	AV	0.0	40.1	54.0	-13.9	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
2744.750	38.2	1.6	3.9	24.0	3.0	0.0	Vert	AV	0.0	39.8	54.0	-14.2	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
4511.580	29.0	10.2	2.5	287.0	3.0	0.0	Horz	AV	0.0	39.2	54.0	-14.8	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
3634.690	32.0	7.1	1.0	182.0	3.0	0.0	Vert	AV	0.0	39.1	54.0	-14.9	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
4511.440	28.6	10.2	1.0	298.0	3.0	0.0	Vert	AV	0.0	38.8	54.0	-15.2	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
4543.465	28.2	10.3	1.0	360.0	3.0	0.0	Horz	AV	0.0	38.5	54.0	-15.5	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
3659.542	31.1	7.1	1.0	180.0	3.0	0.0	Vert	AV	0.0	38.2	54.0	-15.8	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
4543.495	27.9	10.3	1.2	284.0	3.0	0.0	Vert	AV	0.0	38.2	54.0	-15.8	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
7270.785	39.5	18.6	1.0	220.0	3.0	0.0	Vert	PK	0.0	58.1	74.0	-15.9	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
4574.270	27.6	10.2	1.0	103.0	3.0	0.0	Horz	AV	0.0	37.8	54.0	-16.2	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
4574.908	27.5	10.2	1.0	118.0	3.0	0.0	Vert	AV	0.0	37.7	54.0	-16.3	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
7319.330	38.5	18.8	1.0	243.0	3.0	0.0	Horz	PK	0.0	57.3	74.0	-16.7	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
2726.010	35.7	1.6	1.0	15.0	3.0	0.0	Vert	AV	0.0	37.3	54.0	-16.7	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
7317.758	38.3	18.8	1.0	341.0	3.0	0.0	Vert	PK	0.0	57.1	74.0	-16.9	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
7268.845	38.4	18.6	2.3	221.0	3.0	0.0	Horz	PK	0.0	57.0	74.0	-17.0	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
9087.015	56.8	-0.3	2.0	265.0	3.0	0.0	Horz	PK	0.0	56.5	74.0	-17.5	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 9, EUT On Side
9087.165	56.6	-0.3	2.3	329.0	3.0	0.0	Horz	PK	0.0	56.3	74.0	-17.7	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 8, EUT Horz
9086.900	56.6	-0.3	2.1	265.0	3.0	0.0	Horz	PK	0.0	56.3	74.0	-17.7	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 9, EUT On Side
2744.630	34.7	1.6	1.0	241.0	3.0	0.0	Horz	AV	0.0	36.3	54.0	-17.7	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
9087.480	56.3	-0.3	1.0	165.0	3.0	0.0	Horz	PK	0.0	56.0	74.0	-18.0	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 8, EUT Vert
9148.290	56.1	-0.3	2.1	272.0	3.0	0.0	Horz	PK	0.0	55.8	74.0	-18.2	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
9022.215	55.8	-0.3	2.1	267.0	3.0	0.0	Horz	PK	0.0	55.5	74.0	-18.5	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
2706.945	33.8	1.5	1.0	213.0	3.0	0.0	Horz	AV	0.0	35.3	54.0	-18.7	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
9087.340	55.1	-0.3	1.0	166.0	3.0	0.0	Vert	PK	0.0	54.8	74.0	-19.2	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 8, EUT Vert
2726.110	33.2	1.6	1.0	272.0	3.0	0.0	Horz	AV	0.0	34.8	54.0	-19.2	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
9086.630	54.6	-0.3	3.9	163.0	3.0	0.0	Vert	PK	0.0	54.3	74.0	-19.7	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 8, EUT On Side
9149.285	54.6	-0.3	1.8	267.0	3.0	0.0	Vert	PK	0.0	54.3	74.0	-19.7	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
8233.845	55.6	-3.0	2.2	284.0	3.0	0.0	Horz	PK	0.0	52.6	74.0	-21.4	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
9022.565	52.7	-0.3	1.8	276.0	3.0	0.0	Vert	PK	0.0	52.4	74.0	-21.6	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
8233.695	53.6	-3.0	1.9	303.0	3.0	0.0	Vert	PK	0.0	50.6	74.0	-23.4	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
9085.570	29.8	-0.3	1.0	173.0	3.0	0.0	Horz	AV	0.0	29.5	54.0	-24.5	Mid Ch.908.7 MHz, Ext Antenna, Battery, Attenuation 0, EUT On Side
9085.690	29.8	-0.3	2.6	310.0	3.0	0.0	Vert	AV	0.0	29.5	54.0	-24.5	Mid Ch.908.7 MHz, Ext Antenna, Battery, Attenuation 0, EUT Horz
9086.435	49.4	-0.3	2.1	265.0	3.0	0.0	Horz	PK	0.0	49.1	74.0	-24.9	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
4543.355	38.8	10.3	1.0	360.0	3.0	0.0	Horz	PK	0.0	49.1	74.0	-24.9	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
4510.640	38.8	10.2	1.0	298.0	3.0	0.0	Vert	PK	0.0	49.0	74.0	-25.0	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
4542.635	38.6	10.3	1.2	284.0	3.0	0.0	Vert	PK	0.0	48.9	74.0	-25.1	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
4511.700	38.7	10.2	2.5	287.0	3.0	0.0	Horz	PK	0.0	48.9	74.0	-25.1	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
3609.260	41.9	6.9	1.0	179.0	3.0	0.0	Vert	PK	0.0	48.8	74.0	-25.2	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
4575.200	38.5	10.2	1.0	103.0	3.0	0.0	Horz	PK	0.0	48.7	74.0	-25.3	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
3608.990	41.8	6.9	1.0	211.0	3.0	0.0	Horz	PK	0.0	48.7	74.0	-25.3	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
3634.605	41.0	7.1	1.0	219.0	3.0	0.0	Horz	PK	0.0	48.1	74.0	-25.9	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
3659.130	40.9	7.1	1.0	243.0	3.0	0.0	Horz	PK	0.0	48.0	74.0	-26.0	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
4575.892	37.7	10.2	1.0	118.0	3.0	0.0	Vert	PK	0.0	47.9	74.0	-26.1	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
2707.090	46.2	1.5	1.0	332.0	3.0	0.0	Vert	PK	0.0	47.7	74.0	-26.3	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
3634.670	40.5	7.1	1.0	182.0	3.0	0.0	Vert	PK	0.0	47.6	74.0	-26.4	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
3659.583	39.4	7.1	1.0	180.0	3.0	0.0	Vert	PK	0.0	46.5	74.0	-27.5	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
9086.720	46.4	-0.3	1.2	9.0	3.0	0.0	Horz	PK	0.0	46.1	74.0	-27.9	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
2744.583	43.9	1.6	3.9	24.0	3.0	0.0	Vert	PK	0.0	45.5	74.0	-28.5	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
2726.165	43.9	1.6	1.0	15.0	3.0	0.0	Vert	PK	0.0	45.5	74.0	-28.5	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT Horz
2744.595	42.9	1.6	1.0	241.0	3.0	0.0	Horz	PK	0.0	44.5	74.0	-29.5	High Ch.914.9 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
2707.030	42.4	1.5	1.0	213.0	3.0	0.0	Horz	PK	0.0	43.9	74.0	-30.1	Low Ch.902.3 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
2725.910	42.2	1.6	1.0	272.0	3.0	0.0	Horz	PK	0.0	43.8	74.0	-30.2	Mid Ch.908.7 MHz, Ext Antenna, 5VDC, Attenuation 10, EUT On Side
9086.145	41.0	-0.3	1.0	173.0	3.0	0.0	Horz	PK	0.0	40.7	74.0	-33.3	Mid Ch.908.7 MHz, Ext Antenna, Battery, Attenuation 0, EUT On Side
9086.945	40.7	-0.3	2.6	310.0	3.0	0.0	Vert	PK	0.0	40.4	74.0	-33.6	Mid Ch.908.7 MHz, Ext Antenna, Battery, Attenuation 0, EUT Horz

SPURIOUS RADIATED EMISSIONS



EmiRS 2017.01.25 PSA-ESCI 2017.01.26

Work Order:	PECK0001	Date:	03/29/17	
Project:	None	Temperature:	22.4 °C	
Job Site:	EVO1	Humidity:	34.8% RH	
Serial Number:	12	Barometric Pres.:	1021 mbar	Tested by: Brandon Hobbs
EUT:	PK1276			
Configuration:	8			
Customer:	APANA Inc			
Attendees:	David Humphrey			
EUT Power:	5 VDC Nominal via 120VAC/60Hz			
Operating Mode:	Tx continuous FHSS 125 kHz BW Please reference the data comments for additional operating mode conditions			
Deviations:	None			
Comments:	Please reference the data comments for EUT orientation, Antenna type, power applied and frequency. Internal Antenna completed need external antenna info now.			

Test Specifications	Test Method
FCC 15.247:2017	ANSI C63.10:2013

Run #	114	Test Distance (m)	3	Antenna Height(s)	1 to 4(m)	Results	Pass
-------	-----	-------------------	---	-------------------	-----------	---------	------

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
------------	------------------	-------------	-------------------------	-------------------	------------------------	---------------------------	--------------------------	----------	--------------------------	-------------------	----------------------	------------------------	----------

9148.530	48.5	-0.3	2.1	240.0	3.0	0.0	Vert	AV	0.0	48.2	54.0	-5.8	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
7318.850	27.6	18.8	1.0	351.0	3.0	0.0	Vert	AV	0.0	46.4	54.0	-7.6	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
7269.500	27.7	18.6	1.2	273.0	3.0	0.0	Vert	AV	0.0	46.3	54.0	-7.7	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
7270.460	27.6	18.6	1.0	127.0	3.0	0.0	Horz	AV	0.0	46.2	54.0	-7.8	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
7319.325	27.4	18.8	1.0	215.0	3.0	0.0	Horz	AV	0.0	46.2	54.0	-7.8	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Vert
9086.965	46.0	-0.3	2.3	130.0	3.0	0.0	Horz	AV	0.0	45.7	54.0	-8.3	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Vert
2706.785	44.2	1.5	1.0	126.0	3.0	0.0	Vert	AV	0.0	45.7	54.0	-8.3	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
9086.735	44.6	-0.3	2.4	303.0	3.0	0.0	Vert	AV	0.0	44.3	54.0	-9.7	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
2726.070	42.4	1.6	1.0	126.0	3.0	0.0	Vert	AV	0.0	44.0	54.0	-10.0	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
2744.605	42.2	1.6	1.0	340.0	3.0	0.0	Vert	AV	0.0	43.8	54.0	-10.2	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
2726.020	41.3	1.6	1.0	148.0	3.0	0.0	Horz	AV	0.0	42.9	54.0	-11.1	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
2744.560	41.3	1.6	1.0	256.0	3.0	0.0	Horz	AV	0.0	42.9	54.0	-11.1	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
9022.660	43.0	-0.3	2.0	301.0	3.0	0.0	Vert	AV	0.0	42.7	54.0	-11.3	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
9022.865	42.7	-0.3	1.2	164.0	3.0	0.0	Horz	AV	0.0	42.4	54.0	-11.6	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
2706.910	40.9	1.5	1.0	152.0	3.0	0.0	Horz	AV	0.0	42.4	54.0	-11.6	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
9148.500	42.5	-0.3	1.0	154.0	3.0	0.0	Horz	AV	0.0	42.2	54.0	-11.8	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
3634.670	33.9	7.1	1.0	304.0	3.0	0.0	Horz	AV	0.0	41.0	54.0	-13.0	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
5415.175	27.5	11.9	1.0	349.0	3.0	0.0	Horz	AV	0.0	39.4	54.0	-14.6	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
3659.470	32.3	7.1	1.0	309.0	3.0	0.0	Vert	AV	0.0	39.4	54.0	-14.6	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
5413.835	27.4	11.9	1.0	278.0	3.0	0.0	Vert	AV	0.0	39.3	54.0	-14.7	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
3659.535	32.2	7.1	1.0	320.0	3.0	0.0	Horz	AV	0.0	39.3	54.0	-14.7	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
3609.020	31.9	6.9	1.0	275.0	3.0	0.0	Horz	AV	0.0	38.8	54.0	-15.2	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
3634.780	31.7	7.1	1.0	230.0	3.0	0.0	Vert	AV	0.0	38.8	54.0	-15.2	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
3609.020	31.2	6.9	1.0	245.0	3.0	0.0	Vert	AV	0.0	38.1	54.0	-15.9	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
8233.630	40.9	-3.0	1.1	192.0	3.0	0.0	Vert	AV	0.0	37.9	54.0	-16.1	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
4543.520	27.5	10.3	1.0	142.0	3.0	0.0	Vert	AV	0.0	37.8	54.0	-16.2	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
4544.375	27.5	10.3	1.0	0.0	3.0	0.0	Horz	AV	0.0	37.8	54.0	-16.2	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
8234.075	40.7	-3.0	2.2	257.0	3.0	0.0	Horz	AV	0.0	37.7	54.0	-16.3	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
4575.615	27.5	10.2	1.0	0.0	3.0	0.0	Horz	AV	0.0	37.7	54.0	-16.3	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
4511.215	27.5	10.2	3.2	211.0	3.0	0.0	Horz	AV	0.0	37.7	54.0	-16.3	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
4512.390	27.5	10.2	1.0	298.0	3.0	0.0	Vert	AV	0.0	37.7	54.0	-16.3	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
4574.805	27.5	10.2	2.0	295.0	3.0	0.0	Vert	AV	0.0	37.7	54.0	-16.3	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
7269.925	38.9	18.6	1.2	273.0	3.0	0.0	Vert	PK	0.0	57.5	74.0	-16.5	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
4575.290	27.3	10.2	1.0	331.0	3.0	0.0	Horz	AV	0.0	37.5	54.0	-16.5	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
7269.725	38.7	18.6	1.0	127.0	3.0	0.0	Horz	PK	0.0	57.3	74.0	-16.7	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
7320.625	38.3	18.8	1.0	351.0	3.0	0.0	Vert	PK	0.0	57.1	74.0	-16.9	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
7318.025	37.9	18.8	1.0	215.0	3.0	0.0	Horz	PK	0.0	56.7	74.0	-17.3	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
3659.990	28.2	7.1	1.0	131.0	3.0	0.0	Horz	AV	0.0	35.3	54.0	-18.7	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
2743.320	30.6	1.6	1.2	260.0	3.0	0.0	Horz	AV	0.0	32.2	54.0	-21.8	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
9148.825	31.7	-0.3	1.0	301.0	3.0	0.0	Vert	AV	0.0	31.4	54.0	-22.6	High Ch.914.9 MHz, Int Antenna, Battery, Attenuation 0, EUT Horz
9148.735	31.4	-0.3	1.0	32.0	3.0	0.0	Horz	AV	0.0	31.1	54.0	-22.9	High Ch.914.9 MHz, Int Antenna, Battery, Attenuation 0, EUT On Side

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
9148.325	51.2	-0.3	2.1	240.0	3.0	0.0	Vert	PK	0.0	50.9	74.0	-23.1	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
5415.040	38.4	11.9	1.0	349.0	3.0	0.0	Horz	PK	0.0	50.3	74.0	-23.7	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
5415.150	38.3	11.9	1.0	278.0	3.0	0.0	Vert	PK	0.0	50.2	74.0	-23.8	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
2706.670	47.9	1.5	1.0	126.0	3.0	0.0	Vert	PK	0.0	49.4	74.0	-24.6	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
9086.655	49.4	-0.3	2.3	130.0	3.0	0.0	Horz	PK	0.0	49.1	74.0	-24.9	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Vert
4573.390	38.9	10.2	2.0	295.0	3.0	0.0	Vert	PK	0.0	49.1	74.0	-24.9	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
4511.830	38.6	10.2	1.0	298.0	3.0	0.0	Vert	PK	0.0	48.8	74.0	-25.2	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
3634.785	41.7	7.1	1.0	304.0	3.0	0.0	Horz	PK	0.0	48.8	74.0	-25.2	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
4512.825	38.5	10.2	3.2	211.0	3.0	0.0	Horz	PK	0.0	48.7	74.0	-25.3	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
4544.545	38.3	10.3	1.0	0.0	3.0	0.0	Horz	PK	0.0	48.6	74.0	-25.4	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
2726.060	46.9	1.6	1.0	126.0	3.0	0.0	Vert	PK	0.0	48.5	74.0	-25.5	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
4574.280	38.3	10.2	1.0	331.0	3.0	0.0	Horz	PK	0.0	48.5	74.0	-25.5	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
9086.665	48.6	-0.3	2.4	303.0	3.0	0.0	Vert	PK	0.0	48.3	74.0	-25.7	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
4573.625	37.9	10.2	1.0	0.0	3.0	0.0	Horz	PK	0.0	48.1	74.0	-25.9	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
2744.685	46.5	1.6	1.0	340.0	3.0	0.0	Vert	PK	0.0	48.1	74.0	-25.9	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
3609.180	41.1	6.9	1.0	245.0	3.0	0.0	Vert	PK	0.0	48.0	74.0	-26.0	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
4544.375	37.7	10.3	1.0	142.0	3.0	0.0	Vert	PK	0.0	48.0	74.0	-26.0	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
3659.485	40.8	7.1	1.0	309.0	3.0	0.0	Vert	PK	0.0	47.9	74.0	-26.1	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
2744.555	46.2	1.6	1.0	256.0	3.0	0.0	Horz	PK	0.0	47.8	74.0	-26.2	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
3659.735	40.7	7.1	1.0	320.0	3.0	0.0	Horz	PK	0.0	47.8	74.0	-26.2	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
2725.950	46.1	1.6	1.0	148.0	3.0	0.0	Horz	PK	0.0	47.7	74.0	-26.3	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
2706.780	46.0	1.5	1.0	152.0	3.0	0.0	Horz	PK	0.0	47.5	74.0	-26.5	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
3609.130	40.6	6.9	1.0	275.0	3.0	0.0	Horz	PK	0.0	47.5	74.0	-26.5	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
9022.605	47.4	-0.3	1.2	164.0	3.0	0.0	Horz	PK	0.0	47.1	74.0	-26.9	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
3635.325	39.8	7.1	1.0	230.0	3.0	0.0	Vert	PK	0.0	46.9	74.0	-27.1	Mid Ch.908.7 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
9148.380	47.1	-0.3	1.0	154.0	3.0	0.0	Horz	PK	0.0	46.8	74.0	-27.2	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
9023.295	47.1	-0.3	2.0	301.0	3.0	0.0	Vert	PK	0.0	46.8	74.0	-27.2	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
3659.855	38.9	7.1	1.0	131.0	3.0	0.0	Horz	PK	0.0	46.0	74.0	-28.0	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
8234.235	47.3	-3.0	2.2	257.0	3.0	0.0	Horz	PK	0.0	44.3	74.0	-29.7	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
8233.445	47.0	-3.0	1.1	192.0	3.0	0.0	Vert	PK	0.0	44.0	74.0	-30.0	High Ch.914.9 MHz, Int Antenna, 5VDC, Attenuation 10, EUT Horz
2745.500	42.2	1.6	1.2	260.0	3.0	0.0	Horz	PK	0.0	43.8	74.0	-30.2	Low Ch.902.3 MHz, Int Antenna, 5VDC, Attenuation 10, EUT On Side
9148.940	43.0	-0.3	1.0	301.0	3.0	0.0	Vert	PK	0.0	42.7	74.0	-31.3	High Ch.914.9 MHz, Int Antenna, Battery, Attenuation 0, EUT Horz
9147.800	42.7	-0.3	1.0	32.0	3.0	0.0	Horz	PK	0.0	42.4	74.0	-31.6	High Ch.914.9 MHz, Int Antenna, Battery, Attenuation 0, EUT On Side

CARRIER FREQUENCY SEPARATION

XMIT 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

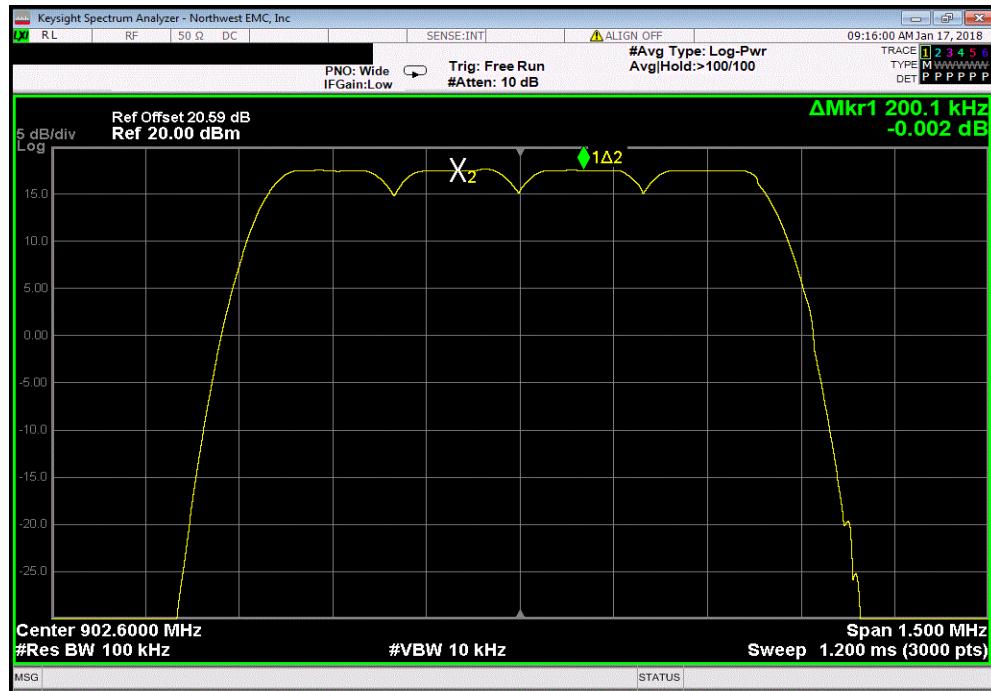
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	19-May-17	19-May-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Attenuator	Fairview Microwave	SA4014-20	TKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Generator - Signal	Agilent	N5183A	TIA	6-Apr-16	6-Apr-18

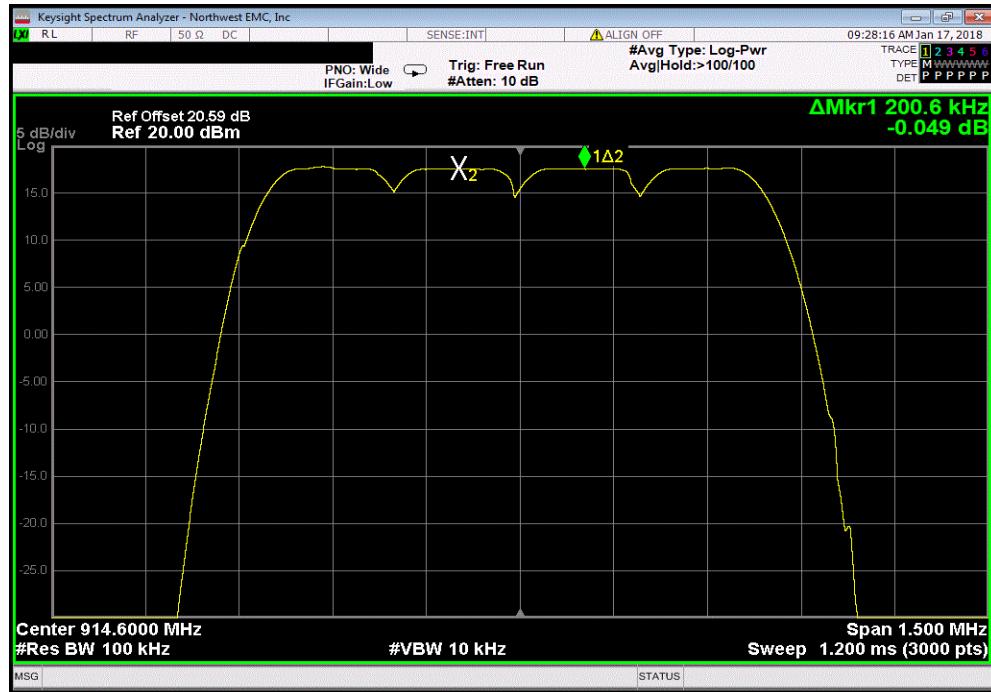
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The channel carrier frequencies in the 902-928 MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.

CARRIER FREQUENCY SEPARATION


EUT: PK1276		Work Order: APAN0004	
Serial Number: 18-9B-A5-90-02-7B		Date: 16-Jan-18	
Customer: APANA Inc.		Temperature: 23 °C	
Attendees: Matt Maher Peterson, David Humphrey		Humidity: 35% RH	
Project: None		Barometric Pres.: 1025 mbar	
Tested by: Richard Meliroth	Power: USB	Job Site: NC02	
TEST SPECIFICATIONS		Test Method	
FCC 15.247:2018		ANSI C63.10:2013	
COMMENTS			
Power Setting = Default = 10.			
DEVIATIONS FROM TEST STANDARD			
None			
Configuration #	1	Signature	
		Value	Limit (±)
Hopping Mode			Results
Spreading Factor 7			
Lower Channel Set (Ch 0 - Ch 3)		200.1 kHz	140 kHz
Upper Channel Set (Ch 4 - Ch 7)		200.6 kHz	140 kHz
Spreading Factor 10			
Lower Channel Set (Ch 0 - Ch 3)		185.1 kHz	140 kHz
Upper Channel Set (Ch 4 - Ch 7)		200.1 kHz	140 kHz

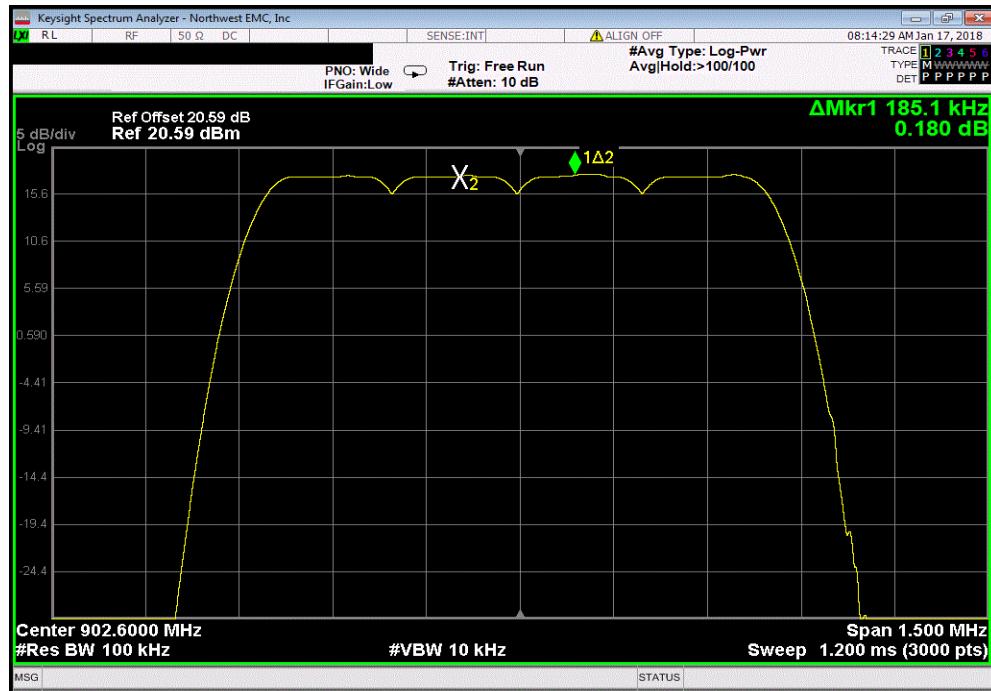
CARRIER FREQUENCY SEPARATION



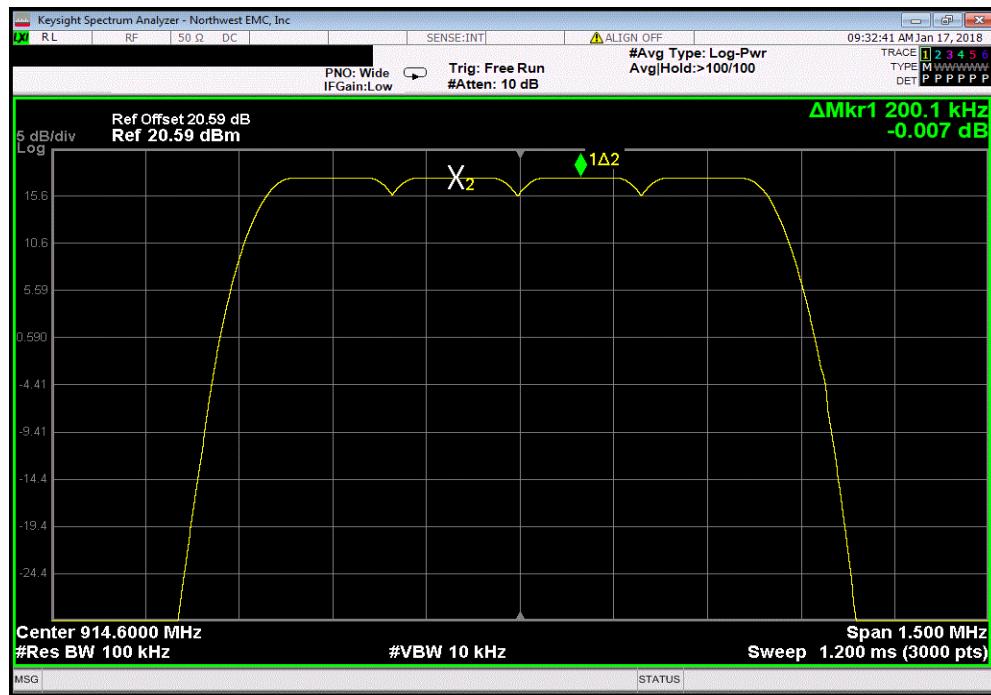
NweTx 2016.09.14.2 XMT 2017.12.13

Hopping Mode, Spreading Factor 7, Lower Channel Set (Ch 0 - Ch 3)			Limit
Value	(\geq)	Results	
200.1 kHz	140 kHz	Pass	

Hopping Mode, Spreading Factor 7, Upper Channel Set (Ch 4 - Ch 7)			Limit
Value	(\geq)	Results	
200.6 kHz	140 kHz	Pass	



CARRIER FREQUENCY SEPARATION



NweTx 2016.09.14.2 XMT 2017.12.13

Hopping Mode, Spreading Factor 10, Lower Channel Set (Ch 0 - Ch 3)			Limit	Value	(\geq)	Results
				185.1 kHz	140 kHz	Pass

Hopping Mode, Spreading Factor 10, Upper Channel Set (Ch 4 - Ch 7)			Limit	Value	(\geq)	Results
				200.1 kHz	140 kHz	Pass

NUMBER OF HOPPING FREQUENCIES

XMIT 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	19-May-17	19-May-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Attenuator	Fairview Microwave	SA4014-20	TKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Generator - Signal	Agilent	N5183A	TIA	6-Apr-16	6-Apr-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The number of hopping frequencies was measured across the authorized band. The hopping function of the EUT was enabled.

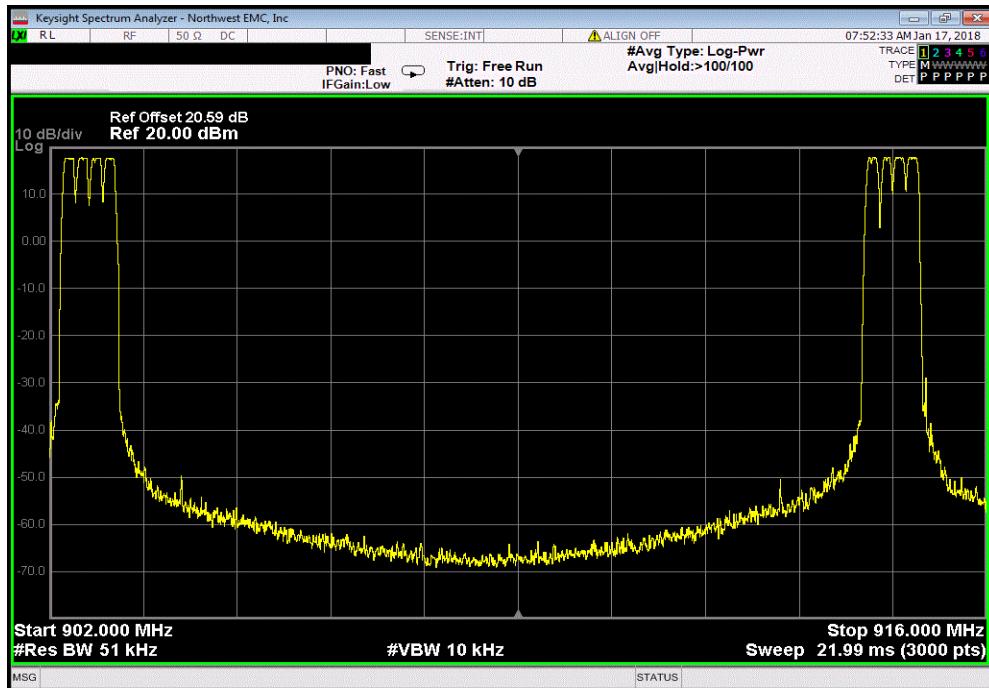
Per FCC publication 453039, for Hybrid systems using both digital modulation and frequency hopping techniques at the same time on the same carrier, there is no requirement on the minimum number of channels associated with this type of hybrid system.

NUMBER OF HOPPING FREQUENCIES

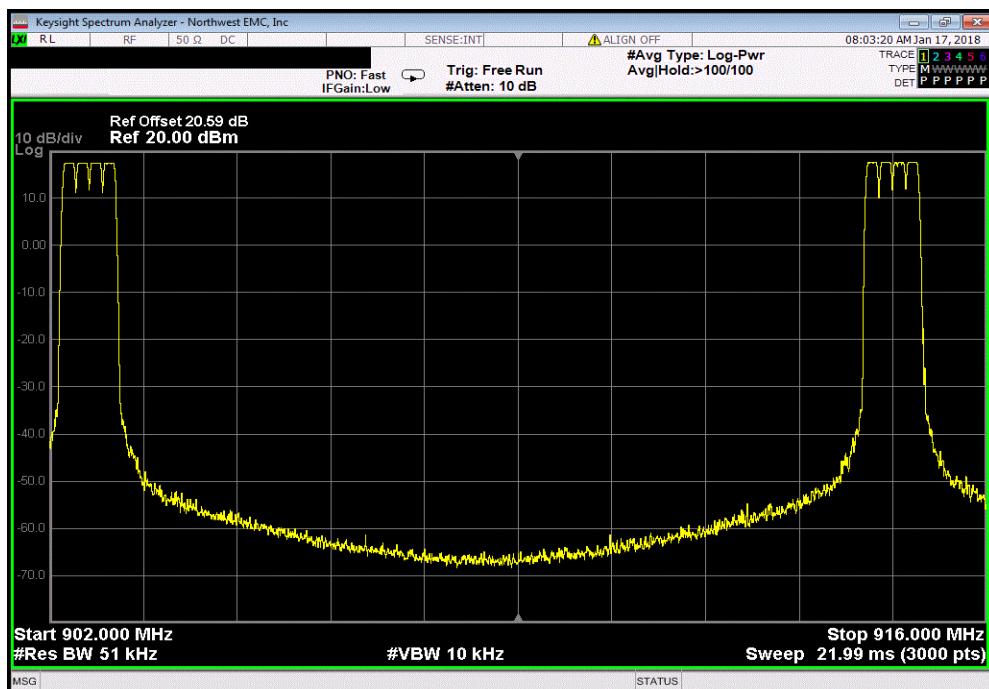
NaveTx 2016.09.14.2

XMIT 2017.12.13

EUT:	PK1276	Work Order:	APAN0004
Serial Number:	18-9B-A5-90-02-7B	Date:	16-Jan-18
Customer:	APANA Inc.	Temperature:	23 °C
Attendees:	Matt Maher Peterson, David Humphrey	Humidity:	35% RH
Project:	None	Barometric Pres.:	1025 mbar
Tested by:	Richard Melroth	Job Site:	NC02
TEST SPECIFICATIONS		Power:	USB
FCC 15.247:2018		Test Method	
		ANSI C63.10:2013	
COMMENTS			
Power Setting = Default = 10.			
DEVIATIONS FROM TEST STANDARD			
None			
Configuration #	1	Signature	
		Number of Channels	Limit
Hopping Mode		8	N/A
Spreading Factor 7		8	N/A
Upper and Lower Channel Sets			N/A
Spreading Factor 10		8	N/A
Upper and Lower Channel Sets			N/A


NUMBER OF HOPPING FREQUENCIES

NweTx 2016.09.14.2 XMT 2017.12.13


Hopping Mode, Spreading Factor 7, Upper and Lower Channel Sets

Number of Channels	Limit	Results
8	N/A	N/A

Hopping Mode, Spreading Factor 10, Upper and Lower Channel Sets

Number of Channels	Limit	Results
8	N/A	N/A

DWELL TIME

XMIT 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	19-May-17	19-May-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Attenuator	Fairview Microwave	SA4014-20	TKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Generator - Signal	Agilent	N5183A	TIA	6-Apr-16	6-Apr-18

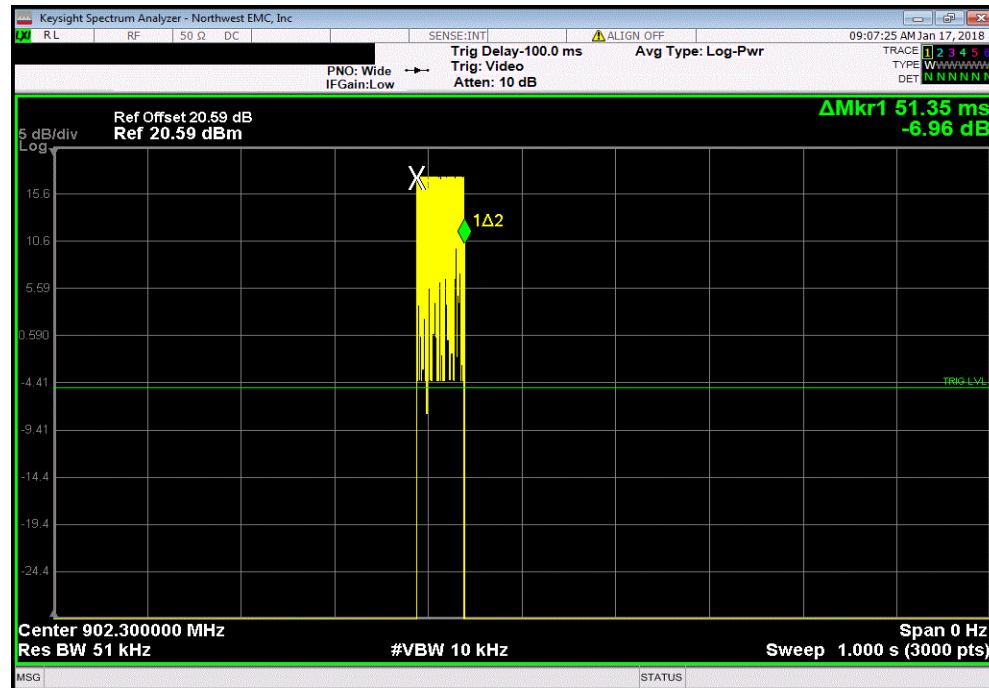
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The hopping function of the EUT was enabled.

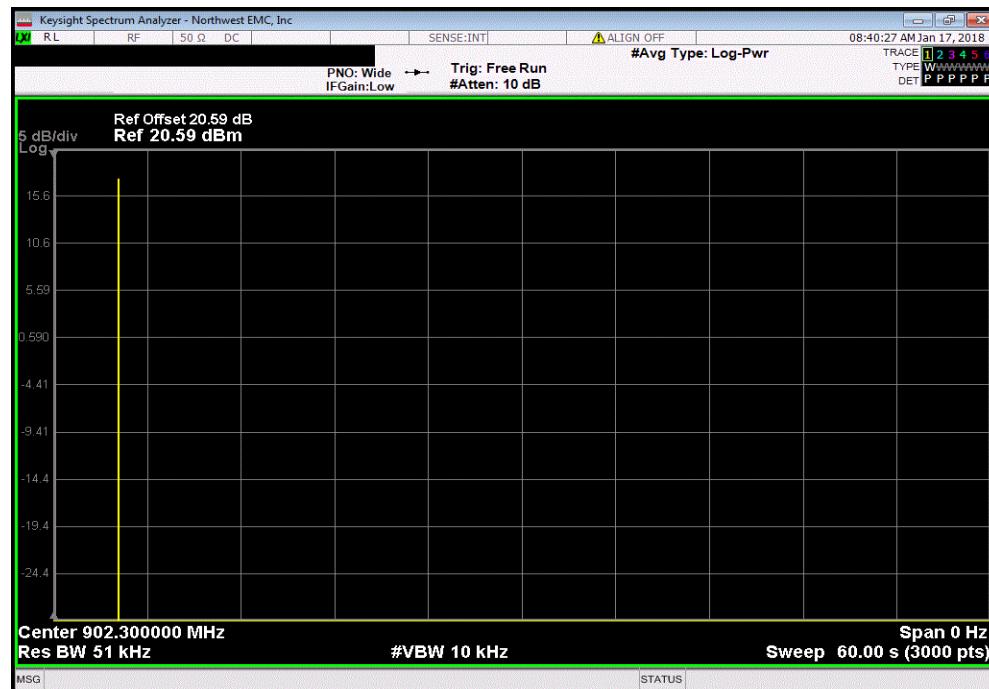
The dwell time limit for a hybrid system operating in the 902-928 MHz is based on the -20dB bandwidth of the hopping channel. For operating channels with -20dB bandwidths less than 250 kHz, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

DWELL TIME

XMIT 2017.12.13


EUT:	PK1276		Work Order:	APAN0004																																																																																																																																																																																																	
Serial Number:	18-9B-A5-90-02-7B		Date:	16-Jan-18																																																																																																																																																																																																	
Customer:	APANA Inc.		Temperature:	23 °C																																																																																																																																																																																																	
Attendees:	Matt Maher Peterson, David Humphrey		Humidity:	35% RH																																																																																																																																																																																																	
Project:	None		Barometric Pres.:	1025 mbar																																																																																																																																																																																																	
Tested by:	Richard Melroth	Power:	USB	Job Site:	NC02																																																																																																																																																																																																
TEST SPECIFICATIONS		Test Method																																																																																																																																																																																																			
FCC 15.247:2018		ANSI C63.10:2013																																																																																																																																																																																																			
COMMENTS																																																																																																																																																																																																					
Power Setting = Default = 10.																																																																																																																																																																																																					
DEVIATIONS FROM TEST STANDARD																																																																																																																																																																																																					
None																																																																																																																																																																																																					
Configuration #	1	Signature																																																																																																																																																																																																			
<table border="1"> <thead> <tr> <th></th> <th></th> <th></th> <th>Pulse Width (mS)</th> <th>Number of Pulses</th> <th>On Time per 20 Sec (mS)</th> <th>Limit (mS)</th> <th>Result</th> </tr> </thead> <tbody> <tr> <td colspan="8">Hopping Mode</td> </tr> <tr> <td colspan="8">Spreading Factor 7</td> </tr> <tr> <td colspan="8">Low Channel 0, 902.3 MHz</td> </tr> <tr> <td colspan="8">Pulse Width</td> </tr> <tr> <td colspan="8">60 second sweep (1)</td> </tr> <tr> <td colspan="8">60 second sweep (2)</td> </tr> <tr> <td colspan="8">60 second sweep (3)</td> </tr> <tr> <td colspan="8">High Channel 7, 914.9 MHz</td> </tr> <tr> <td colspan="8">Pulse Width</td> </tr> <tr> <td colspan="8">60 second sweep (1)</td> </tr> <tr> <td colspan="8">60 second sweep (2)</td> </tr> <tr> <td colspan="8">60 second sweep (3)</td> </tr> <tr> <td colspan="8">Spreading Factor 10</td> </tr> <tr> <td colspan="8">Low Channel 0, 902.3 MHz</td> </tr> <tr> <td colspan="8">Pulse Width</td> </tr> <tr> <td colspan="8">60 second sweep (1)</td> </tr> <tr> <td colspan="8">60 second sweep (2)</td> </tr> <tr> <td colspan="8">60 second sweep (3)</td> </tr> <tr> <td colspan="8">High Channel 7, 914.9 MHz</td> </tr> <tr> <td colspan="8">Pulse Width</td> </tr> <tr> <td colspan="8">60 second sweep (1)</td> </tr> <tr> <td colspan="8">60 second sweep (2)</td> </tr> <tr> <td colspan="8">60 second sweep (3)</td> </tr> </tbody> </table>									Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	Hopping Mode								Spreading Factor 7								Low Channel 0, 902.3 MHz								Pulse Width								60 second sweep (1)								60 second sweep (2)								60 second sweep (3)								High Channel 7, 914.9 MHz								Pulse Width								60 second sweep (1)								60 second sweep (2)								60 second sweep (3)								Spreading Factor 10								Low Channel 0, 902.3 MHz								Pulse Width								60 second sweep (1)								60 second sweep (2)								60 second sweep (3)								High Channel 7, 914.9 MHz								Pulse Width								60 second sweep (1)								60 second sweep (2)								60 second sweep (3)							
			Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result																																																																																																																																																																																														
Hopping Mode																																																																																																																																																																																																					
Spreading Factor 7																																																																																																																																																																																																					
Low Channel 0, 902.3 MHz																																																																																																																																																																																																					
Pulse Width																																																																																																																																																																																																					
60 second sweep (1)																																																																																																																																																																																																					
60 second sweep (2)																																																																																																																																																																																																					
60 second sweep (3)																																																																																																																																																																																																					
High Channel 7, 914.9 MHz																																																																																																																																																																																																					
Pulse Width																																																																																																																																																																																																					
60 second sweep (1)																																																																																																																																																																																																					
60 second sweep (2)																																																																																																																																																																																																					
60 second sweep (3)																																																																																																																																																																																																					
Spreading Factor 10																																																																																																																																																																																																					
Low Channel 0, 902.3 MHz																																																																																																																																																																																																					
Pulse Width																																																																																																																																																																																																					
60 second sweep (1)																																																																																																																																																																																																					
60 second sweep (2)																																																																																																																																																																																																					
60 second sweep (3)																																																																																																																																																																																																					
High Channel 7, 914.9 MHz																																																																																																																																																																																																					
Pulse Width																																																																																																																																																																																																					
60 second sweep (1)																																																																																																																																																																																																					
60 second sweep (2)																																																																																																																																																																																																					
60 second sweep (3)																																																																																																																																																																																																					
<table border="1"> <thead> <tr> <th></th> <th></th> <th></th> <th>Pulse Width (mS)</th> <th>Number of Pulses</th> <th>On Time per 20 Sec (mS)</th> <th>Limit (mS)</th> <th>Result</th> </tr> </thead> <tbody> <tr> <td colspan="8">Hopping Mode</td> </tr> <tr> <td colspan="8">Spreading Factor 7</td> </tr> <tr> <td colspan="8">Low Channel 0, 902.3 MHz</td> </tr> <tr> <td colspan="8">Pulse Width</td> </tr> <tr> <td colspan="8">60 second sweep (1)</td> </tr> <tr> <td colspan="8">60 second sweep (2)</td> </tr> <tr> <td colspan="8">60 second sweep (3)</td> </tr> <tr> <td colspan="8">High Channel 7, 914.9 MHz</td> </tr> <tr> <td colspan="8">Pulse Width</td> </tr> <tr> <td colspan="8">60 second sweep (1)</td> </tr> <tr> <td colspan="8">60 second sweep (2)</td> </tr> <tr> <td colspan="8">60 second sweep (3)</td> </tr> <tr> <td colspan="8">Spreading Factor 10</td> </tr> <tr> <td colspan="8">Low Channel 0, 902.3 MHz</td> </tr> <tr> <td colspan="8">Pulse Width</td> </tr> <tr> <td colspan="8">60 second sweep (1)</td> </tr> <tr> <td colspan="8">60 second sweep (2)</td> </tr> <tr> <td colspan="8">60 second sweep (3)</td> </tr> <tr> <td colspan="8">High Channel 7, 914.9 MHz</td> </tr> <tr> <td colspan="8">Pulse Width</td> </tr> <tr> <td colspan="8">60 second sweep (1)</td> </tr> <tr> <td colspan="8">60 second sweep (2)</td> </tr> <tr> <td colspan="8">60 second sweep (3)</td> </tr> </tbody> </table>									Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	Hopping Mode								Spreading Factor 7								Low Channel 0, 902.3 MHz								Pulse Width								60 second sweep (1)								60 second sweep (2)								60 second sweep (3)								High Channel 7, 914.9 MHz								Pulse Width								60 second sweep (1)								60 second sweep (2)								60 second sweep (3)								Spreading Factor 10								Low Channel 0, 902.3 MHz								Pulse Width								60 second sweep (1)								60 second sweep (2)								60 second sweep (3)								High Channel 7, 914.9 MHz								Pulse Width								60 second sweep (1)								60 second sweep (2)								60 second sweep (3)							
			Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result																																																																																																																																																																																														
Hopping Mode																																																																																																																																																																																																					
Spreading Factor 7																																																																																																																																																																																																					
Low Channel 0, 902.3 MHz																																																																																																																																																																																																					
Pulse Width																																																																																																																																																																																																					
60 second sweep (1)																																																																																																																																																																																																					
60 second sweep (2)																																																																																																																																																																																																					
60 second sweep (3)																																																																																																																																																																																																					
High Channel 7, 914.9 MHz																																																																																																																																																																																																					
Pulse Width																																																																																																																																																																																																					
60 second sweep (1)																																																																																																																																																																																																					
60 second sweep (2)																																																																																																																																																																																																					
60 second sweep (3)																																																																																																																																																																																																					
Spreading Factor 10																																																																																																																																																																																																					
Low Channel 0, 902.3 MHz																																																																																																																																																																																																					
Pulse Width																																																																																																																																																																																																					
60 second sweep (1)																																																																																																																																																																																																					
60 second sweep (2)																																																																																																																																																																																																					
60 second sweep (3)																																																																																																																																																																																																					
High Channel 7, 914.9 MHz																																																																																																																																																																																																					
Pulse Width																																																																																																																																																																																																					
60 second sweep (1)																																																																																																																																																																																																					
60 second sweep (2)																																																																																																																																																																																																					
60 second sweep (3)																																																																																																																																																																																																					

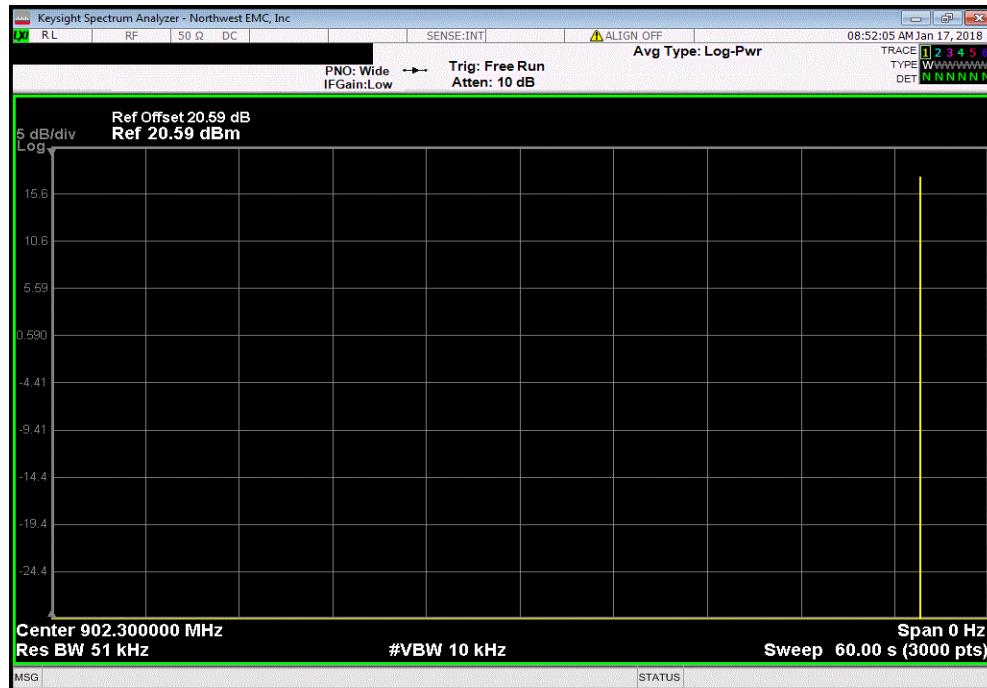
DWELL TIME



XMT 2017.12.13

Hopping Mode, Spreading Factor 7, Low Channel 0, 902.3 MHz, Pulse Width					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
51.35	N/A	N/A	N/A	N/A	N/A

Hopping Mode, Spreading Factor 7, Low Channel 0, 902.3 MHz, 60 second sweep (1)					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
N/A	1	51.35	400	Pass	

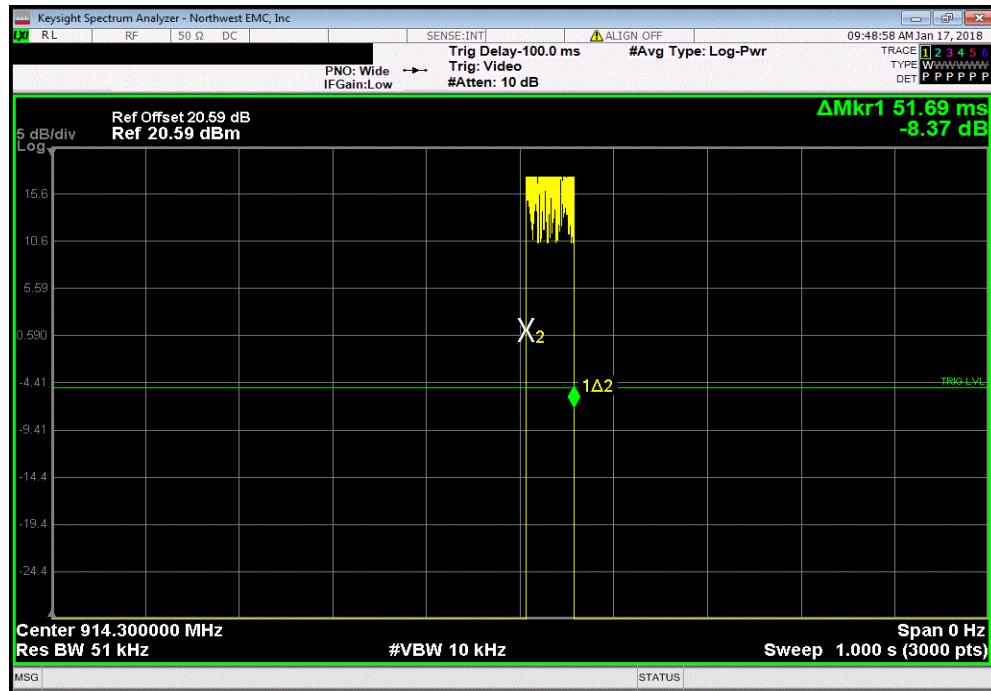


DWELL TIME

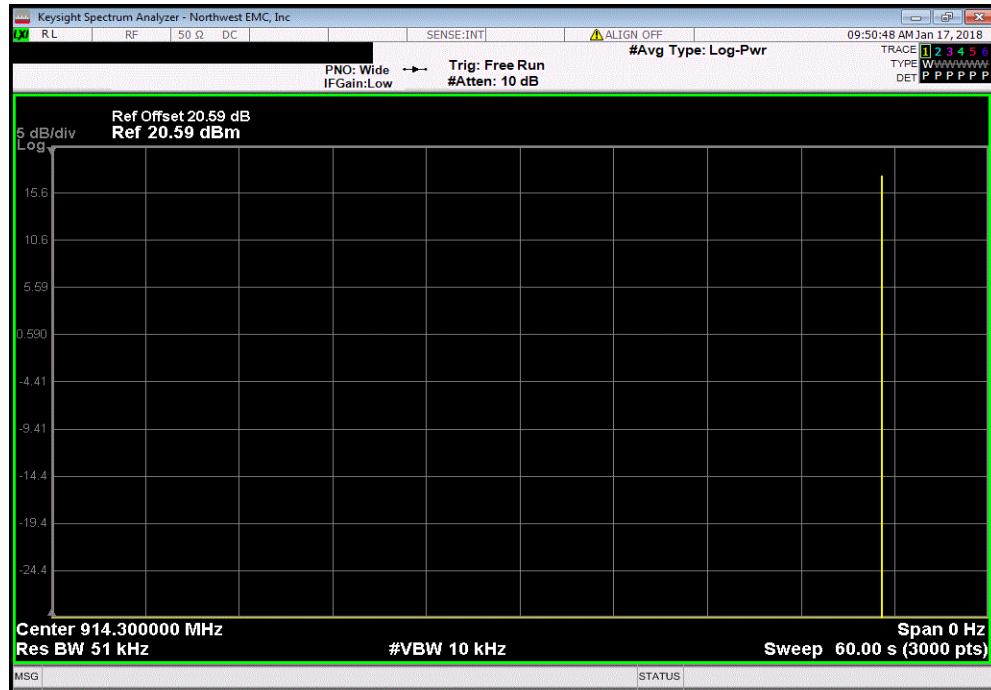
XMT 2017.12.13

Hopping Mode, Spreading Factor 7, Low Channel 0, 902.3 MHz, 60 second sweep (2)					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
N/A	1	51.35	400	Pass	

Hopping Mode, Spreading Factor 7, Low Channel 0, 902.3 MHz, 60 second sweep (3)					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
N/A	1	51.35	400	Pass	



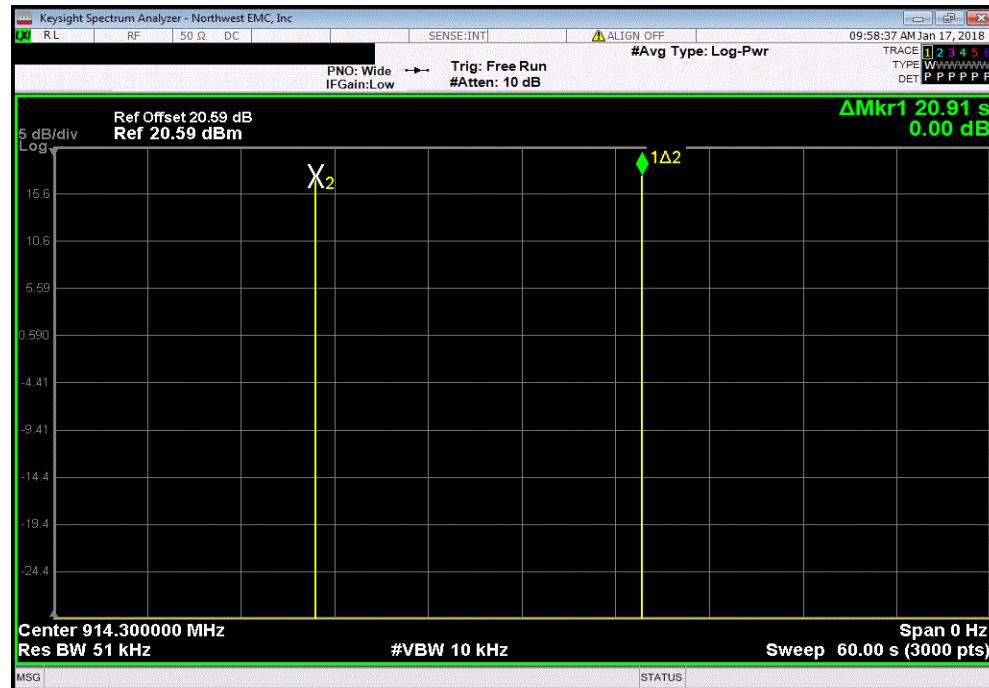
DWELL TIME



XMT 2017.12.13

Hopping Mode, Spreading Factor 7, High Channel 7, 914.9 MHz, Pulse Width					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
51.69	N/A	N/A	N/A	N/A	

Hopping Mode, Spreading Factor 7, High Channel 7, 914.9 MHz, 60 second sweep (1)					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
N/A	1	51.69	400	Pass	

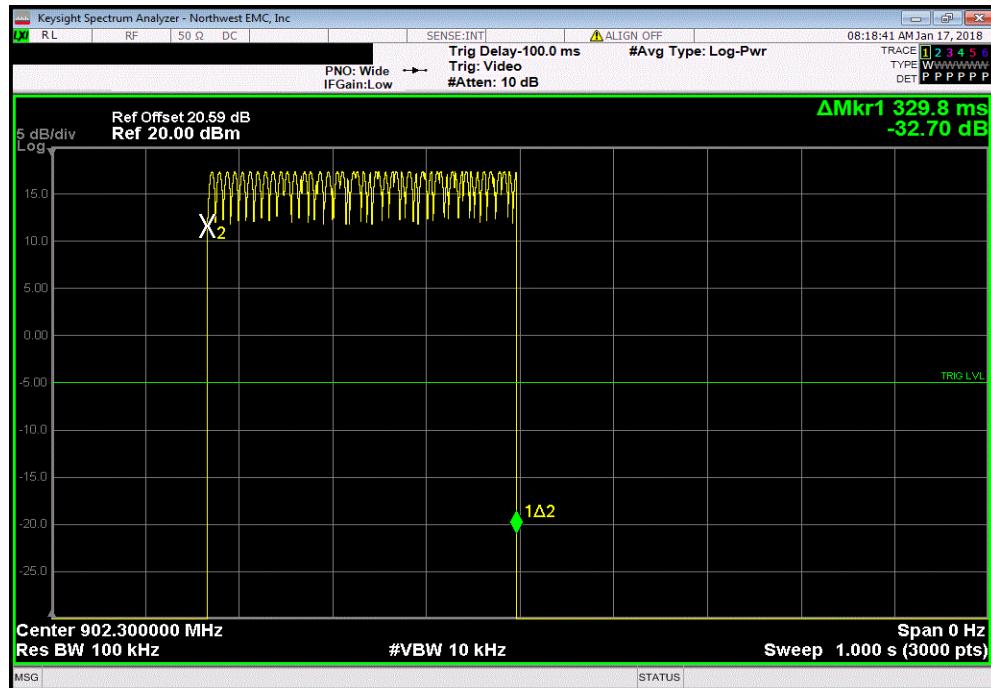


DWELL TIME

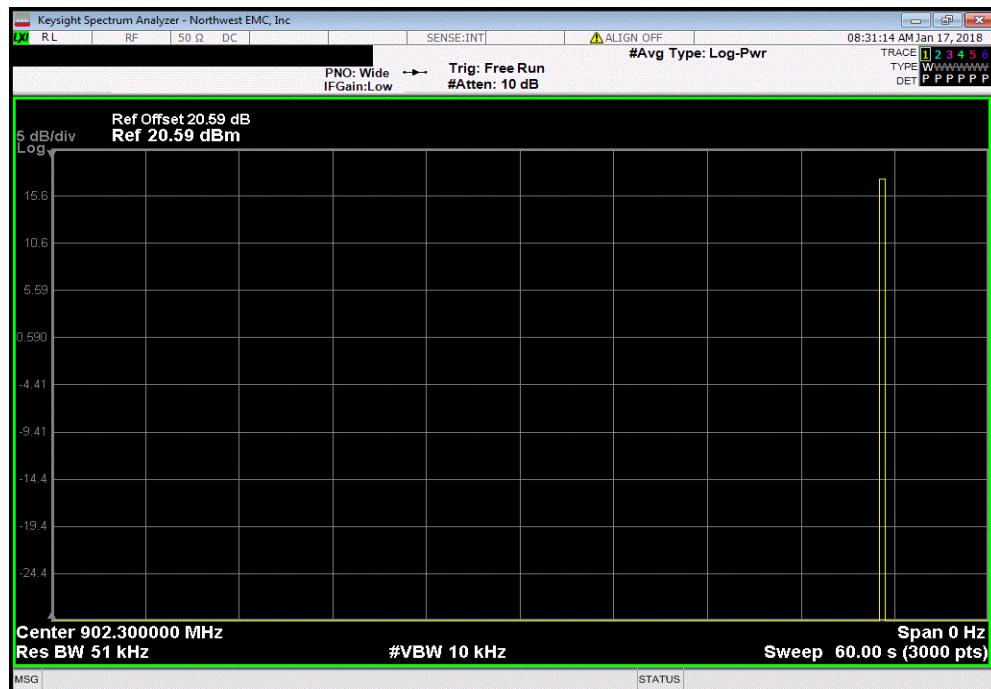
XMT 2017.12.13

Hopping Mode, Spreading Factor 7, High Channel 7, 914.9 MHz, 60 second sweep (2)					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
N/A	2	51.69	400	Pass	

Hopping Mode, Spreading Factor 7, High Channel 7, 914.9 MHz, 60 second sweep (3)					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
N/A	2	103.38	400	Pass	



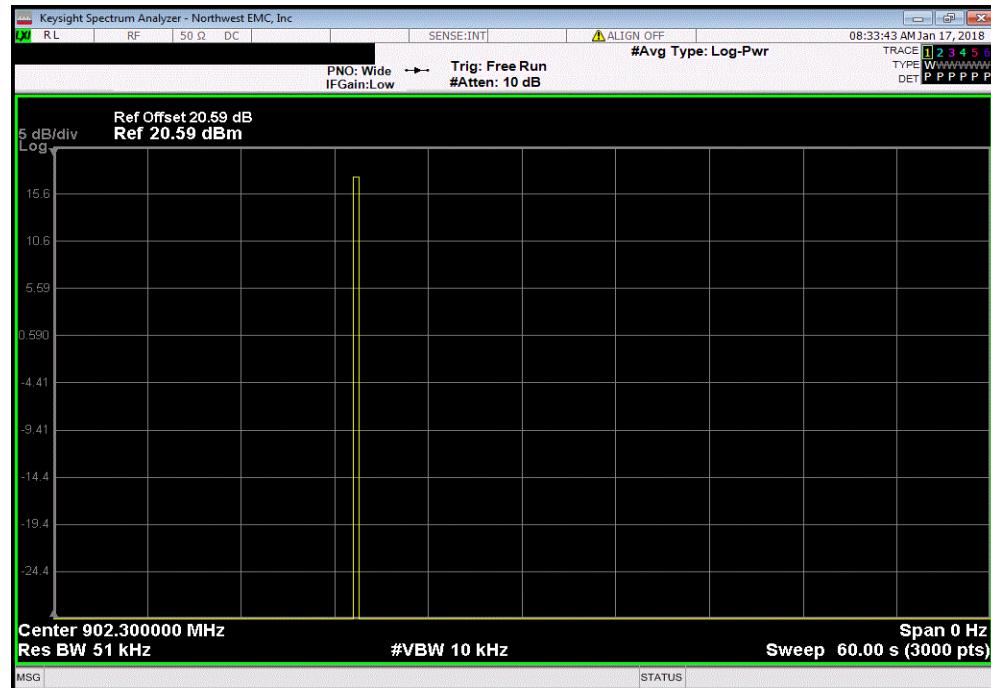
DWELL TIME



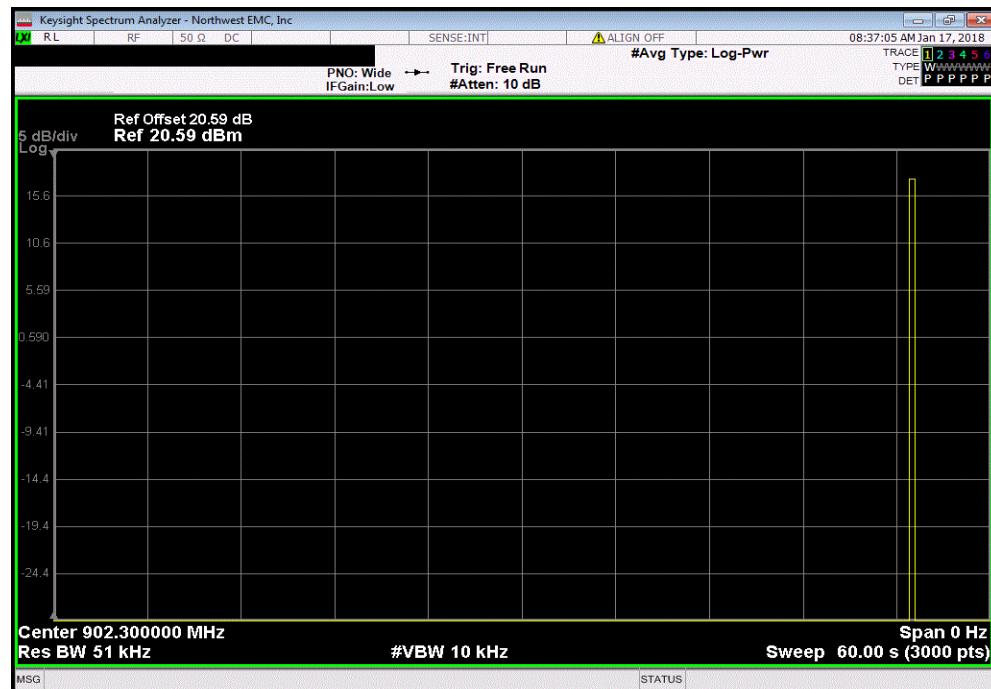
XMT 2017.12.13

Hopping Mode, Spreading Factor 10, Low Channel 0, 902.3 MHz, Pulse Width					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
329.8	N/A	N/A	N/A	N/A	

Hopping Mode, Spreading Factor 10, Low Channel 0, 902.3 MHz, 60 second sweep (1)					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
N/A	1	329.8	400	Pass	



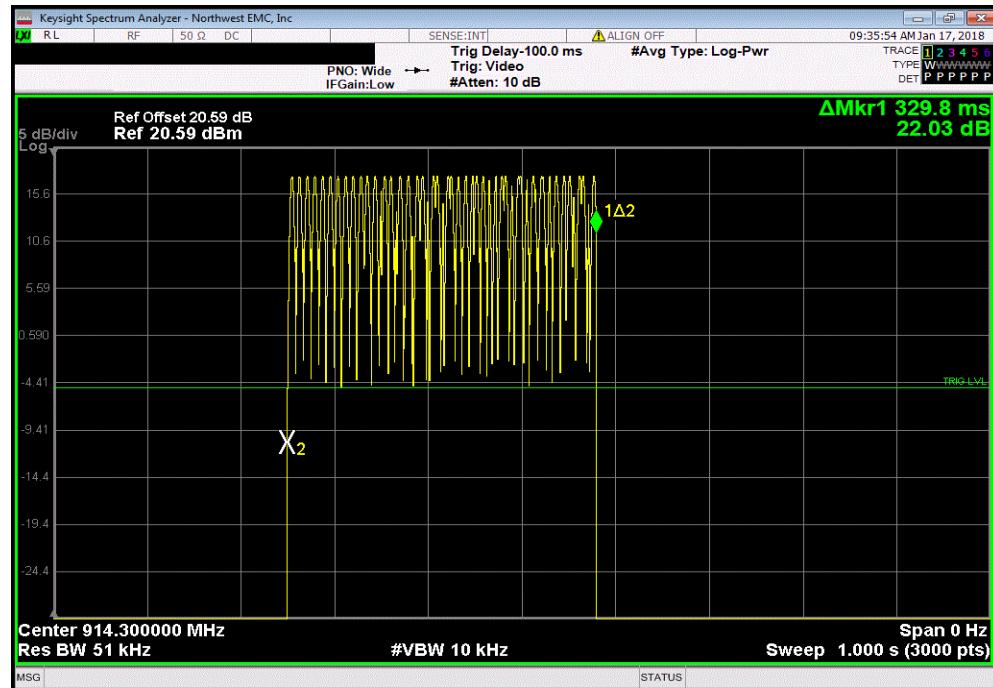
DWELL TIME



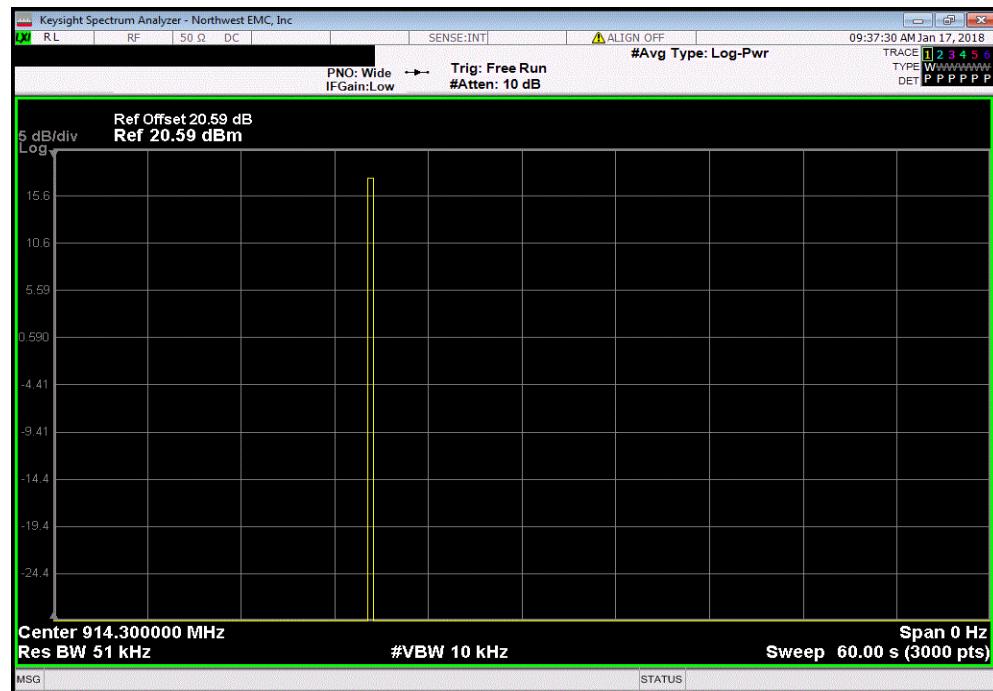
XMT 2017.12.13

Hopping Mode, Spreading Factor 10, Low Channel 0, 902.3 MHz, 60 second sweep (2)					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
N/A	1	329.8	400	Pass	

Hopping Mode, Spreading Factor 10, Low Channel 0, 902.3 MHz, 60 second sweep (3)					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
N/A	1	329.8	400	Pass	



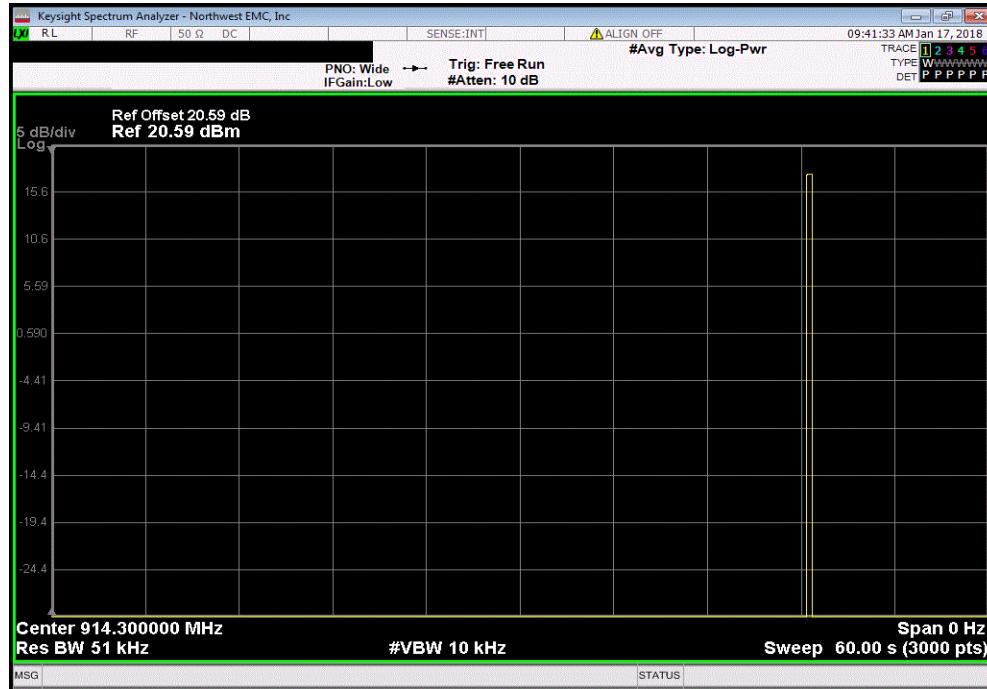
DWELL TIME



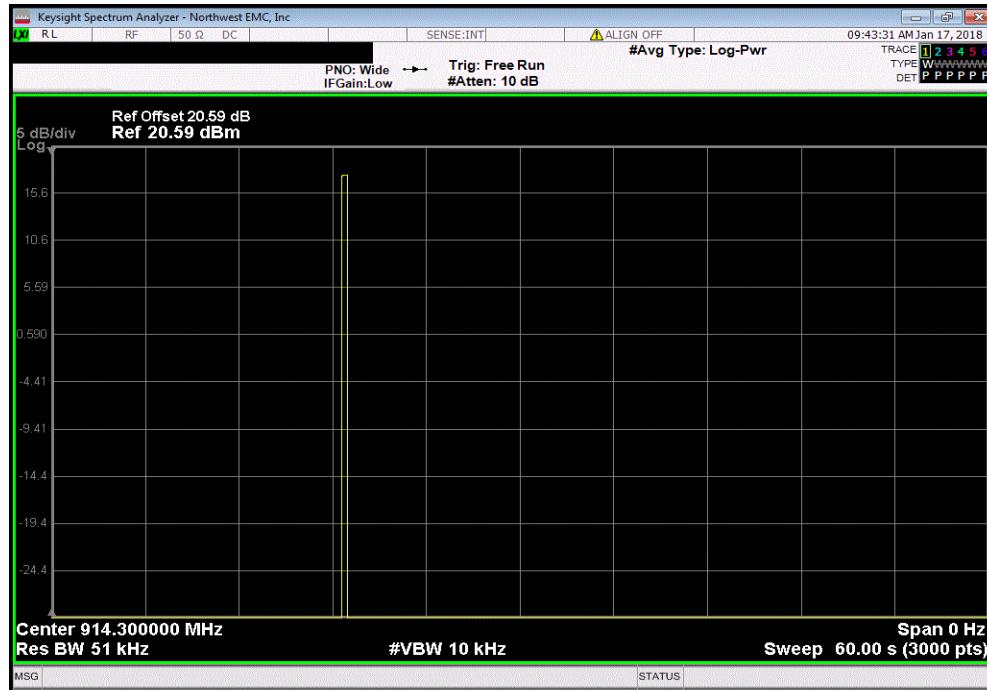
XMT 2017.12.13

Hopping Mode, Spreading Factor 10, High Channel 7, 914.9 MHz, Pulse Width					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
329.8	N/A	N/A	N/A	N/A	

Hopping Mode, Spreading Factor 10, High Channel 7, 914.9 MHz, 60 second sweep (1)					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
N/A	1	329.8	400	Pass	



DWELL TIME



XMT 2017.12.13

Hopping Mode, Spreading Factor 10, High Channel 7, 914.9 MHz, 60 second sweep (2)					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
N/A	1	329.8	400	Pass	

Hopping Mode, Spreading Factor 10, High Channel 7, 914.9 MHz, 60 second sweep (3)					
Pulse Width (mS)	Number of Pulses	On Time per 20 Sec (mS)	Limit (mS)	Result	
N/A	1	329.8	400	Pass	

BAND EDGE COMPLIANCE - HOPPING MODE

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	19-May-17	19-May-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Attenuator	Fairview Microwave	SA4014-20	TKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Generator - Signal	Agilent	N5183A	TIA	6-Apr-16	6-Apr-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to its normal pseudo-random hopping sequence. The EUT was transmitting at the data rate(s) listed in the datasheet.

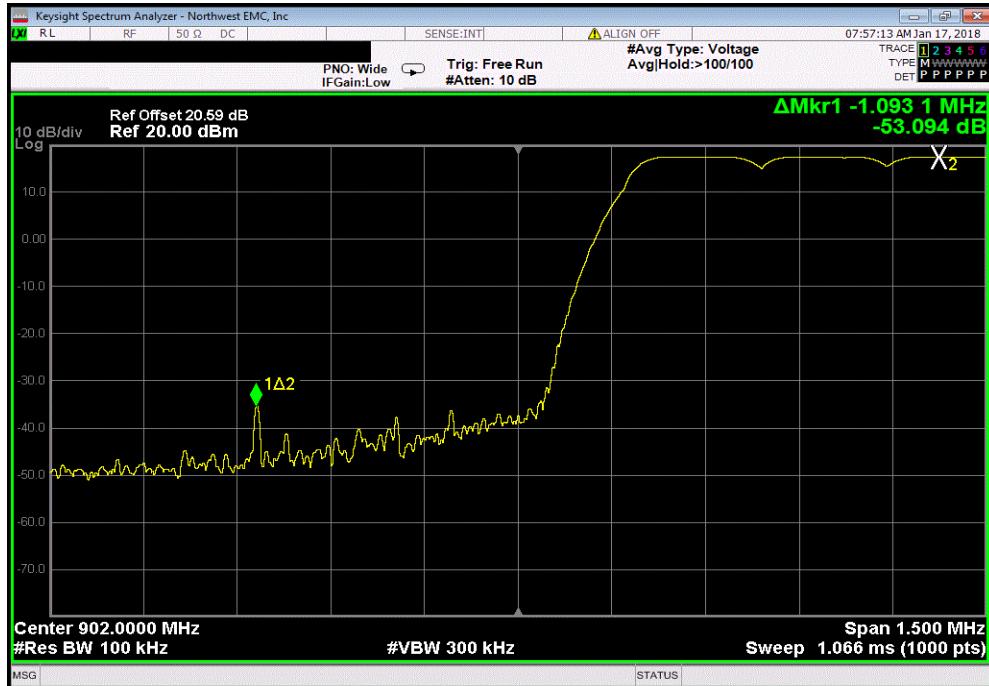
The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE - HOPPING MODE

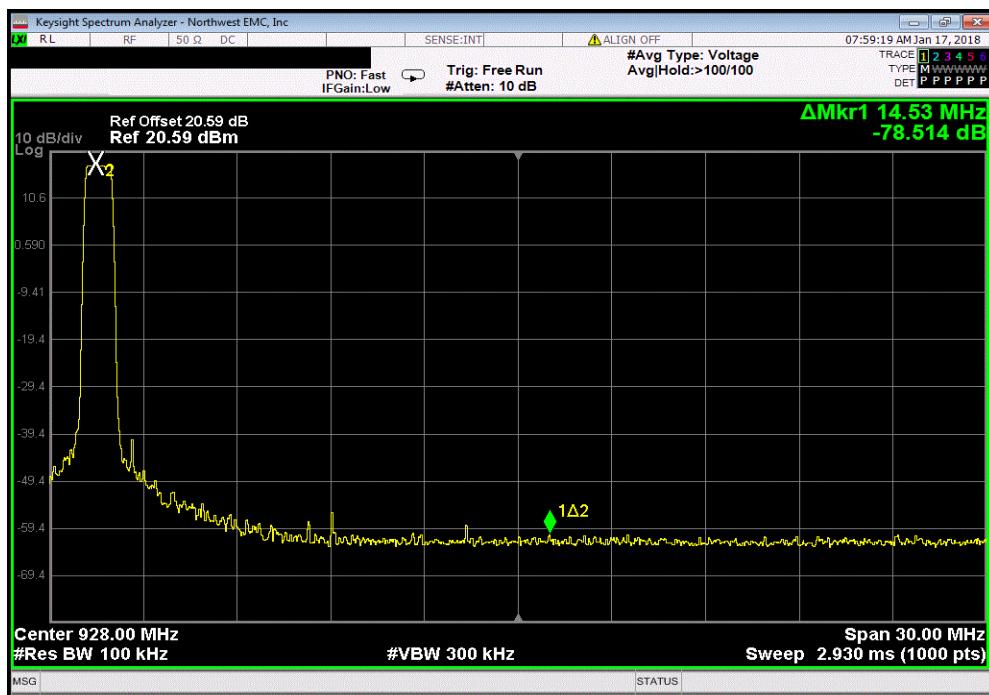
NetTx 2016.09.14.2

XMit 2017.12.13

EUT:	PK1276		Work Order:	APAN0004	
Serial Number:	18-9B-A5-90-02-7B		Date:	16-Jan-18	
Customer:	APANA Inc.		Temperature:	23 °C	
Attendees:	Matt Maher Peterson, David Humphrey		Humidity:	35% RH	
Project:	None		Barometric Pres.:	1025 mbar	
Tested by:	Richard Meliroth	Power:	USB	Job Site:	NC02
TEST SPECIFICATIONS			Test Method		
FCC 15.247:2018			ANSI C63.10:2013		
COMMENTS					
Power Setting = Default = 10.					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration #	1	Signature		Value (dBc)	Limit ≤ (dBc)
Hopping Mode					
Spreading Factor 7					
Lower Band Edge			-53.09	-30	Pass
Upper Band Edge			-78.51	-30	Pass
Spreading Factor 10					
Lower Band Edge			-48.96	-30	Pass
Upper Band Edge			-76.98	-30	Pass


BAND EDGE COMPLIANCE - HOPPING MODE

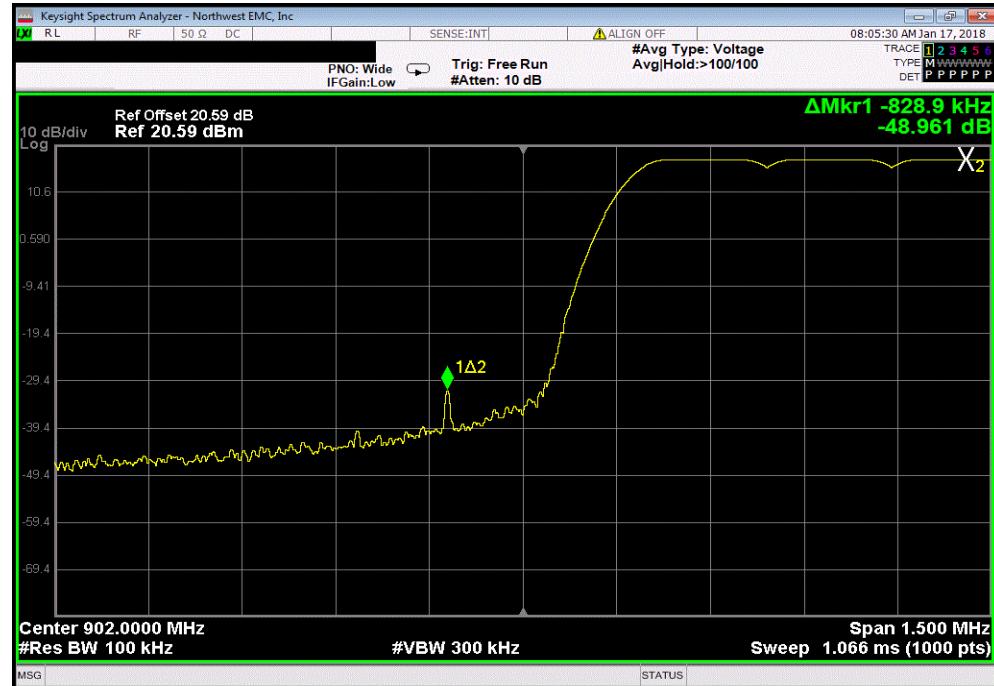
NweTx 2016.09.14.2 XMT 2017.12.13


Hopping Mode, Spreading Factor 7, Lower Band Edge, 902 MHz

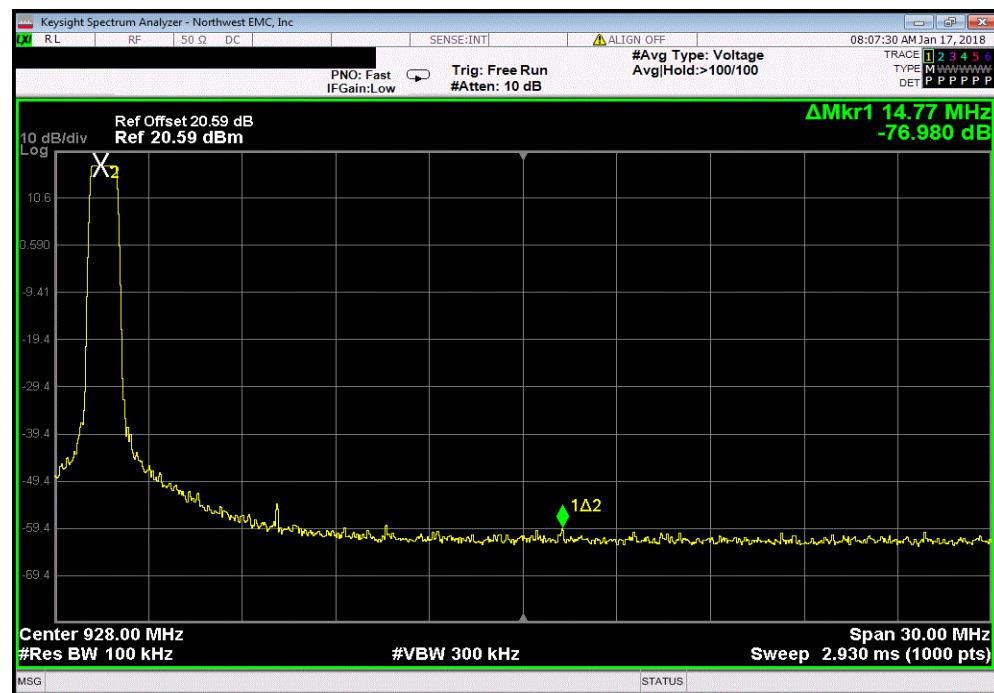
	Value (dBc)	Limit ≤ (dBc)	Result
	-53.09	-30	Pass

Hopping Mode, Spreading Factor 7, Upper Band Edge, 928 MHz

	Value (dBc)	Limit ≤ (dBc)	Result
	-78.51	-30	Pass


BAND EDGE COMPLIANCE - HOPPING MODE

NweTx 2016.09.14.2 XMT 2017.12.13


Hopping Mode, Spreading Factor 10, Lower Band Edge, 902 MHz

	Value (dBc)	Limit ≤ (dBc)	Result
	-48.96	-30	Pass

Hopping Mode, Spreading Factor 10, Upper Band Edge, 928 MHz

	Value (dBc)	Limit ≤ (dBc)	Result
	-76.98	-30	Pass

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

XMIT 2017.12.13

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

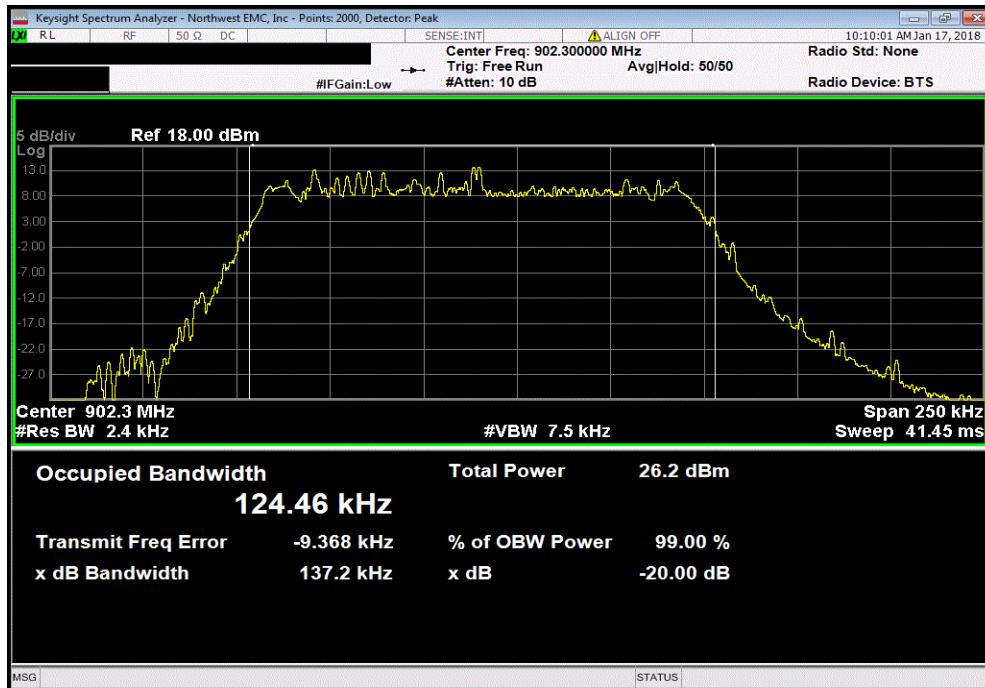
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	19-May-17	19-May-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Attenuator	Fairview Microwave	SA4014-20	TKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Generator - Signal	Agilent	N5183A	TIA	6-Apr-16	6-Apr-18

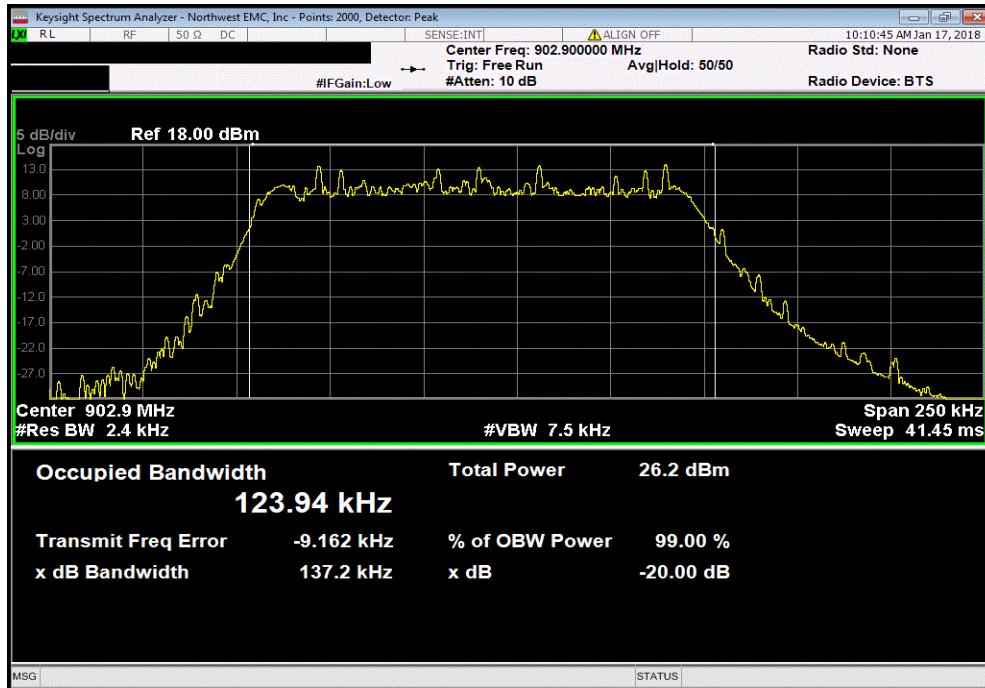
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The 20 dB occupied bandwidth can be no greater than the channel separation which was measured with the EUT set to low, medium and high transmit frequencies in the band. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode.

OCCUPIED BANDWIDTH


EUT: PK1276		Work Order: APAN0004																	
Serial Number: 18-9B-A5-90-02-7B		Date: 16-Jan-18																	
Customer: APANA Inc.		Temperature: 23 °C																	
Attendees: Matt Maher Peterson, David Humphrey		Humidity: 35% RH																	
Project: None		Barometric Pres.: 1025 mbar																	
Tested by: Richard Melroth	Power: USB	Job Site: NC02																	
TEST SPECIFICATIONS		Test Method																	
FCC 15.247:2018		ANSI C63.10:2013																	
COMMENTS																			
Power Setting = Default = 10.																			
DEVIATIONS FROM TEST STANDARD																			
None																			
Configuration #	1	Signature																	
		Limit < /= (ch separation)	Result																
External Port																			
125 kHz Bandwidth																			
Spreading Factor 7																			
<table border="1"> <tr> <td>Low Channel 0, 902.3 MHz</td> <td>137.201 kHz</td> <td>185.1 kHz</td> <td>Pass</td> </tr> <tr> <td>Mid Channel 3, 902.9 MHz</td> <td>137.151 kHz</td> <td>185.1 kHz</td> <td>Pass</td> </tr> <tr> <td>Mid Channel 4, 914.3 MHz</td> <td>140.038 kHz</td> <td>185.1 kHz</td> <td>Pass</td> </tr> <tr> <td>High Channel 7, 914.9 MHz</td> <td>139.032 kHz</td> <td>185.1 kHz</td> <td>Pass</td> </tr> </table>				Low Channel 0, 902.3 MHz	137.201 kHz	185.1 kHz	Pass	Mid Channel 3, 902.9 MHz	137.151 kHz	185.1 kHz	Pass	Mid Channel 4, 914.3 MHz	140.038 kHz	185.1 kHz	Pass	High Channel 7, 914.9 MHz	139.032 kHz	185.1 kHz	Pass
Low Channel 0, 902.3 MHz	137.201 kHz	185.1 kHz	Pass																
Mid Channel 3, 902.9 MHz	137.151 kHz	185.1 kHz	Pass																
Mid Channel 4, 914.3 MHz	140.038 kHz	185.1 kHz	Pass																
High Channel 7, 914.9 MHz	139.032 kHz	185.1 kHz	Pass																
Spreading Factor 10																			
<table border="1"> <tr> <td>Low Channel 0, 902.3 MHz</td> <td>134.774 kHz</td> <td>185.1 kHz</td> <td>Pass</td> </tr> <tr> <td>Mid Channel 3, 902.9 MHz</td> <td>133.004 kHz</td> <td>185.1 kHz</td> <td>Pass</td> </tr> <tr> <td>Mid Channel 4, 914.3 MHz</td> <td>135.891 kHz</td> <td>185.1 kHz</td> <td>Pass</td> </tr> <tr> <td>High Channel 7, 914.9 MHz</td> <td>134.934 kHz</td> <td>185.1 kHz</td> <td>Pass</td> </tr> </table>				Low Channel 0, 902.3 MHz	134.774 kHz	185.1 kHz	Pass	Mid Channel 3, 902.9 MHz	133.004 kHz	185.1 kHz	Pass	Mid Channel 4, 914.3 MHz	135.891 kHz	185.1 kHz	Pass	High Channel 7, 914.9 MHz	134.934 kHz	185.1 kHz	Pass
Low Channel 0, 902.3 MHz	134.774 kHz	185.1 kHz	Pass																
Mid Channel 3, 902.9 MHz	133.004 kHz	185.1 kHz	Pass																
Mid Channel 4, 914.3 MHz	135.891 kHz	185.1 kHz	Pass																
High Channel 7, 914.9 MHz	134.934 kHz	185.1 kHz	Pass																

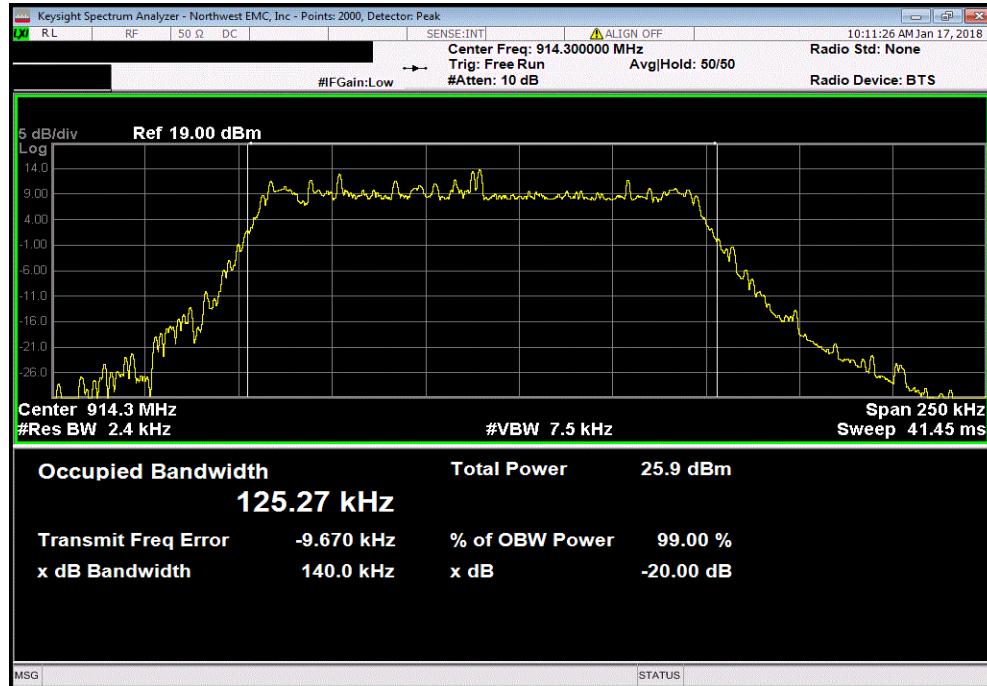
OCCUPIED BANDWIDTH

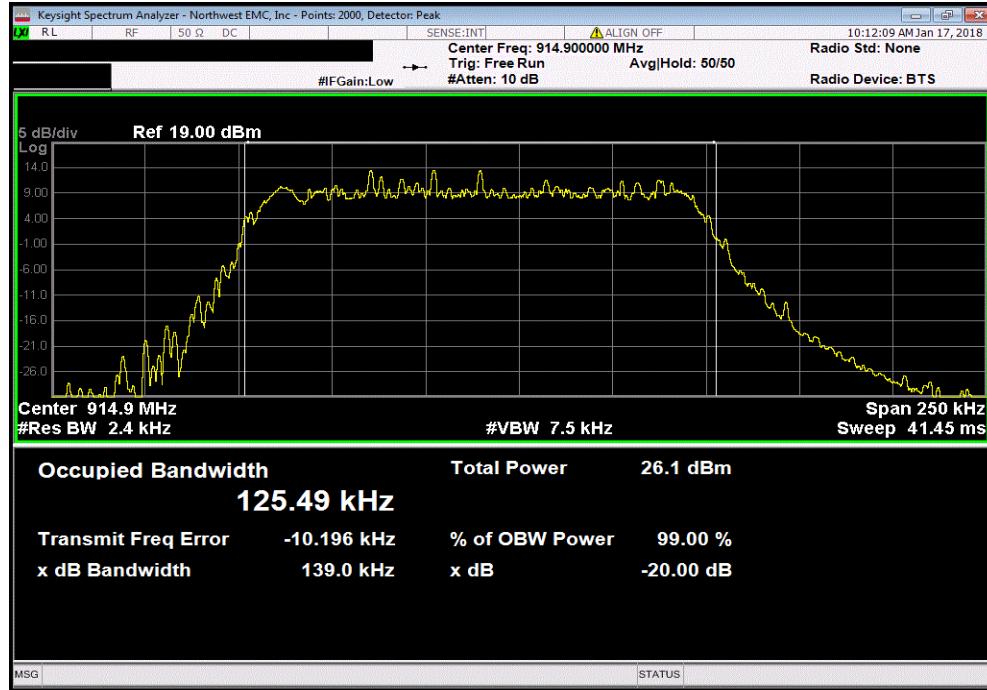


NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, Low Channel 0, 902.3 MHz			Limit < / =
Value	(ch separation)	Result	
137.201 kHz	185.1 kHz	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 7, Mid Channel 3, 902.9 MHz			Limit < / =
Value	(ch separation)	Result	
137.151 kHz	185.1 kHz	Pass	

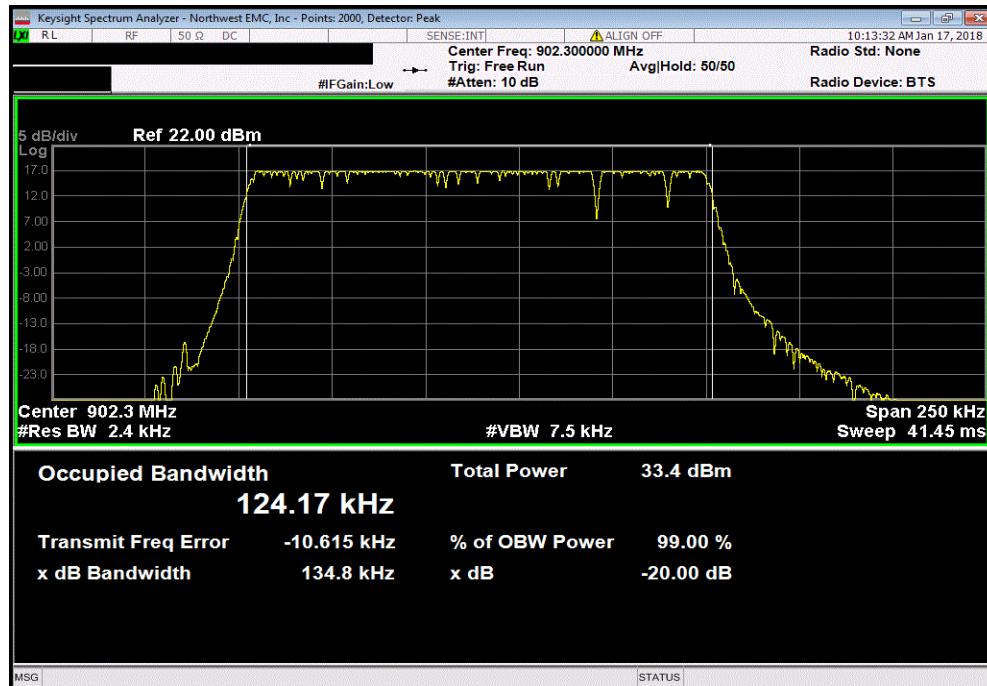



OCCUPIED BANDWIDTH

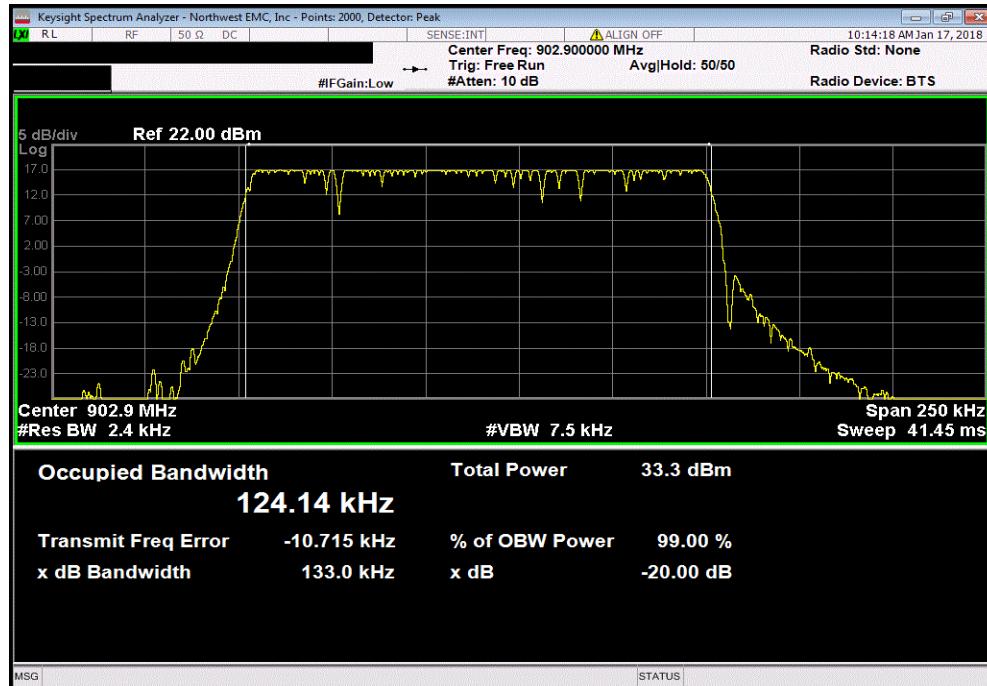
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, Mid Channel 4, 914.3 MHz			Limit < / =	
Value	(ch separation)	Result		
140.038 kHz	185.1 kHz	Pass		

External Port, 125 kHz Bandwidth, Spreading Factor 7, High Channel 7, 914.9 MHz			Limit < / =	
Value	(ch separation)	Result		
139.032 kHz	185.1 kHz	Pass		



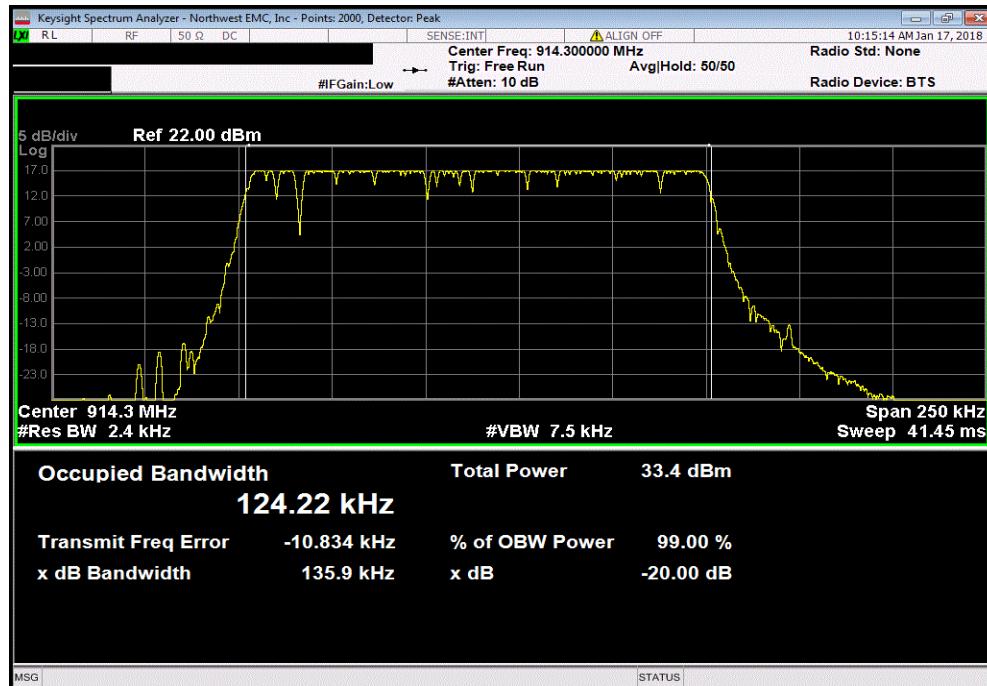
OCCUPIED BANDWIDTH



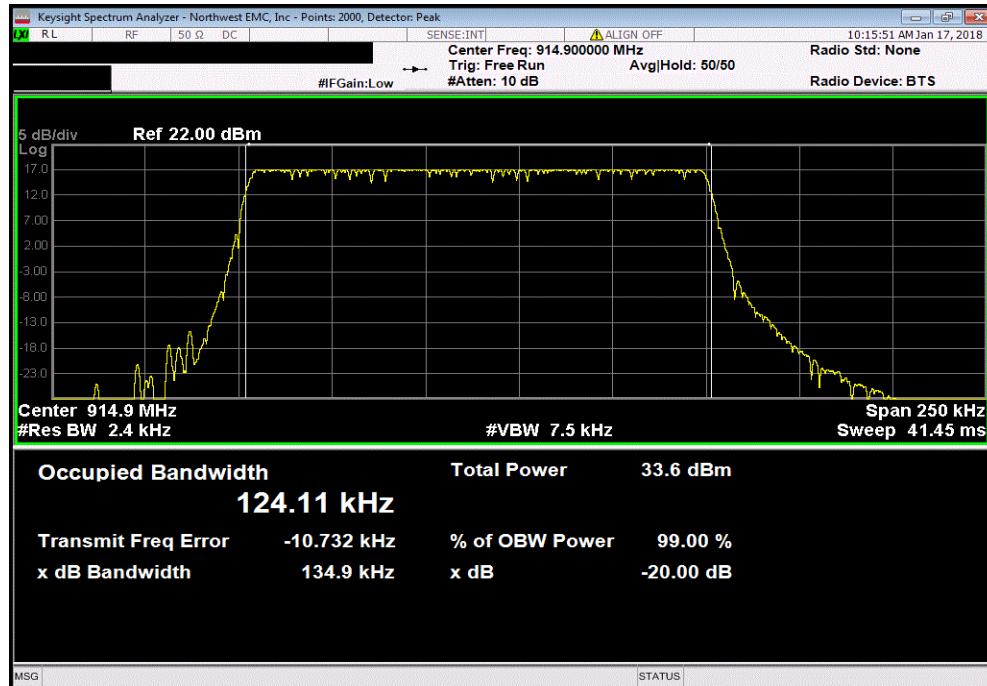
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, Low Channel 0, 902.3 MHz			Limit < /=
Value	(ch separation)	Result	
134.774 kHz	185.1 kHz	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 10, Mid Channel 3, 902.9 MHz			Limit < /=
Value	(ch separation)	Result	
133.004 kHz	185.1 kHz	Pass	



OCCUPIED BANDWIDTH



NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, Mid Channel 4, 914.3 MHz			Limit < / =
Value	(ch separation)	Result	
135.891 kHz	185.1 kHz	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 10, High Channel 7, 914.9 MHz			Limit < / =
Value	(ch separation)	Result	
134.934 kHz	185.1 kHz	Pass	

OUTPUT POWER

XMIT 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	19-May-17	19-May-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Attenuator	Fairview Microwave	SA4014-20	TKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Generator - Signal	Agilent	N5183A	TIA	6-Apr-16	6-Apr-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

Prior to measuring output power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

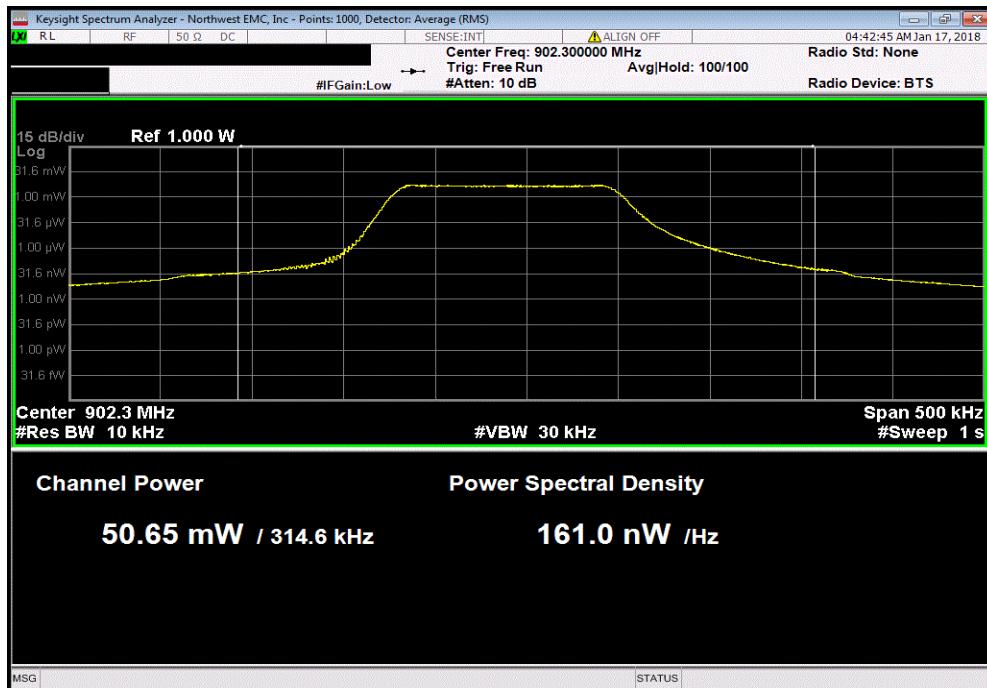
The method AVGSA-2 in section 11.9.2.2.4 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding $[10 \log (1 / D)]$, where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

De Facto EIRP Limit: The EUT meets the de facto EIRP limit of +36 dBm.

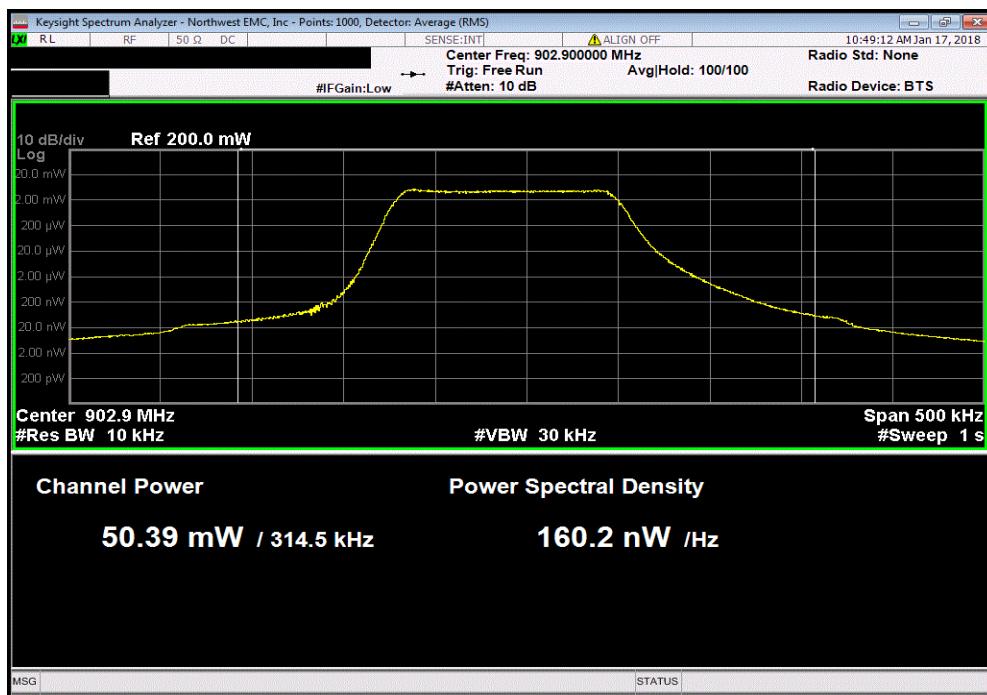
OUTPUT POWER

NaveTx 2016.09.14.2

XMT 2017.12.13


EUT:	PK1276		Work Order:	APAN0004	
Serial Number:	18-9B-A5-90-02-7B		Date:	16-Jan-18	
Customer:	APANA Inc.		Temperature:	23 °C	
Attendees:	Matt Maher Peterson, David Humphrey		Humidity:	35% RH	
Project:	None		Barometric Pres.:	1025 mbar	
Tested by:	Richard Meliroth	Power:	USB	Job Site:	NC02
TEST SPECIFICATIONS			Test Method		
FCC 15.247:2018			ANSI C63.10:2013		
COMMENTS					
Power Setting = Default = 10.					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration #	1	Signature	Avg Cond Pwr (mW)	Duty Cycle Factor (dB)	Value (W)
External Port	125 kHz Bandwidth				Limit (W)
	Spreading Factor 7				Results
	Low Channel 0, 902.3 MHz	50.647	0	0.051	≤ 1
	Mid Channel 3, 902.9 MHz	50.387	0	0.050	≤ 1
	Mid Channel 4, 914.3 MHz	51.495	0	0.051	≤ 1
	High Channel 7, 914.9 MHz	51.374	0	0.051	≤ 1
	Spreading Factor 10				
	Low Channel 0, 902.3 MHz	53.530	0	0.054	≤ 1
	Mid Channel 3, 902.9 MHz	53.449	0	0.053	≤ 1
	Mid Channel 4, 914.3 MHz	54.577	0	0.055	≤ 1
	High Channel 7, 914.9 MHz	54.319	0	0.054	≤ 1

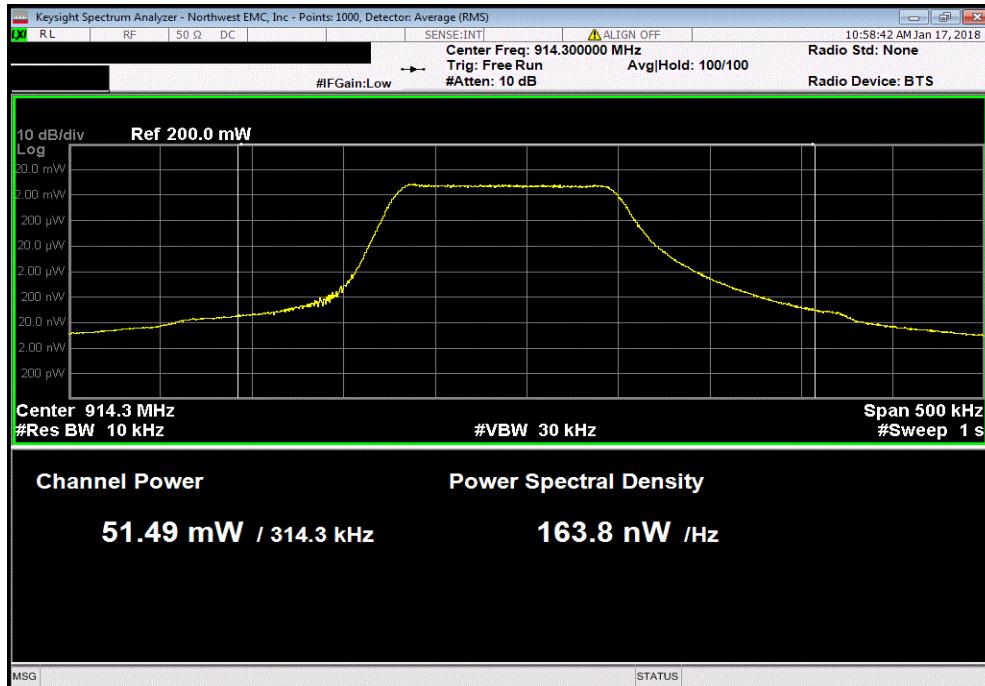
OUTPUT POWER



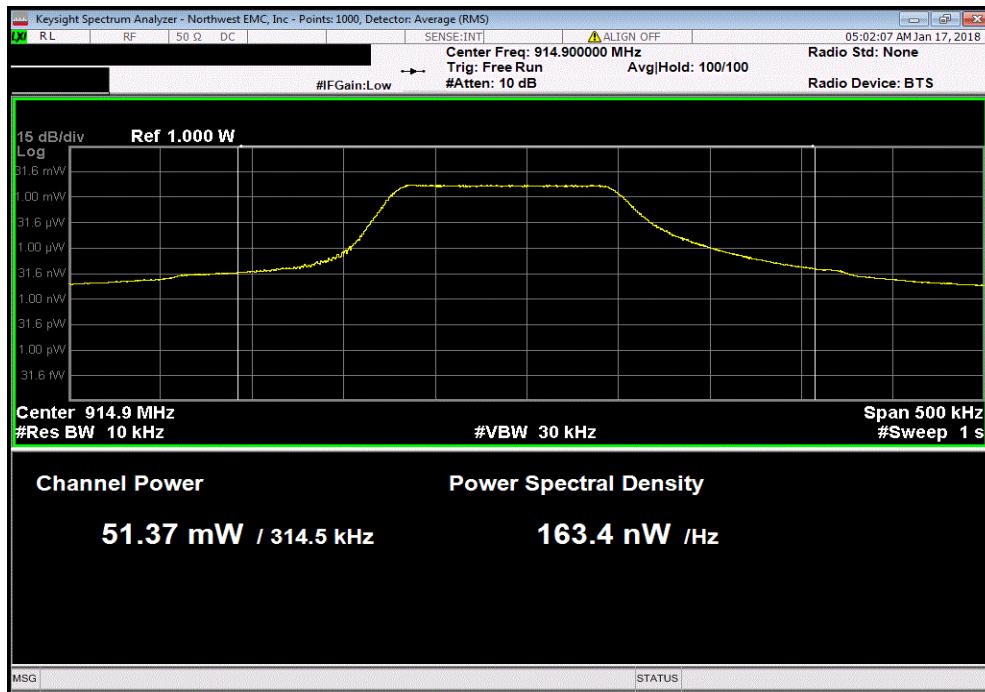
NweTx2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, Low Channel 0, 902.3 MHz					
Avg Cond Pwr (mW)	Duty Cycle Factor (dB)	Value (W)	Limit (W)	Results	
50.647	0	0.051	≤ 1	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 7, Mid Channel 3, 902.9 MHz					
Avg Cond Pwr (mW)	Duty Cycle Factor (dB)	Value (W)	Limit (W)	Results	
50.387	0	0.050	≤ 1	Pass	



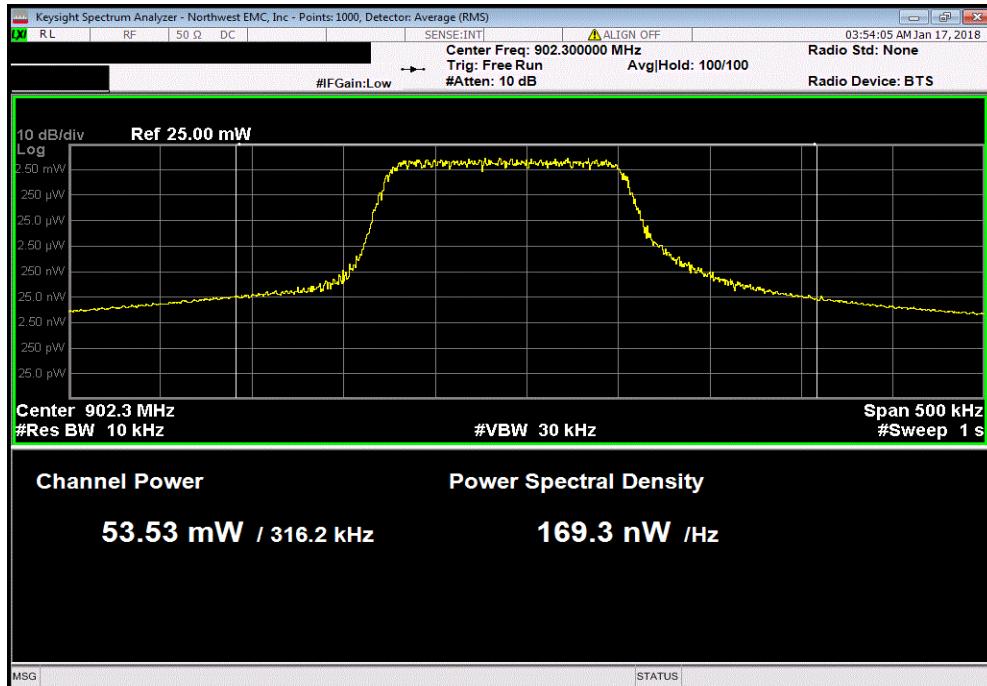
OUTPUT POWER



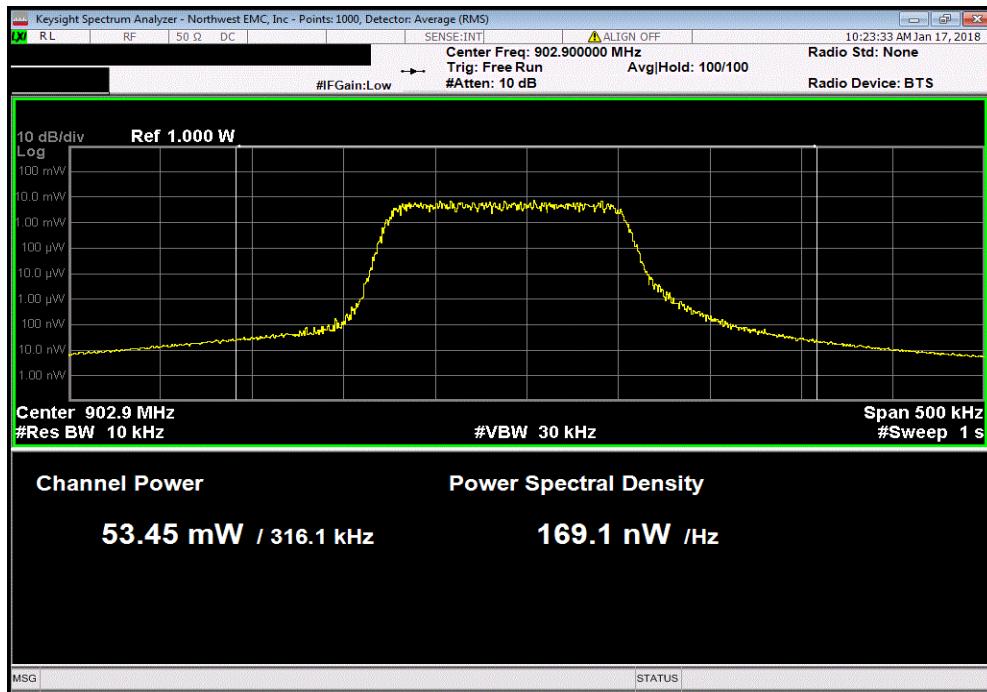
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, Mid Channel 4, 914.3 MHz					
Avg Cond Pwr (mW)	Duty Cycle Factor (dB)	Value (W)	Limit (W)	Results	
51.495	0	0.051	≤ 1	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 7, High Channel 7, 914.9 MHz					
Avg Cond Pwr (mW)	Duty Cycle Factor (dB)	Value (W)	Limit (W)	Results	
51.374	0	0.051	≤ 1	Pass	



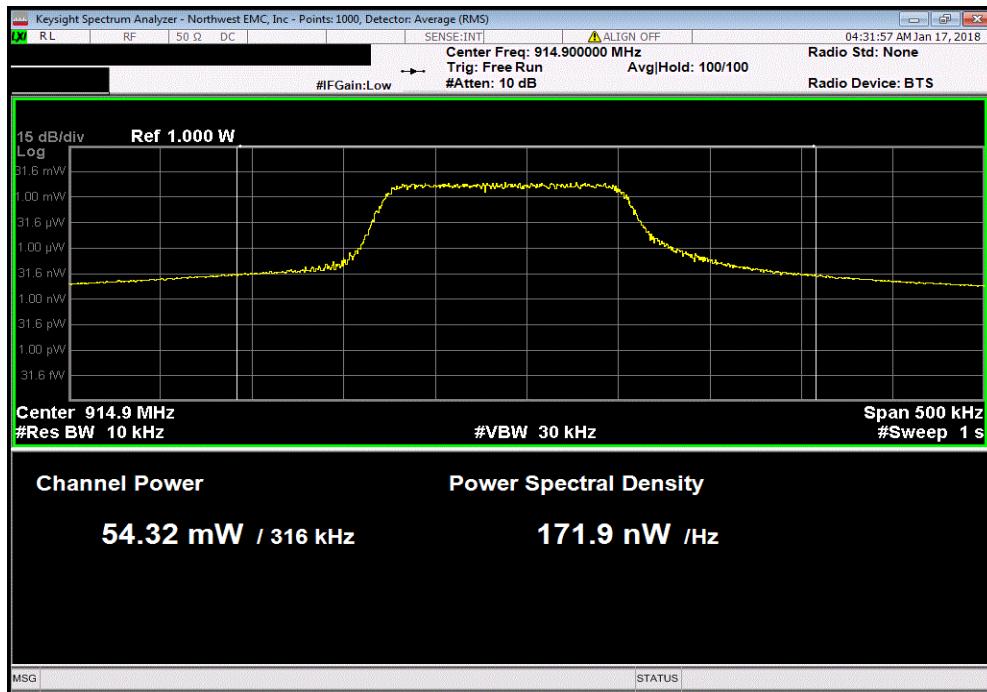
OUTPUT POWER



NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, Low Channel 0, 902.3 MHz					
Avg Cond Pwr (mW)	Duty Cycle Factor (dB)	Value (W)	Limit (W)	Results	
53.530	0	0.054	≤ 1	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 10, Mid Channel 3, 902.9 MHz					
Avg Cond Pwr (mW)	Duty Cycle Factor (dB)	Value (W)	Limit (W)	Results	
53.449	0	0.053	≤ 1	Pass	


OUTPUT POWER

NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, Mid Channel 4, 914.3 MHz					
Avg Cond Pwr (mW)	Duty Cycle Factor (dB)	Value (W)	Limit (W)	Results	
54.577	0	0.055	≤ 1	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 10, High Channel 7, 914.9 MHz					
Avg Cond Pwr (mW)	Duty Cycle Factor (dB)	Value (W)	Limit (W)	Results	
54.319	0	0.054	≤ 1	Pass	

POWER SPECTRAL DENSITY

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

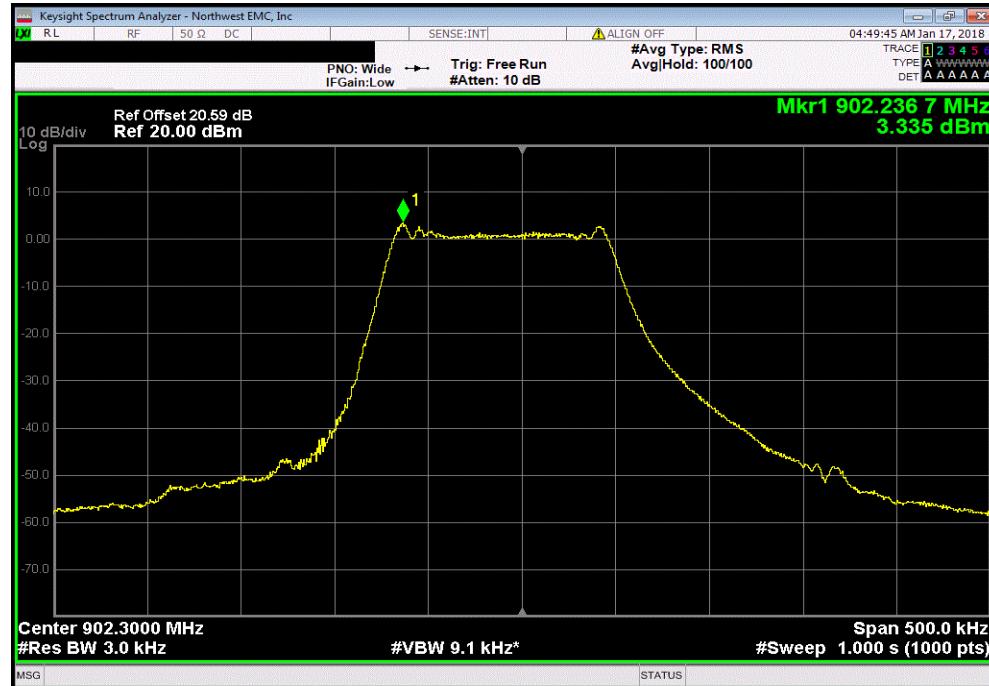
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	19-May-17	19-May-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Attenuator	Fairview Microwave	SA4014-20	TKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Generator - Signal	Agilent	N5183A	TIA	6-Apr-16	6-Apr-18

TEST DESCRIPTION

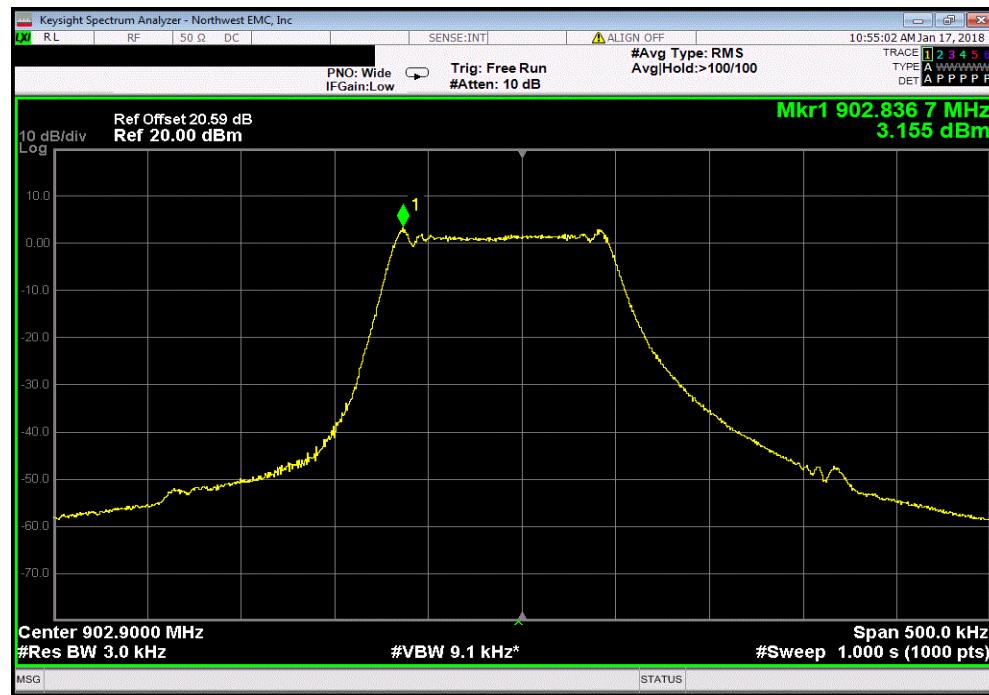
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The power spectral density was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method AVGPSD-1 in section 11.10.3 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging and RMS detection across the full power of the burst. This method is allowed as the same method has been used to determine the conducted output power.

POWER SPECTRAL DENSITY


EUT: PK1276		Work Order: APAN0004																																																	
Serial Number: 18-9B-A5-90-02-7B		Date: 16-Jan-18																																																	
Customer: APANA Inc.		Temperature: 23 °C																																																	
Attendees: Matt Maher Peterson, David Humphrey		Humidity: 35% RH																																																	
Project: None		Barometric Pres.: 1025 mbar																																																	
Tested by: Richard Melroth	Power: USB	Job Site: NC02																																																	
TEST SPECIFICATIONS		Test Method																																																	
FCC 15.247:2018		ANSI C63.10:2013																																																	
COMMENTS																																																			
Power Setting = Default = 10.																																																			
DEVIATIONS FROM TEST STANDARD																																																			
None																																																			
Configuration #	1	Signature																																																	
<table border="1"> <thead> <tr> <th></th> <th>Value dBm/3kHz</th> <th>Limit < dBm/3kHz</th> <th>Results</th> </tr> </thead> <tbody> <tr> <td>External Port</td> <td>125 kHz Bandwidth</td> <td></td> <td></td> </tr> <tr> <td>Spreading Factor 7</td> <td></td> <td></td> <td></td> </tr> <tr> <td>Low Channel 0, 902.3 MHz</td> <td>3.335</td> <td>8</td> <td>Pass</td> </tr> <tr> <td>Mid Channel 3, 902.9 MHz</td> <td>3.151</td> <td>8</td> <td>Pass</td> </tr> <tr> <td>Mid Channel 4, 914.3 MHz</td> <td>3.106</td> <td>8</td> <td>Pass</td> </tr> <tr> <td>High Channel 7, 914.9 MHz</td> <td>3.309</td> <td>8</td> <td>Pass</td> </tr> <tr> <td>Spreading Factor 10</td> <td></td> <td></td> <td></td> </tr> <tr> <td>Low Channel 0, 902.3 MHz</td> <td>4.024</td> <td>8</td> <td>Pass</td> </tr> <tr> <td>Mid Channel 3, 902.9 MHz</td> <td>3.176</td> <td>8</td> <td>Pass</td> </tr> <tr> <td>Mid Channel 4, 914.3 MHz</td> <td>3.561</td> <td>8</td> <td>Pass</td> </tr> <tr> <td>High Channel 7, 914.9 MHz</td> <td>3.35</td> <td>8</td> <td>Pass</td> </tr> </tbody> </table>					Value dBm/3kHz	Limit < dBm/3kHz	Results	External Port	125 kHz Bandwidth			Spreading Factor 7				Low Channel 0, 902.3 MHz	3.335	8	Pass	Mid Channel 3, 902.9 MHz	3.151	8	Pass	Mid Channel 4, 914.3 MHz	3.106	8	Pass	High Channel 7, 914.9 MHz	3.309	8	Pass	Spreading Factor 10				Low Channel 0, 902.3 MHz	4.024	8	Pass	Mid Channel 3, 902.9 MHz	3.176	8	Pass	Mid Channel 4, 914.3 MHz	3.561	8	Pass	High Channel 7, 914.9 MHz	3.35	8	Pass
	Value dBm/3kHz	Limit < dBm/3kHz	Results																																																
External Port	125 kHz Bandwidth																																																		
Spreading Factor 7																																																			
Low Channel 0, 902.3 MHz	3.335	8	Pass																																																
Mid Channel 3, 902.9 MHz	3.151	8	Pass																																																
Mid Channel 4, 914.3 MHz	3.106	8	Pass																																																
High Channel 7, 914.9 MHz	3.309	8	Pass																																																
Spreading Factor 10																																																			
Low Channel 0, 902.3 MHz	4.024	8	Pass																																																
Mid Channel 3, 902.9 MHz	3.176	8	Pass																																																
Mid Channel 4, 914.3 MHz	3.561	8	Pass																																																
High Channel 7, 914.9 MHz	3.35	8	Pass																																																

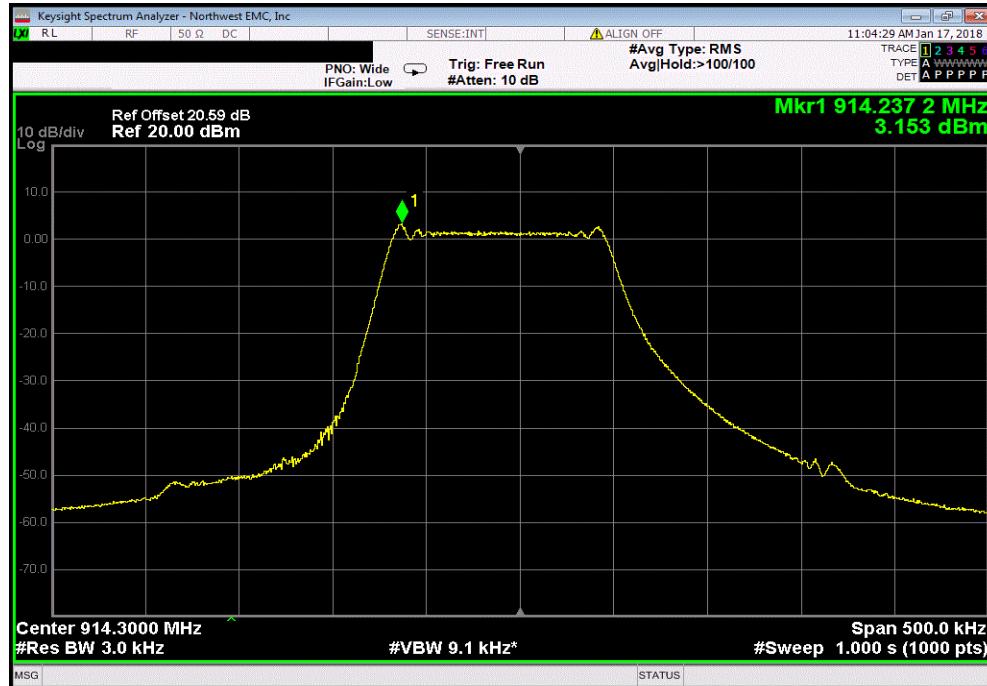
POWER SPECTRAL DENSITY



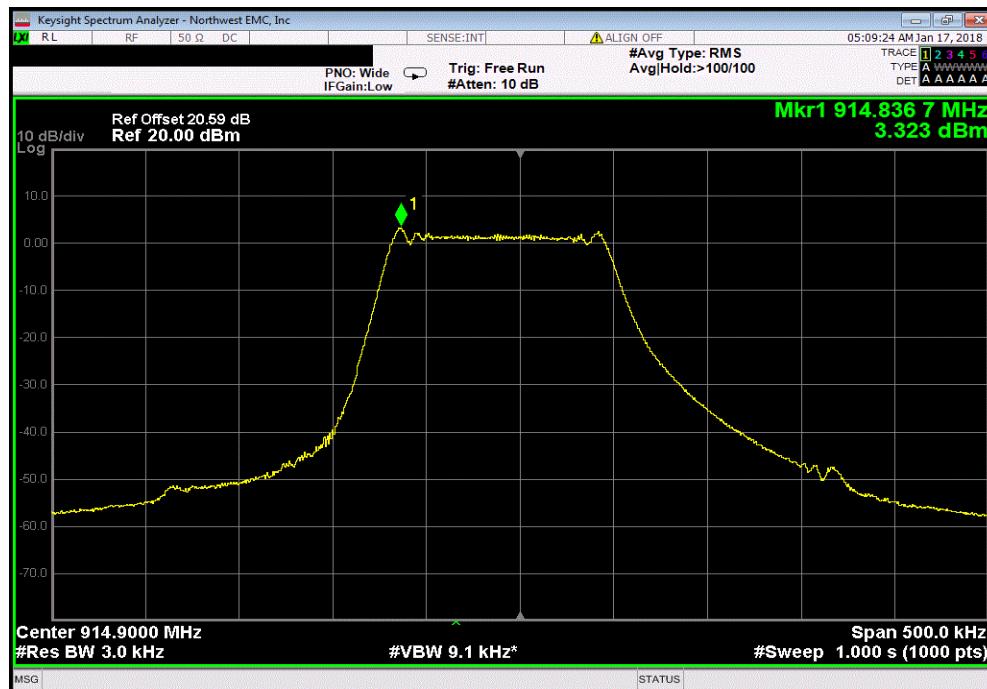
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, Low Channel 0, 902.3 MHz			
Value	Limit	Results	
dBm/3kHz	< dBm/3kHz		
3.335	8	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 7, Mid Channel 3, 902.9 MHz			
Value	Limit	Results	
dBm/3kHz	< dBm/3kHz		
3.151	8	Pass	



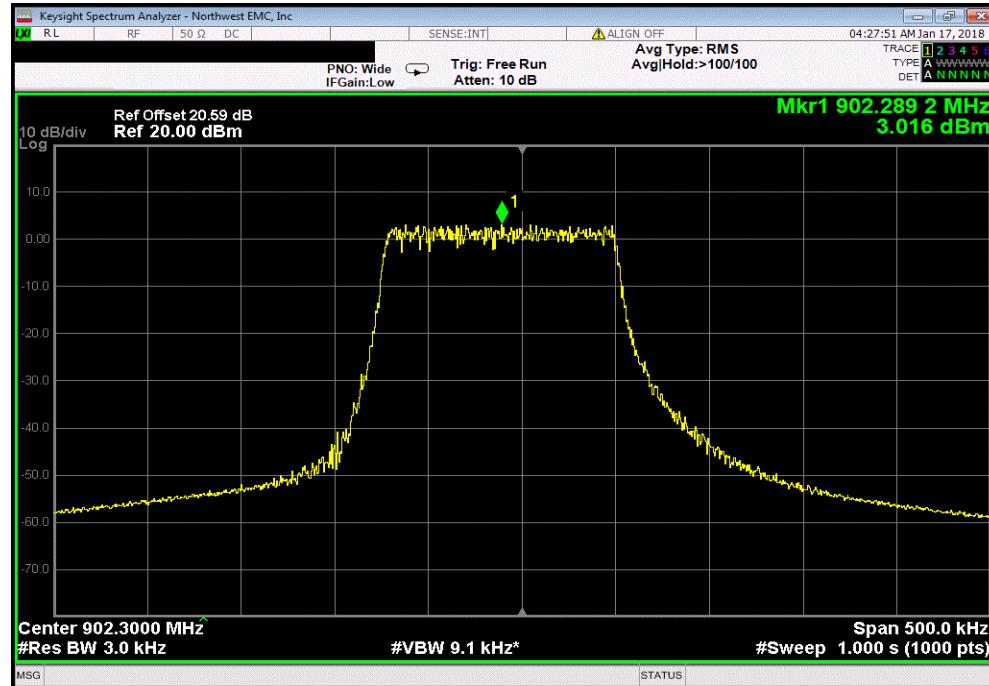
POWER SPECTRAL DENSITY



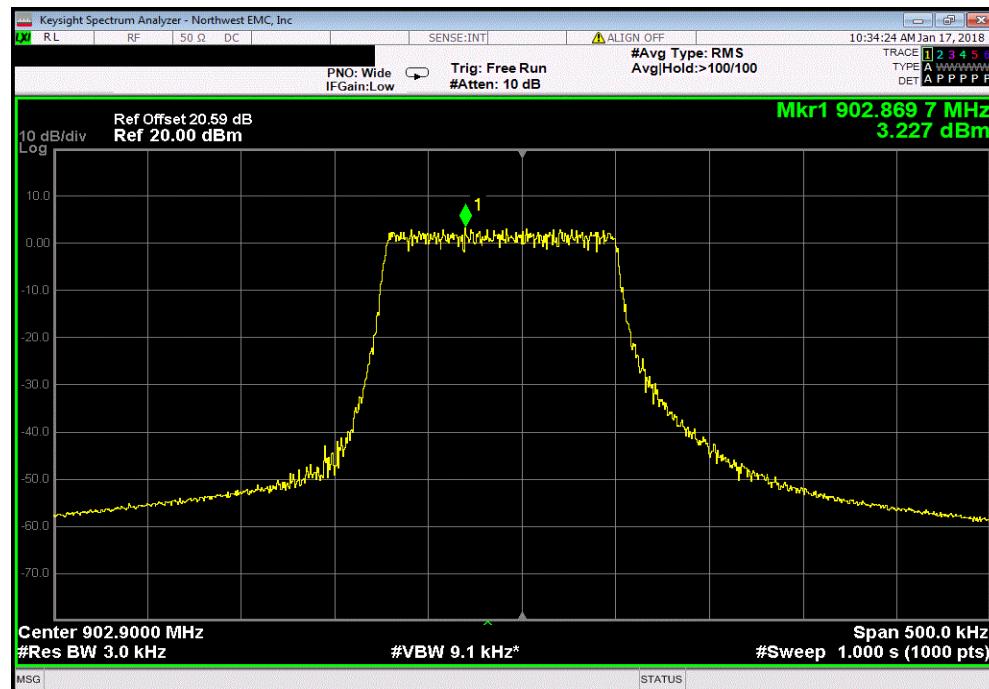
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, Mid Channel 4, 914.3 MHz			
Value	Limit	Results	
dBm/3kHz	< dBm/3kHz	Pass	
3.106	8		

External Port, 125 kHz Bandwidth, Spreading Factor 7, High Channel 7, 914.9 MHz			
Value	Limit	Results	
dBm/3kHz	< dBm/3kHz	Pass	
3.309	8		



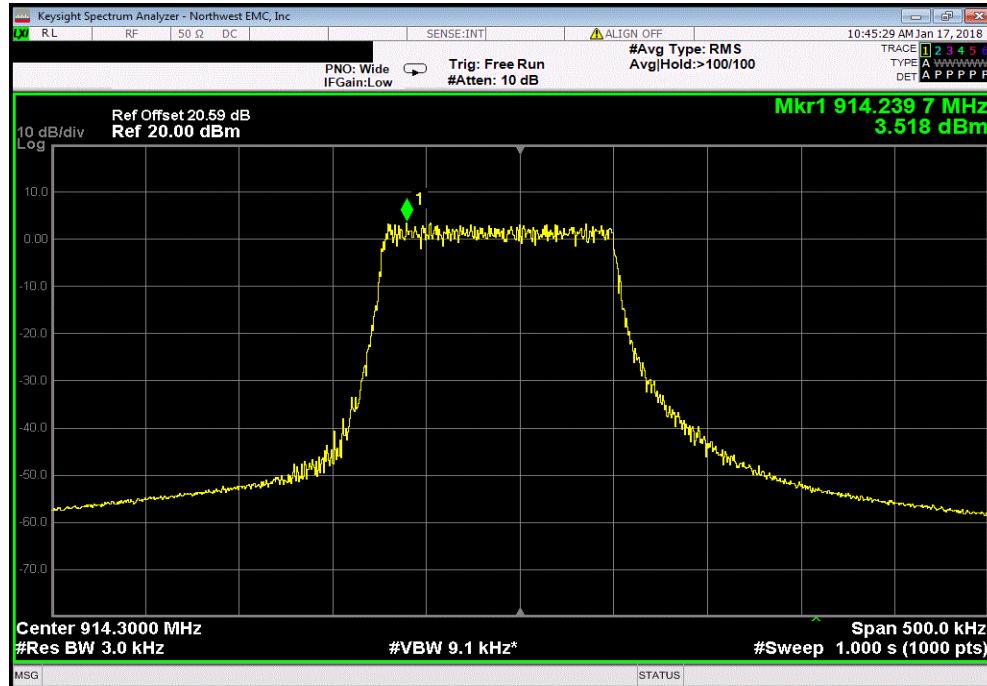
POWER SPECTRAL DENSITY



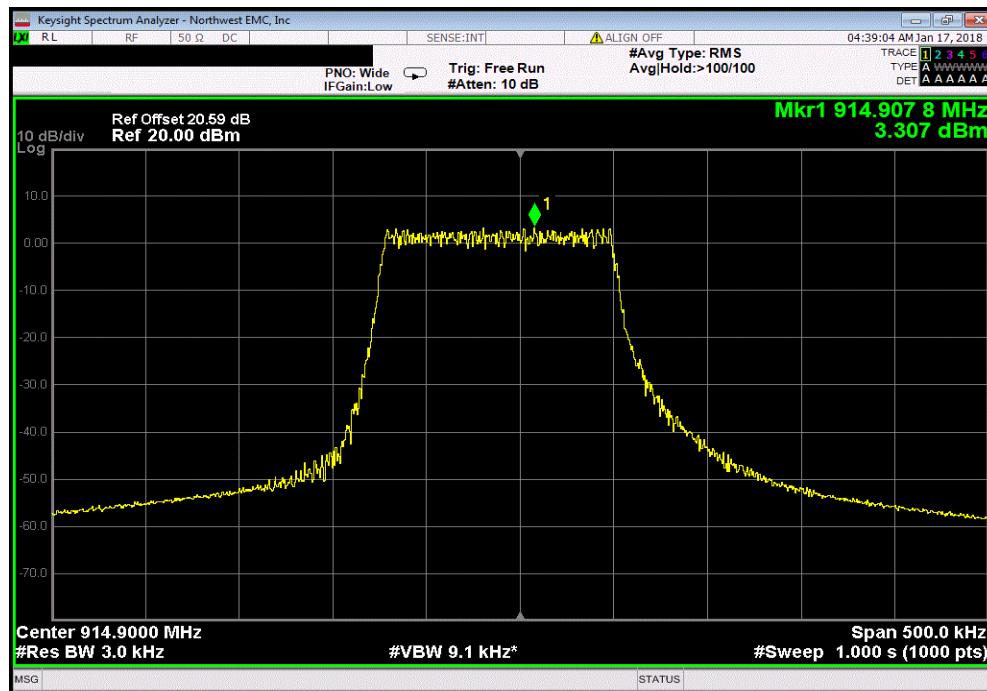
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, Low Channel 0, 902.3 MHz			
Value	Limit	Results	
dBm/3kHz	< dBm/3kHz		
4.024	8	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 10, Mid Channel 3, 902.9 MHz			
Value	Limit	Results	
dBm/3kHz	< dBm/3kHz		
3.176	8	Pass	



POWER SPECTRAL DENSITY



NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, Mid Channel 4, 914.3 MHz			
Value	Limit	Results	
dBm/3kHz	< dBm/3kHz		
3.561	8	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 10, High Channel 7, 914.9 MHz			
Value	Limit	Results	
dBm/3kHz	< dBm/3kHz		
3.35	8	Pass	

SPURIOUS CONDUCTED EMISSIONS

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	19-May-17	19-May-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Attenuator	Fairview Microwave	SA4014-20	TKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Generator - Signal	Agilent	N5183A	TIA	6-Apr-16	6-Apr-18

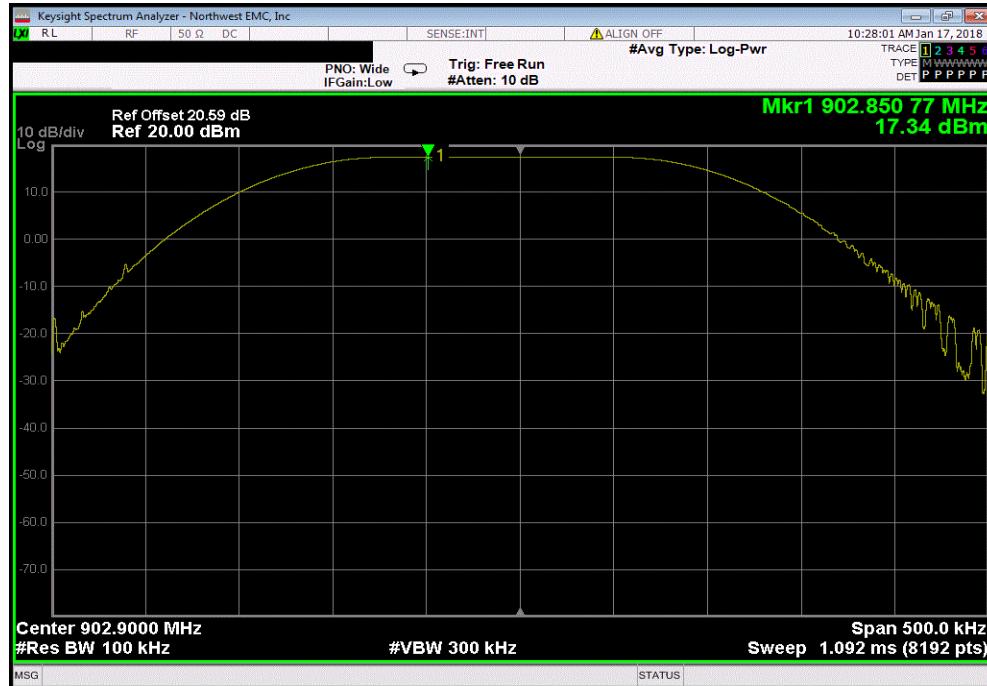
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

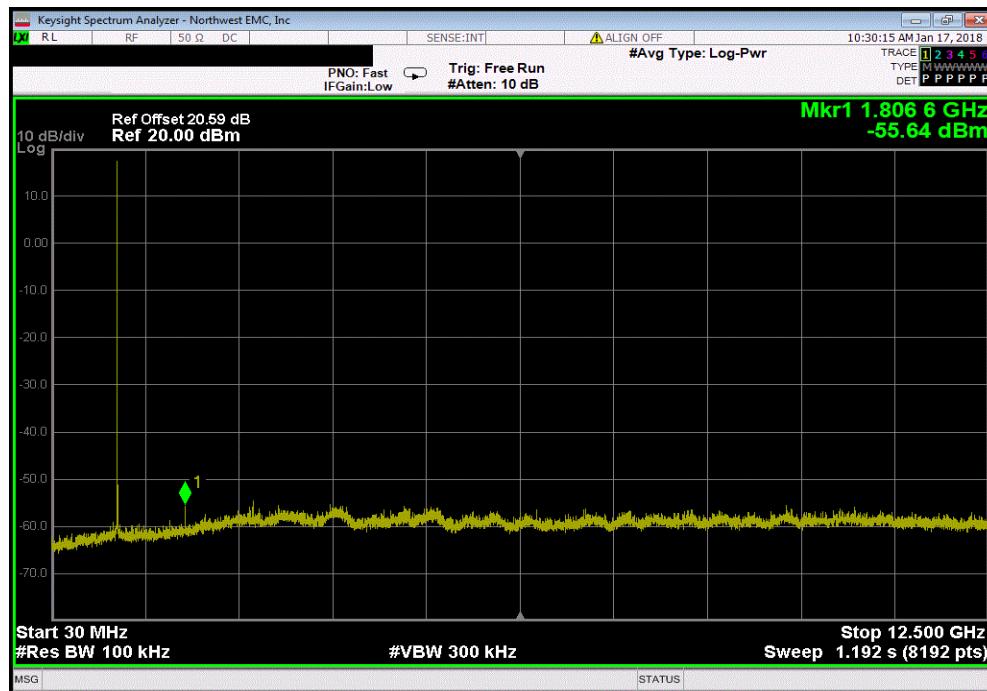
SPURIOUS CONDUCTED EMISSIONS

NwTx 2016.09.14.2

XMT 2017.12.13


EUT:	PK1276		Work Order:	APAN0004		
Serial Number:	18-9B-A5-90-02-7B		Date:	16-Jan-18		
Customer:	APANA Inc.		Temperature:	23 °C		
Attendees:	Matt Maher Peterson, David Humphrey		Humidity:	35% RH		
Project:	None		Barometric Pres.:	1025 mbar		
Tested by:	Richard Melroth	Power:	USB	Job Site:	NC02	
TEST SPECIFICATIONS		Test Method				
FCC 15.247:2018		ANSI C63.10:2013				
COMMENTS						
Power Setting = Default = 10.						
DEVIATIONS FROM TEST STANDARD						
None						
Configuration #	1	Signature	Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
External Port						
125 kHz Bandwidth						
Spreading Factor 7						
Low Channel 0, 902.3 MHz	Fundamental	N/A	N/A	N/A	N/A	
Low Channel 0, 902.3 MHz	30 MHz - 12.5 GHz	-72.98	-30	Pass	Pass	
Low Channel 0, 902.3 MHz	12.5 GHz - 25 GHz	-69.71	-30	Pass	Pass	
Mid Channel 3, 902.9 MHz	Fundamental	N/A	N/A	N/A	N/A	
Mid Channel 3, 902.9 MHz	30 MHz - 12.5 GHz	-73.79	-30	Pass	Pass	
Mid Channel 3, 902.9 MHz	12.5 GHz - 25 GHz	-69.22	-30	Pass	Pass	
Mid Channel 4, 914.3 MHz	Fundamental	N/A	N/A	N/A	N/A	
Mid Channel 4, 914.3 MHz	30 MHz - 12.5 GHz	-61.4	-30	Pass	Pass	
Mid Channel 4, 914.3 MHz	12.5 GHz - 25 GHz	-70.19	-30	Pass	Pass	
High Channel 7, 914.9 MHz	Fundamental	N/A	N/A	N/A	N/A	
High Channel 7, 914.9 MHz	30 MHz - 12.5 GHz	-73.79	-30	Pass	Pass	
High Channel 7, 914.9 MHz	12.5 GHz - 25 GHz	-69.22	-30	Pass	Pass	
Spreading Factor 10						
Low Channel 0, 902.3 MHz	Fundamental	N/A	N/A	N/A	N/A	
Low Channel 0, 902.3 MHz	30 MHz - 12.5 GHz	-61.77	-30	Pass	Pass	
Low Channel 0, 902.3 MHz	12.5 GHz - 25 GHz	-69.82	-30	Pass	Pass	
Mid Channel 3, 902.9 MHz	Fundamental	N/A	N/A	N/A	N/A	
Mid Channel 3, 902.9 MHz	30 MHz - 12.5 GHz	-72.98	-30	Pass	Pass	
Mid Channel 3, 902.9 MHz	12.5 GHz - 25 GHz	-69.71	-30	Pass	Pass	
Mid Channel 4, 914.3 MHz	Fundamental	N/A	N/A	N/A	N/A	
Mid Channel 4, 914.3 MHz	30 MHz - 12.5 GHz	-59.26	-30	Pass	Pass	
Mid Channel 4, 914.3 MHz	12.5 GHz - 25 GHz	-70.55	-30	Pass	Pass	
High Channel 7, 914.9 MHz	Fundamental	N/A	N/A	N/A	N/A	
High Channel 7, 914.9 MHz	30 MHz - 12.5 GHz	-72.25	-30	Pass	Pass	
High Channel 7, 914.9 MHz	12.5 GHz - 25 GHz	-69.49	-30	Pass	Pass	

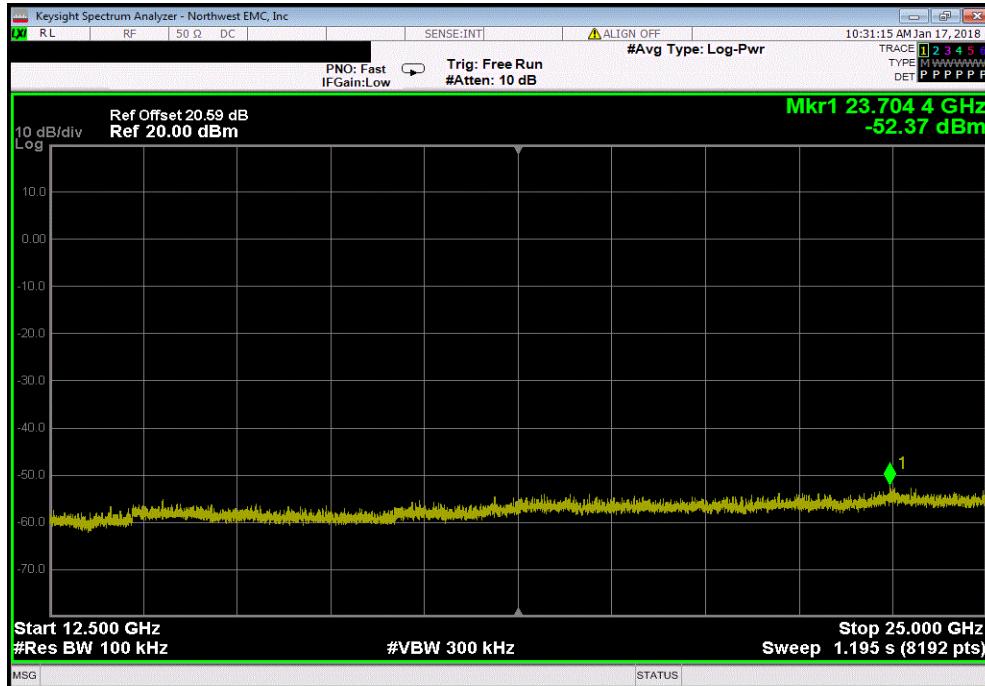
SPURIOUS CONDUCTED EMISSIONS



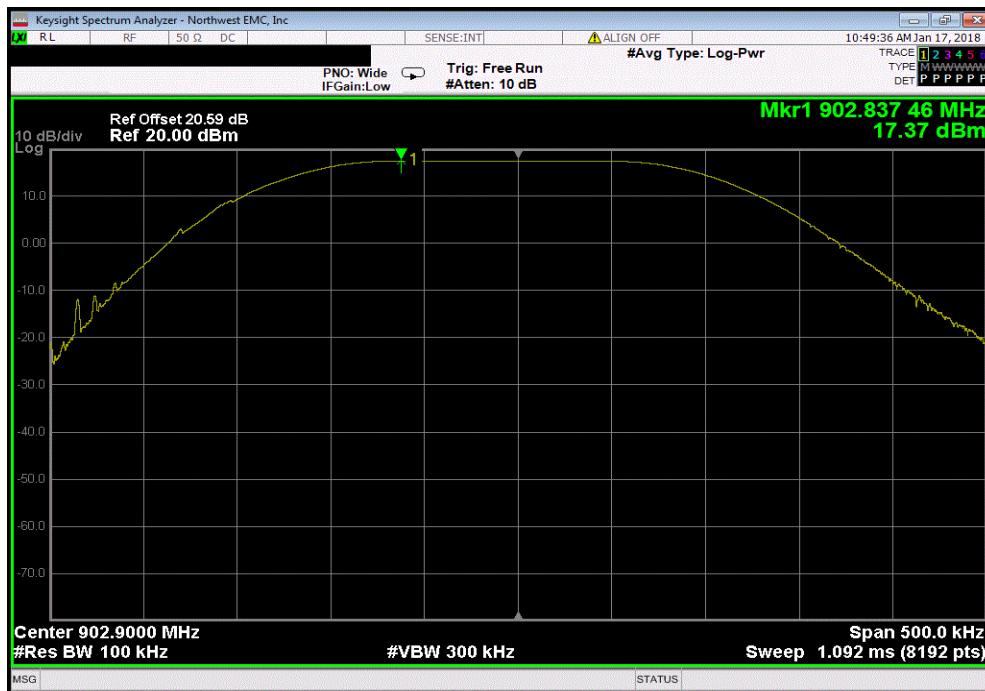
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, Low Channel 0, 902.3 MHz					
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result		
Fundamental	N/A	N/A	N/A		

External Port, 125 kHz Bandwidth, Spreading Factor 7, Low Channel 0, 902.3 MHz					
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result		
30 MHz - 12.5 GHz	-72.98	-30	Pass		



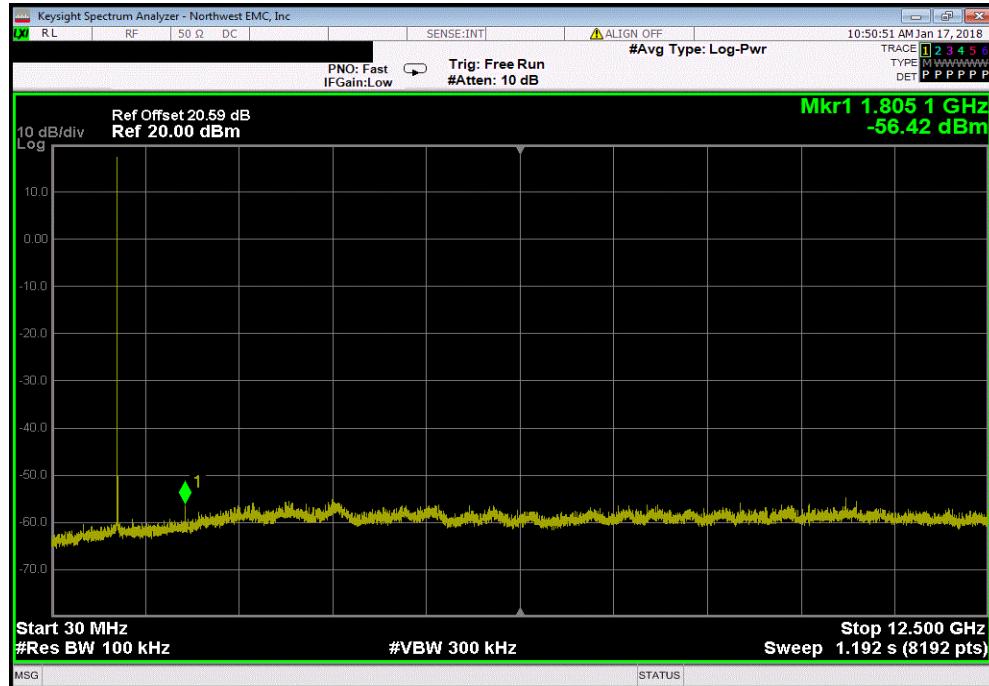
SPURIOUS CONDUCTED EMISSIONS



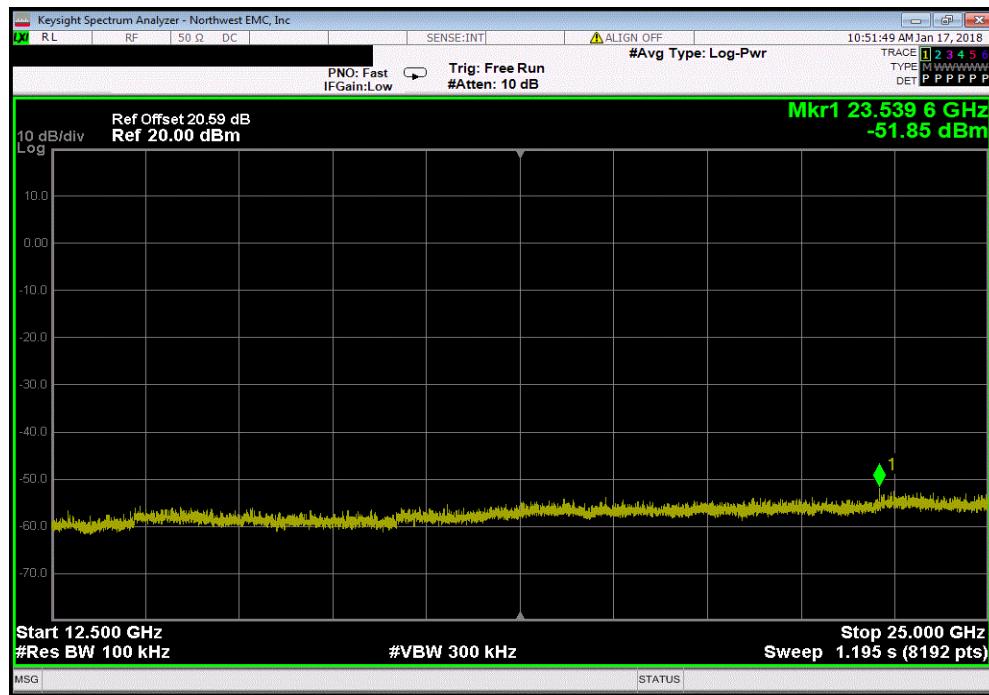
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, Low Channel 0, 902.3 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
12.5 GHz - 25 GHz	-69.71	-30	Pass

External Port, 125 kHz Bandwidth, Spreading Factor 7, Mid Channel 3, 902.9 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
Fundamental	N/A	N/A	N/A



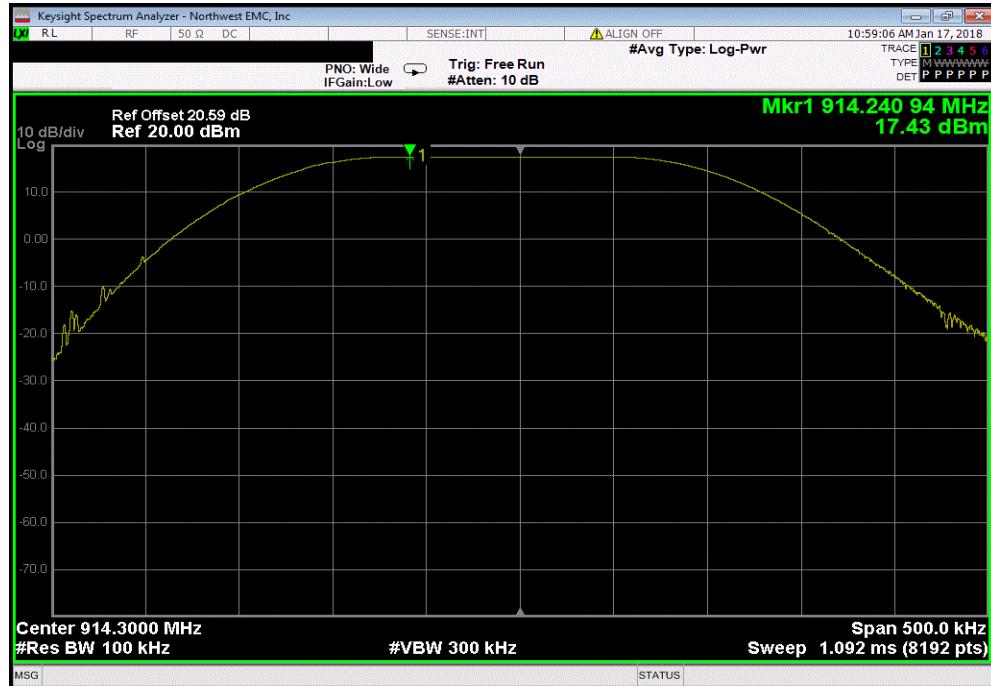
SPURIOUS CONDUCTED EMISSIONS



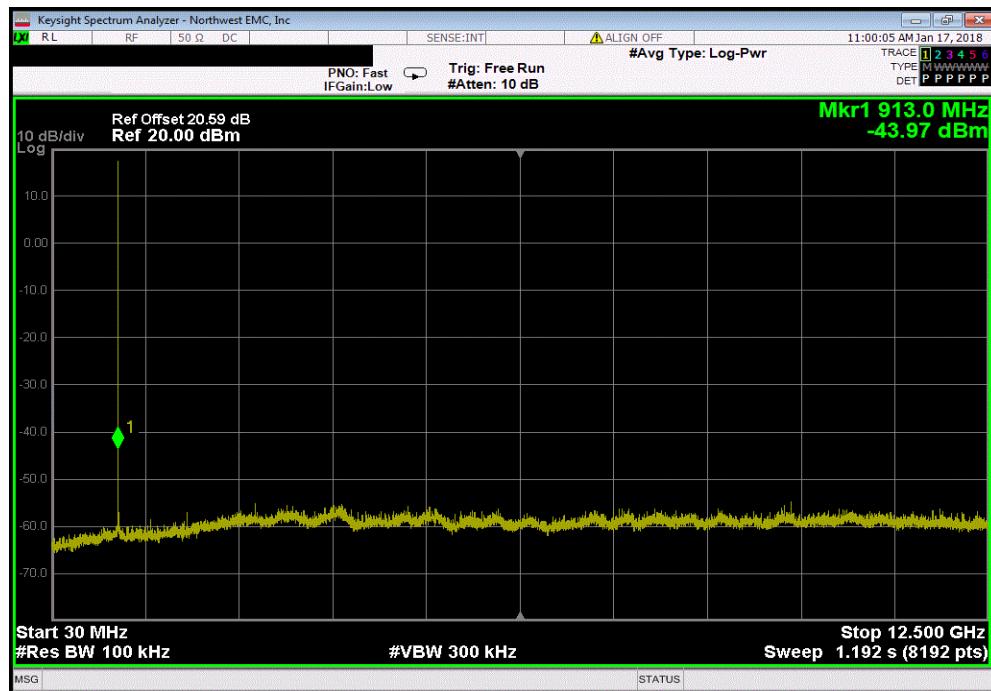
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, Mid Channel 3, 902.9 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
30 MHz - 12.5 GHz	-73.79	-30	Pass

External Port, 125 kHz Bandwidth, Spreading Factor 7, Mid Channel 3, 902.9 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
12.5 GHz - 25 GHz	-69.22	-30	Pass



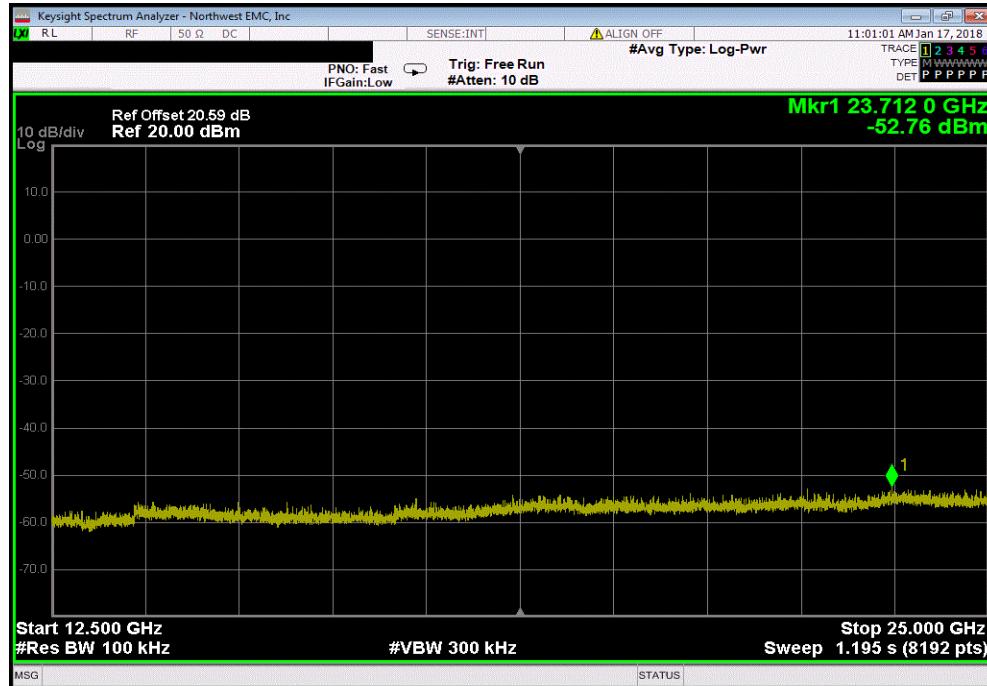
SPURIOUS CONDUCTED EMISSIONS



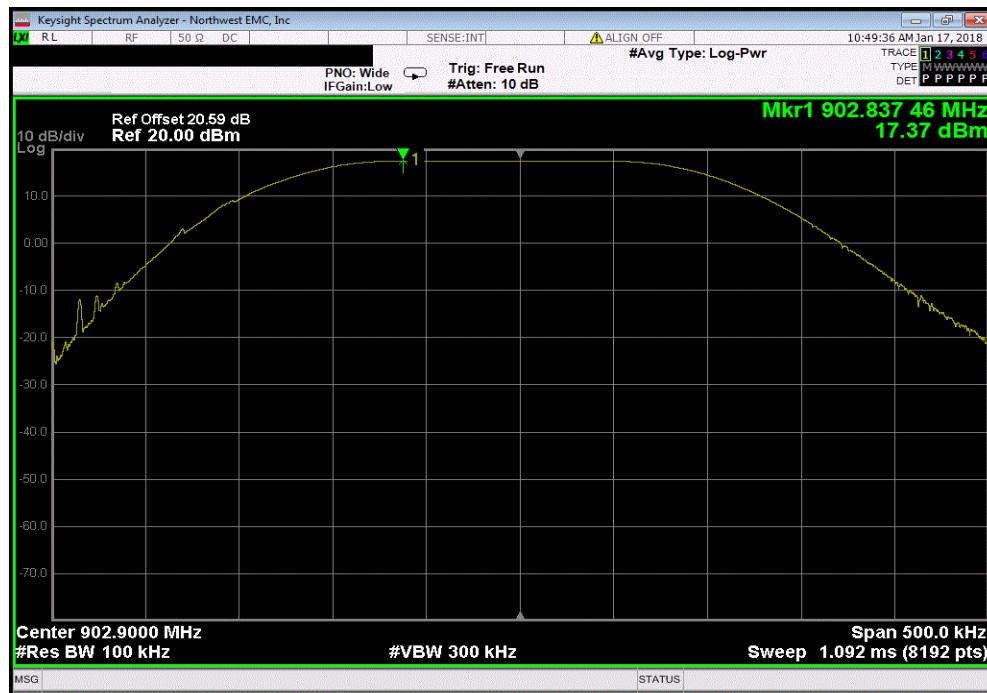
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, Mid Channel 4, 914.3 MHz					
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result		
Fundamental	N/A	N/A	N/A		

External Port, 125 kHz Bandwidth, Spreading Factor 7, Mid Channel 4, 914.3 MHz					
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result		
30 MHz - 12.5 GHz	-61.4	-30	Pass		



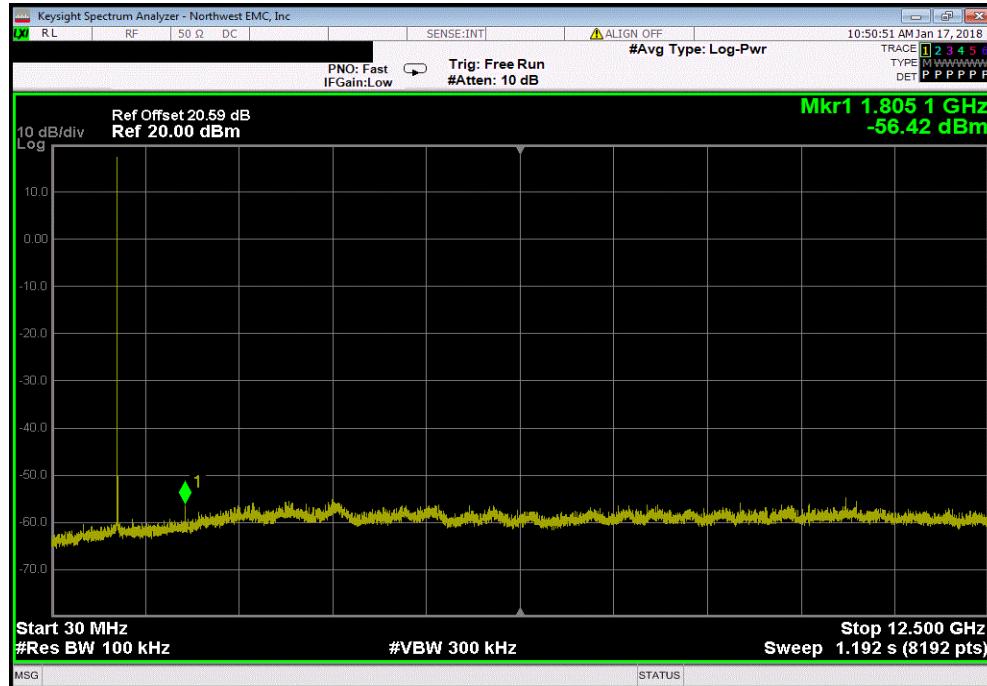
SPURIOUS CONDUCTED EMISSIONS



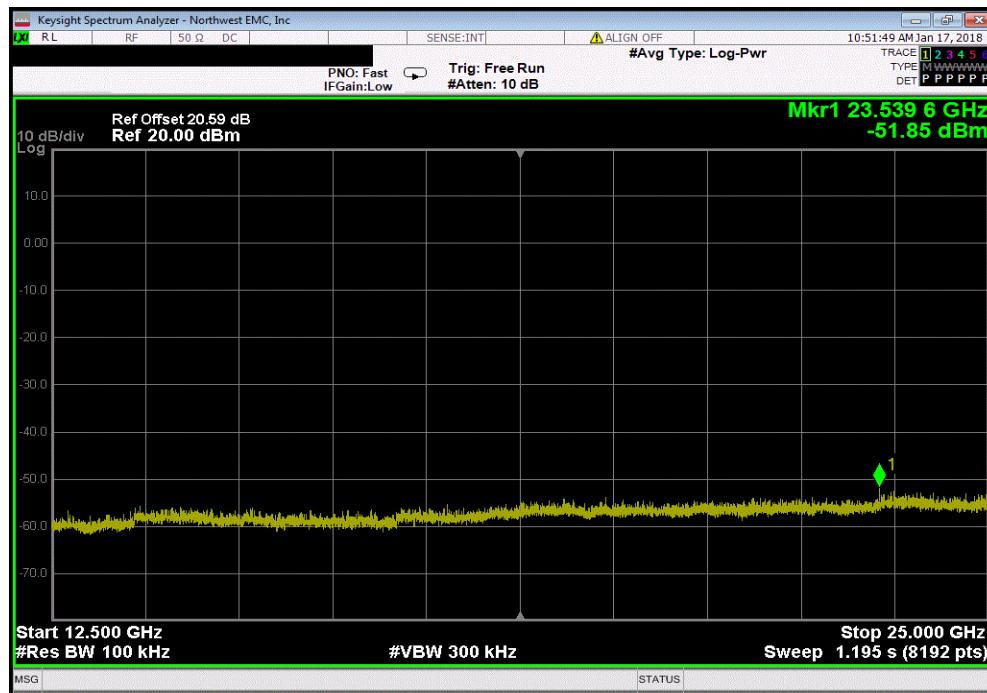
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, Mid Channel 4, 914.3 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
12.5 GHz - 25 GHz	-70.19	-30	Pass

External Port, 125 kHz Bandwidth, Spreading Factor 7, High Channel 7, 914.9 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
Fundamental	N/A	N/A	N/A



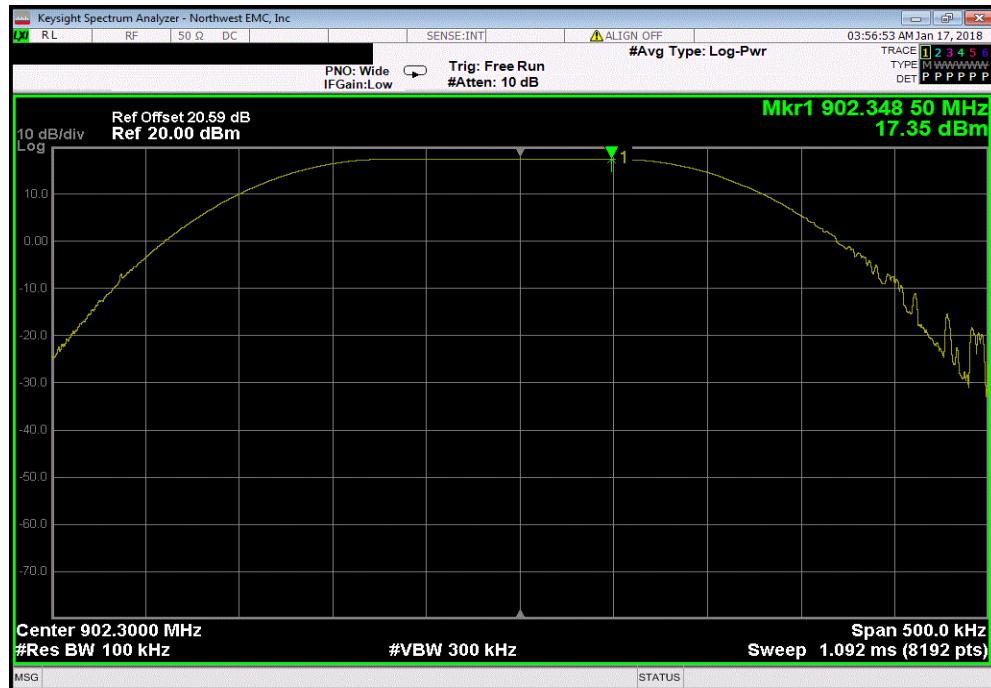
SPURIOUS CONDUCTED EMISSIONS



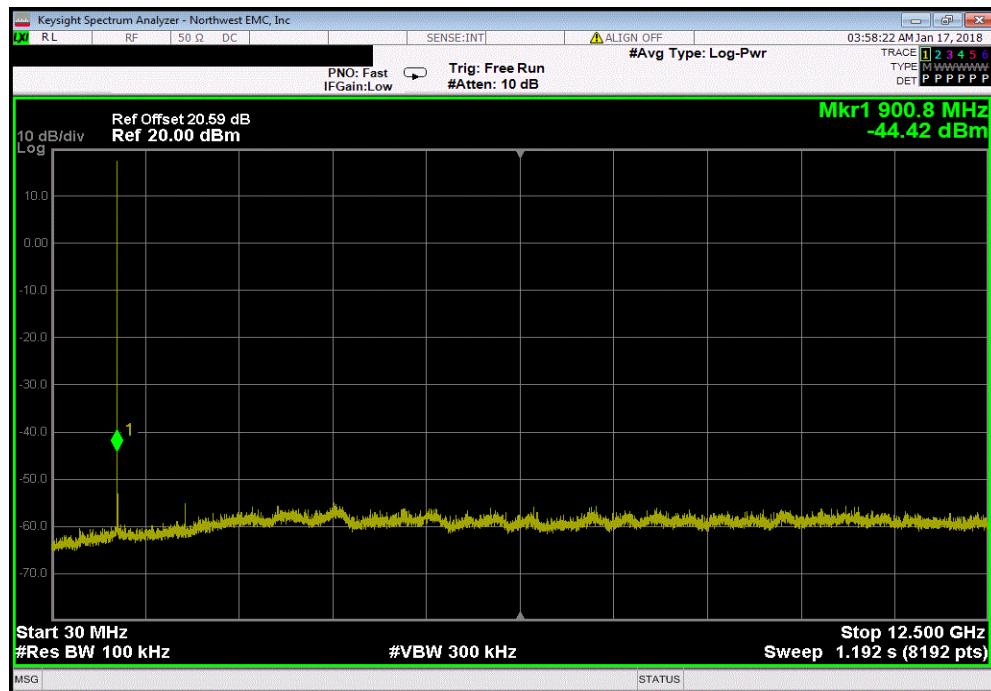
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, High Channel 7, 914.9 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
30 MHz - 12.5 GHz	-73.79	-30	Pass

External Port, 125 kHz Bandwidth, Spreading Factor 7, High Channel 7, 914.9 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
12.5 GHz - 25 GHz	-69.22	-30	Pass



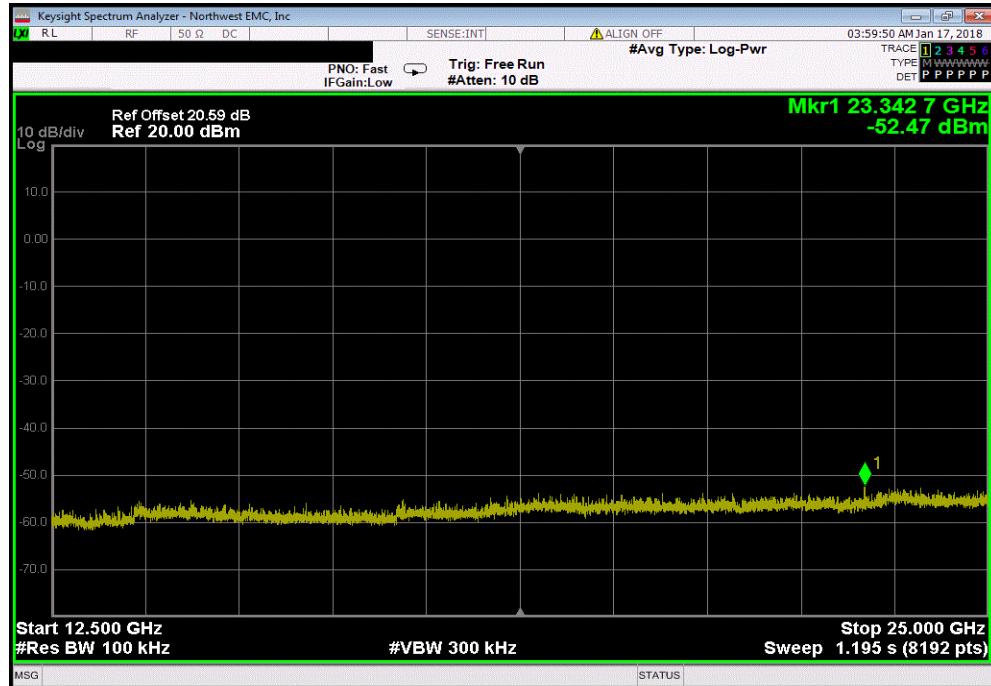
SPURIOUS CONDUCTED EMISSIONS



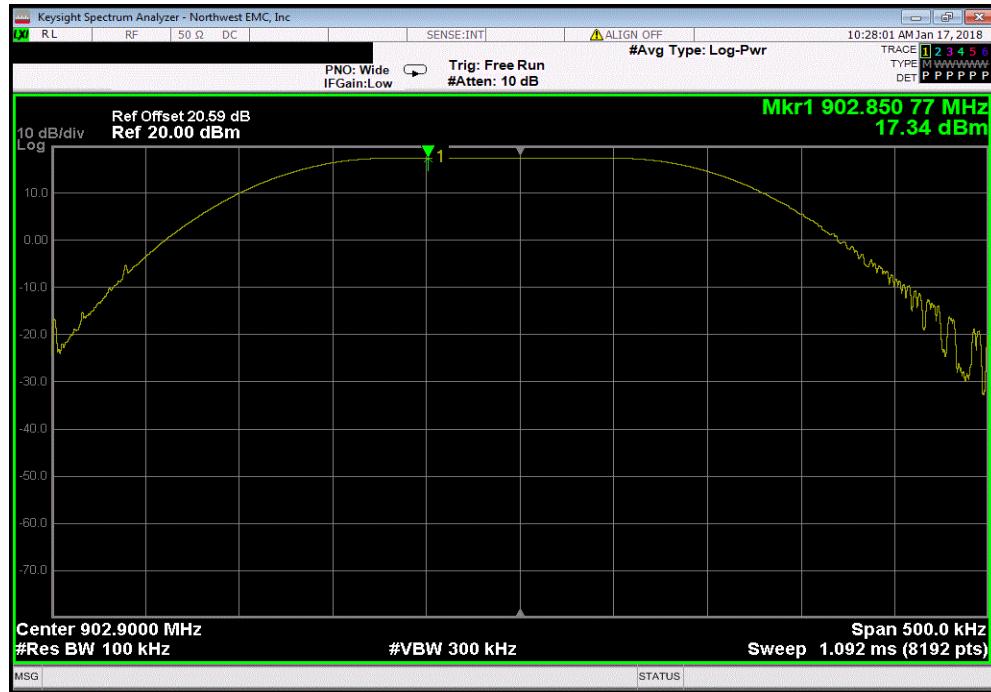
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, Low Channel 0, 902.3 MHz					
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result		
Fundamental	N/A	N/A	N/A		

External Port, 125 kHz Bandwidth, Spreading Factor 10, Low Channel 0, 902.3 MHz					
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result		
30 MHz - 12.5 GHz	-61.77	-30	Pass		



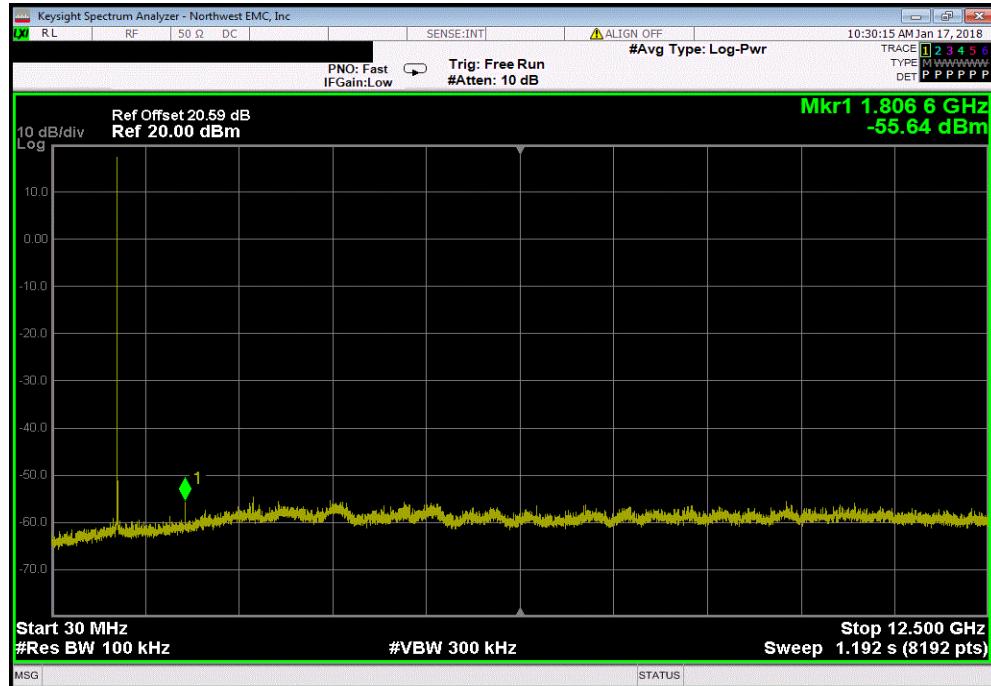
SPURIOUS CONDUCTED EMISSIONS



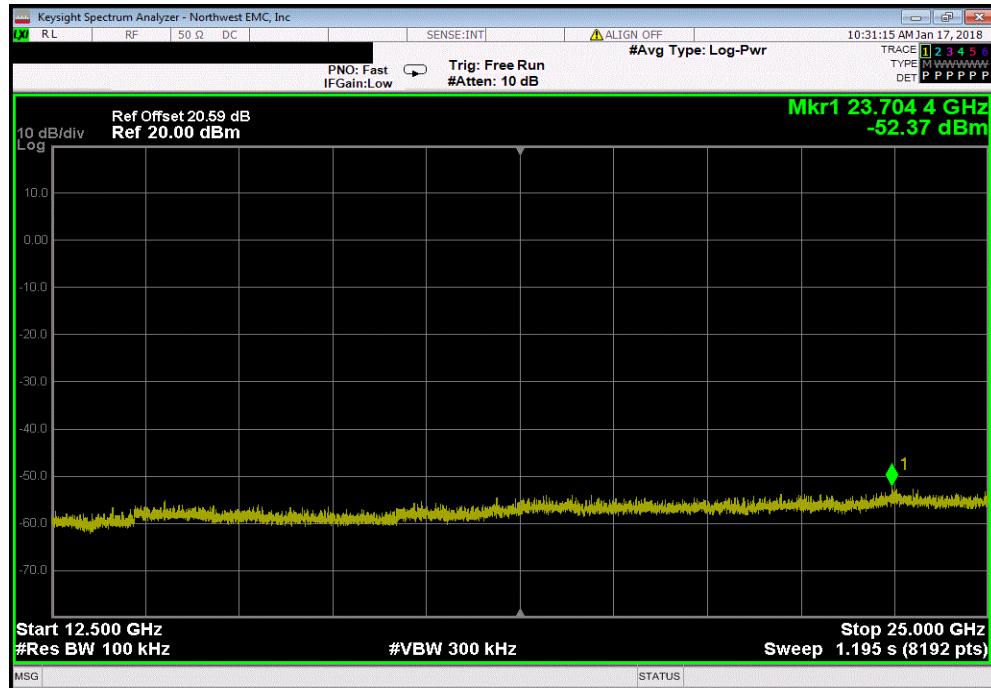
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, Low Channel 0, 902.3 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
12.5 GHz - 25 GHz	-69.82	-30	Pass

External Port, 125 kHz Bandwidth, Spreading Factor 10, Mid Channel 3, 902.9 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
Fundamental	N/A	N/A	N/A



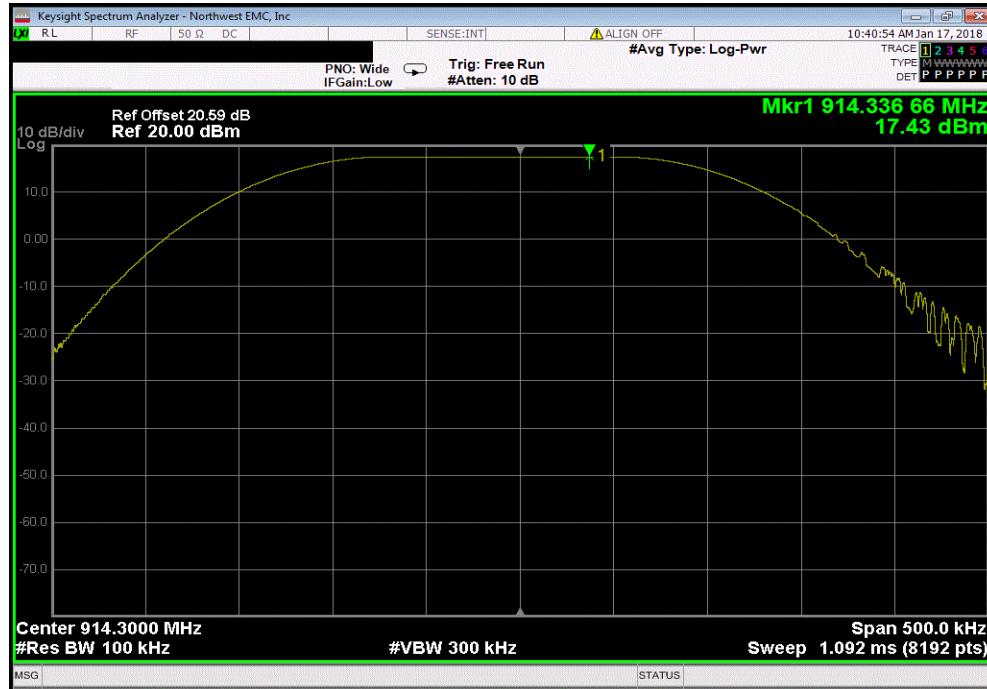
SPURIOUS CONDUCTED EMISSIONS



NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, Mid Channel 3, 902.9 MHz				
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result	
30 MHz - 12.5 GHz	-72.98	-30	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 10, Mid Channel 3, 902.9 MHz				
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result	
12.5 GHz - 25 GHz	-69.71	-30	Pass	

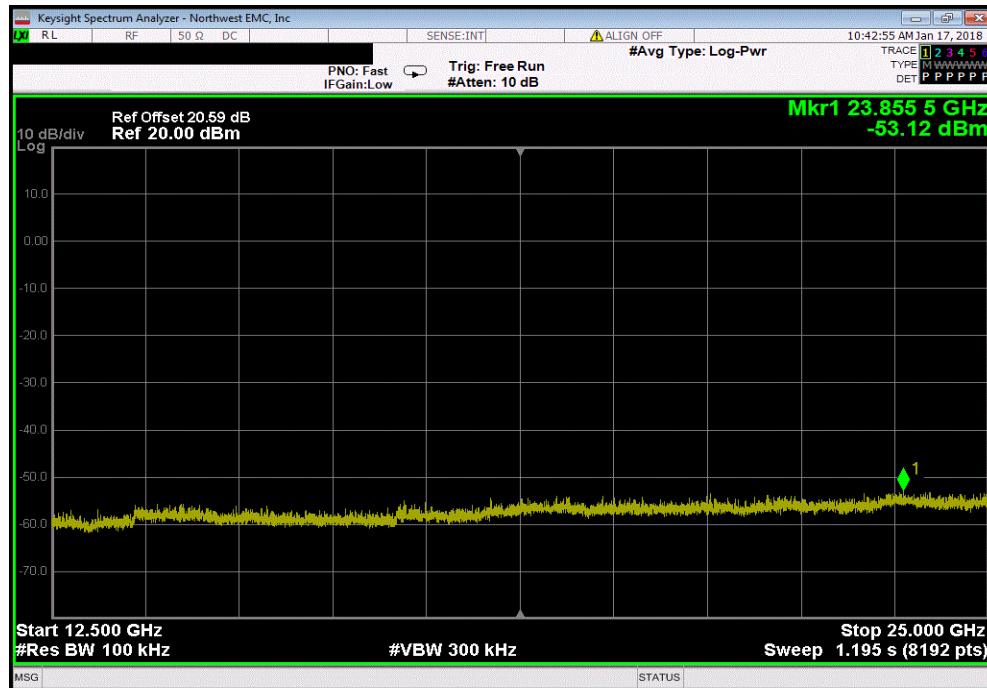


SPURIOUS CONDUCTED EMISSIONS

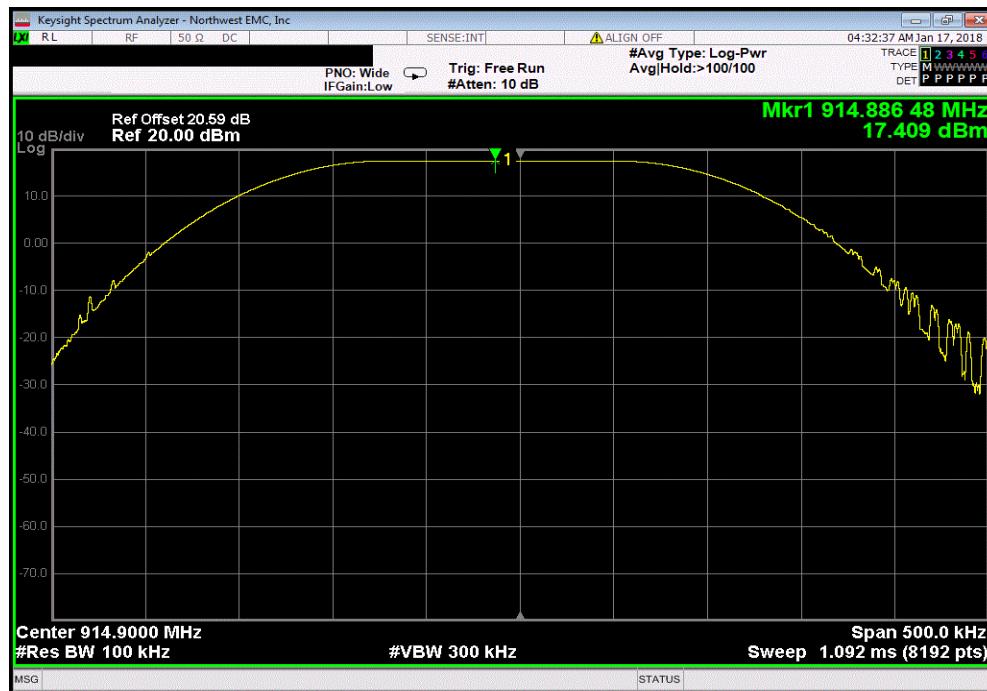
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, Mid Channel 4, 914.3 MHz					
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result		
Fundamental	N/A	N/A	N/A		

External Port, 125 kHz Bandwidth, Spreading Factor 10, Mid Channel 4, 914.3 MHz					
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result		
30 MHz - 12.5 GHz	-59.26	-30	Pass		



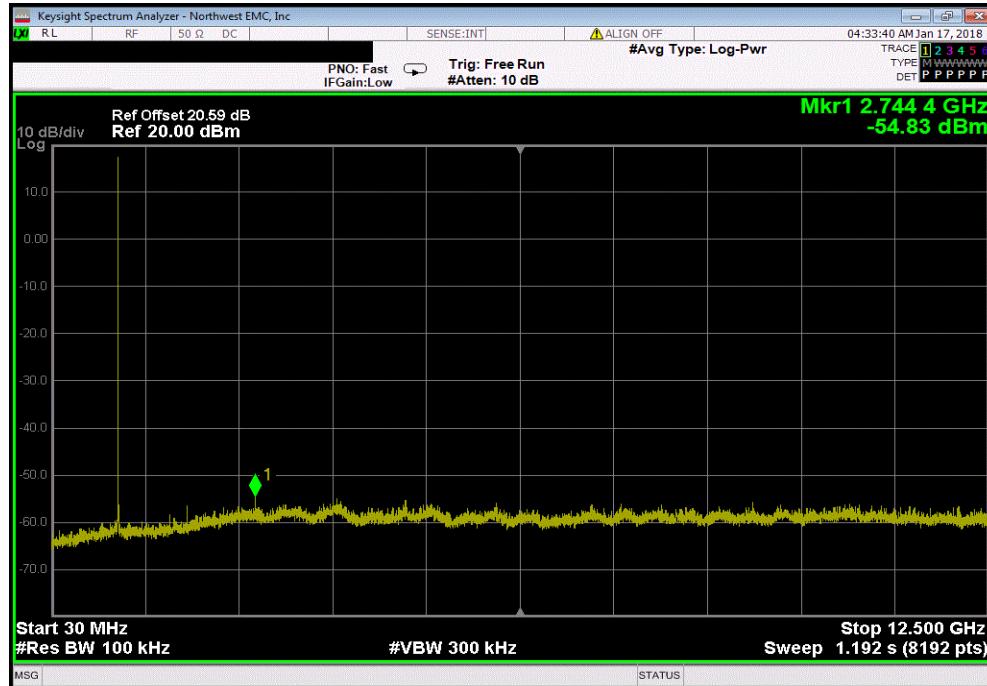
SPURIOUS CONDUCTED EMISSIONS



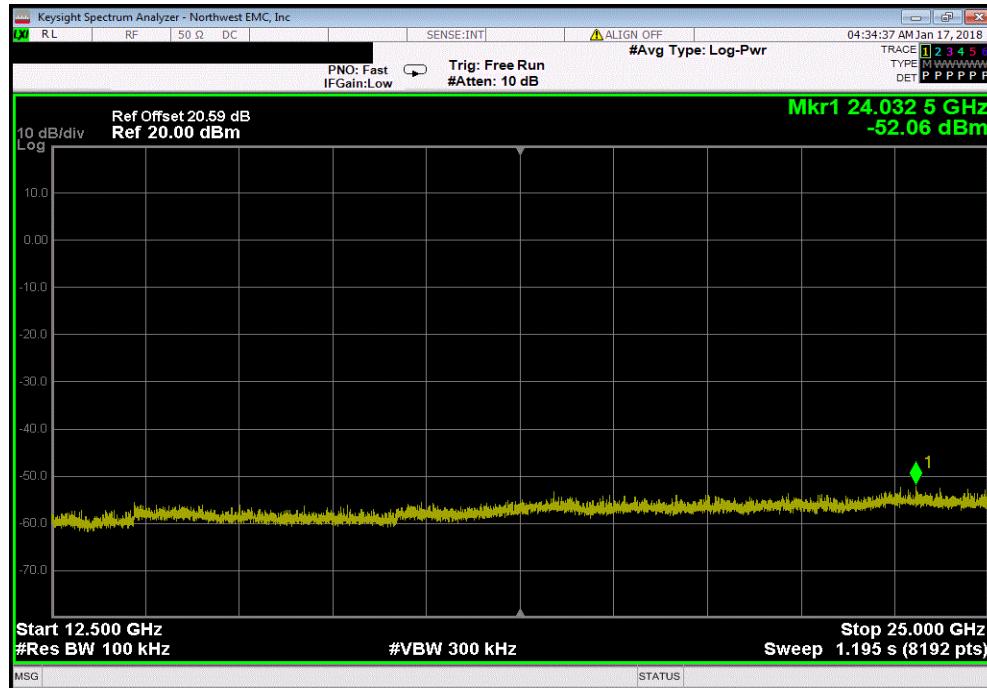
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, Mid Channel 4, 914.3 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
12.5 GHz - 25 GHz	-70.55	-30	Pass

External Port, 125 kHz Bandwidth, Spreading Factor 10, High Channel 7, 914.9 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
Fundamental	N/A	N/A	N/A



SPURIOUS CONDUCTED EMISSIONS



NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, High Channel 7, 914.9 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
30 MHz - 12.5 GHz	-72.25	-30	Pass

External Port, 125 kHz Bandwidth, Spreading Factor 10, High Channel 7, 914.9 MHz			
Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
12.5 GHz - 25 GHz	-69.49	-30	Pass

BAND EDGE COMPLIANCE

XMIT 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

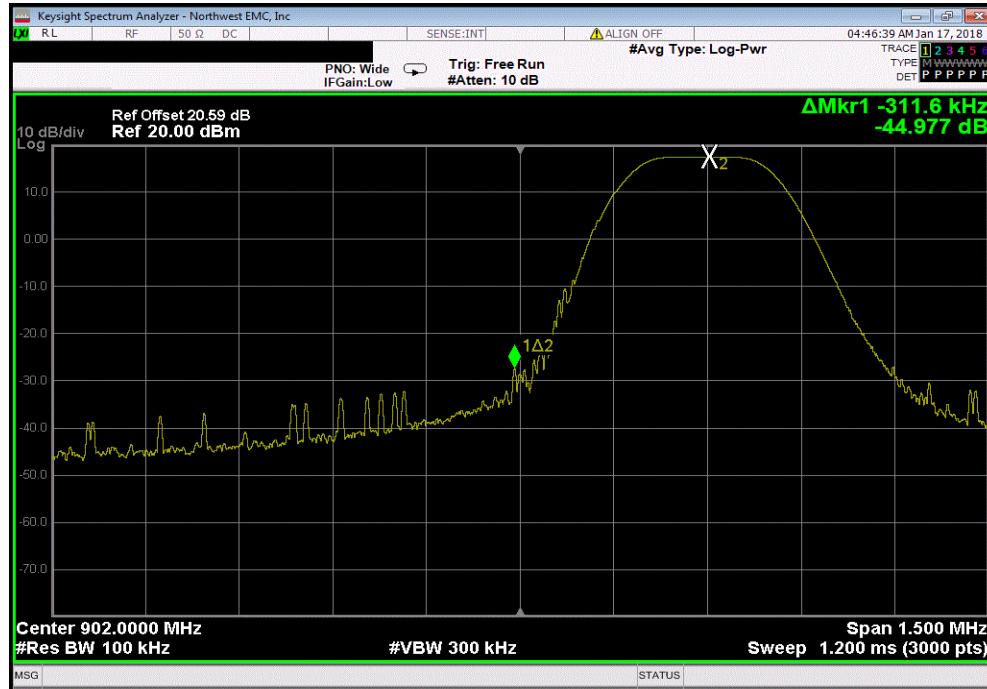
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	19-May-17	19-May-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCS	20-Apr-17	20-Apr-18
Attenuator	Fairview Microwave	SA4014-20	TKV	9-Mar-17	9-Mar-18
Block - DC	Fairview Microwave	SD3379	AMU	20-Apr-17	20-Apr-18
Generator - Signal	Agilent	N5183A	TIA	6-Apr-16	6-Apr-18

TEST DESCRIPTION

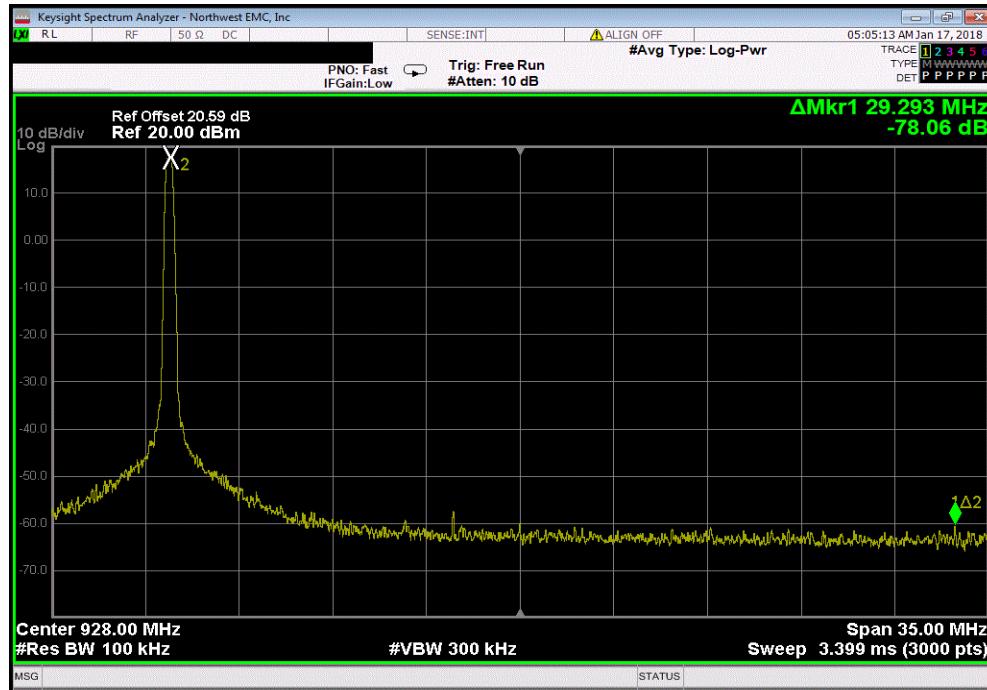
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE


EUT: PK1276		Work Order: APAN0004																
Serial Number: 18-9B-A5-90-02-7B		Date: 16-Jan-18																
Customer: APANA Inc.		Temperature: 23 °C																
Attendees: Matt Maher Peterson, David Humphrey		Humidity: 35% RH																
Project: None		Barometric Pres.: 1025 mbar																
Tested by: Richard Meliroth	Power: USB	Job Site: NC02																
TEST SPECIFICATIONS		Test Method																
FCC 15.247:2018		ANSI C63.10:2013																
COMMENTS																		
Power Setting = Default = 10.																		
DEVIATIONS FROM TEST STANDARD																		
None																		
Configuration #	1	Signature																
<table border="1"> <thead> <tr> <th>External Port</th> <th>125 kHz Bandwidth</th> <th>Value (dBc)</th> <th>Limit ≤ (dBc)</th> <th>Result</th> </tr> </thead> <tbody> <tr> <td>Spreading Factor 7</td> <td>Low Channel 0, High Channel 7,</td> <td>-44.98 -78.06</td> <td>-30 -30</td> <td>Pass Pass</td> </tr> <tr> <td>Spreading Factor 10</td> <td>Low Channel 0, High Channel 7,</td> <td>-45.59 -77.98</td> <td>-30 -30</td> <td>Pass Pass</td> </tr> </tbody> </table>				External Port	125 kHz Bandwidth	Value (dBc)	Limit ≤ (dBc)	Result	Spreading Factor 7	Low Channel 0, High Channel 7,	-44.98 -78.06	-30 -30	Pass Pass	Spreading Factor 10	Low Channel 0, High Channel 7,	-45.59 -77.98	-30 -30	Pass Pass
External Port	125 kHz Bandwidth	Value (dBc)	Limit ≤ (dBc)	Result														
Spreading Factor 7	Low Channel 0, High Channel 7,	-44.98 -78.06	-30 -30	Pass Pass														
Spreading Factor 10	Low Channel 0, High Channel 7,	-45.59 -77.98	-30 -30	Pass Pass														

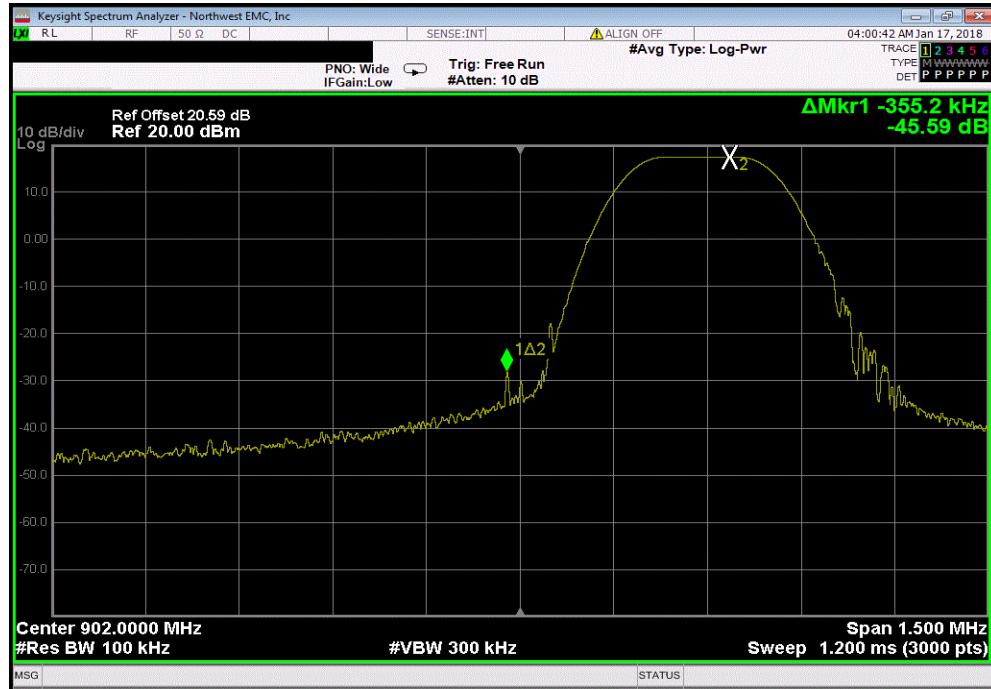
BAND EDGE COMPLIANCE



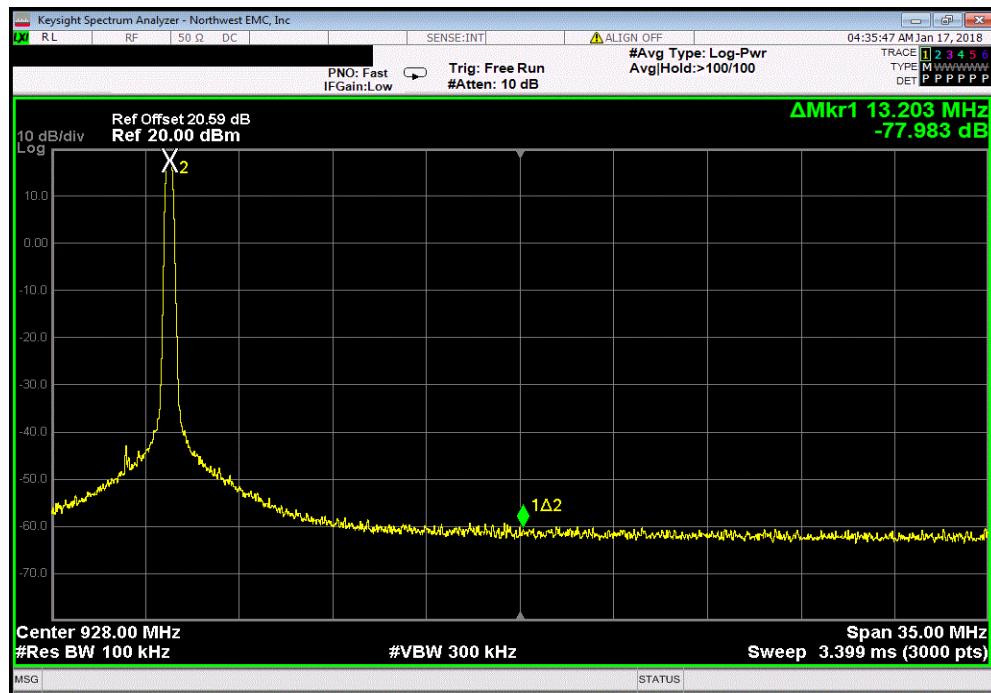
NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 7, Low Channel 0, 902.3 MHz			
Value (dBc)	Limit ≤ (dBc)	Result	
-44.98	-30	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 7, High Channel 7, 914.9 MHz			
Value (dBc)	Limit ≤ (dBc)	Result	
-78.06	-30	Pass	



BAND EDGE COMPLIANCE



NweTx 2016.09.14.2 XMT 2017.12.13

External Port, 125 kHz Bandwidth, Spreading Factor 10, Low Channel 0, 902.3 MHz			
Value (dBc)	Limit ≤ (dBc)	Result	
-45.59	-30	Pass	

External Port, 125 kHz Bandwidth, Spreading Factor 10, High Channel 7, 914.9 MHz			
Value (dBc)	Limit ≤ (dBc)	Result	
-77.98	-30	Pass	

