

RF Exposure

FCC ID: 2AK5B-L2

1.0 INTRODUCTION

These calculations are based on the highest EIRP possible from the EUT considering maximum power output and antenna gain or the highest EIRP possible from the EUT, measured in the radiated mode. 100 % duty cycle for the calculations even though the duty cycle is lower in actual use.

2.0 MPE CALCULATION FROM OET 65 & FCC 1.1310

Band	Freq. (MHz)	Max Power (dBm)	Max Power (mW)	Max Ant Gain (dBi)	Max Ant Gain above Isotropic (numeric)	Duty Cycle %	Max EIRP (mW)	Power Density at 20 cm (mW/cm^2)	(S) GP Limit (mW/cm^2)	MPE Ratio
RFID	13.56	-28.4	0.00	0	1.00	100.0	0.00	0.0000	0.200	0.0000
Bluetooth	2402	7.4	5.50	0	1.00	100.0	5.50	0.0011	1.000	0.0011
Total										0.0011

Notes on the above table:

The max power of 19 dBm between the two Wi-Fi modules of the 2.4 GHz was applied.

In accordance with OET 65, 97-01, Power Density is calculated by

$$S = P \cdot G / (4 \cdot \pi \cdot R^2)$$

Where

S = power density (mW/cm²)

P = power input to the antenna (mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (cm)

S is the power density General Population Limit from FCC 1.1310 Table 1

EIRP Power is the Peak Effective Radiated Power.

EIRP = (Average Conducted Power + Antenna gain) * Duty Cycle.

Since the calculated power density is less than the limit, this product fully meets the OET 65 requirements for the general population.