

TEST REPORT

Report No.: HST201701-0096-FCC Sample Description...: **Bluetooth Speaker** SPE-RA1009, SPE-RA1010, SPE-RA1064, SPE-RA1065, SPE-RA1069, SPE-RA1070, SPE-RA1071, SPE-RA1072, SPE-RA1078, SPE-RA1079, SPE-RA1080, SPE-RA1081, SPE-RA1082, SPE-RA1083, SPE-RA1085, SPE-RA1086, SPE-RA1087, SPE-RA1088, SPE-RA2010, SPE-RA2011, SPE-RA2012, SPE-RA2016, SPE-RA2017, SPE-RA2018, SPE-RA2019. SPE-RA2020. SPE-RA2021. SPE-RA2022, SPE-RA2023, SPE-RA2025 Assessment Category..: **Entrusted** Applicant....: RIDER BEST.INC

Guangdong Huesent Testing & Inspection Technology Co., Ltd.

TRF:HST-F-Q071 B/0

Report Statement

- 1. This test report is invalid if altered, additions and deletions.
- 2. This test report is responsible for tested samples only.
- 3. Objections to the test report must be submitted to Guangdong Huesent Testing & Inspection Technology Co., Ltd. within 15 days.
- 4. The test report is invalid without the signatures of tester, reviewer, approver, and official stamp of test unit.
- 5. Without permission of Guangdong Huesent Testing & Inspection Technology Co., Ltd., This report is not permitted to be duplicated in extracts.
- 6.P"= Pass=Test item conform to the requirement
- "F"= Fail=Test item not conform to the requirement
- "N"= Not Applicable =Test item Not Applicable to the test object

TRF:HST-F-Q071 B/0 Page 2 of 89

Report Number: HST201701-0096-FCC

TEST REPORT

Sample Description	Bluetooth Speaker	Trademark	1	
Model	SPE-RA1009	Specification	120 Vac orr 3Vdc	
Assessment Category	Entrusted	Sample Quantity	3	
Applicant:	RIDER BEST.INC	Sample Status	Normal	
Sample Received Date	Dec. 20, 2016	Test Date	Dec. 20, 2016 to Jan. 16, 2017	
Issue Date	Jan. 17, 2017			
Manufacturer	Dongguan Tangxi Electroni	c Technology Co., Ltd.		
Address	Hengshan Village, Shipai R Guangdong, China.	Road, Shipai Town, Don	gguan City,	
Factory	Dongguan Tangxi Electronic Technology Co., Ltd.			
Address	Hengshan Village, Shipai Road, Shipai Town, Dongguan City, Guangdong, China.			
Test address	See Page 7 2.4			
Test Items	Listed on page 5			
Test standard	FCC Part 15C 15.247 2016			
Test Conclusion	The results conform to the the test items.	requirements of stand	lards with respect to	
Remarks	FCC ID: 2AK4RSPE-RA10	78		
Tested by : Lemon Fu	on Fu			
Reviewed by: Sandy Yu Sign: Sandy Yu				
Approved by: Robin Pen	g Sign: المسائل			

TABLE OF CONTENT

1	Test Su	ımmary	5
2	Genera	I Information	6
	2.1 2.2 2.3 2.4	General Description of E.U.T. Details of E.U.T. Description of Support Units	6 6
	2.4 2.5	Test Location Deviation from Standards	
	2.6	Abnormalities from Standard Conditions	7
	2.7	Other Information Requested by the Customer	
	2.8	Measurement Uncertainty	7
3	Test Re	esults	8
	3.1	E.U.T. test conditions	8
	3.2	Antenna equirement	
	3.3	Occupied Bandwidth	
	3.4	Carrier Frequencies Separated	
	3.5	Hopping Channel Number	
	3.6	Dwell Time	
	3.7	Pseudorandom Frequency Hopping Sequence	
	Sta	andard requirement JT Pseudorandom Frequency Hopping Sequence	35 25
	3.8	Maximum Peak Output Power	33 37
	3.9	Conducted Spurious Emissions	
	3.10	Radiated Spurious Emissions	
		rmonic and other spurious emissions	
	3.11	Radiated Emissions which fall in the restricted bands	
	3.12	Band Edges Requirement	62
	3.13	Conducted Emissions at Mains Terminals 150 kHz to 30 MHz	
	Me	easurement Data	68
4	APPEN	DIX	70
	4.1	Photographs of the Test Arrangement	70
	4.2	Photographs of EUT Constructional Details	73
	4.3	Antenna Photo	84
5	Equipm	ents Used during Test	89

Report Number: HST201701-0096-FCC

1 Test Summary

Test	Test Requirement	Test method	Result
Antenna Requirement	FCC PART 15 C section 15.247 (c) and Section 15.203	FCC PART 15 C section 15.247 (c) and Section 15.203	PASS
Occupied Bandwidth	FCC PART 15 C section 15.247 (a)(1)	ANSI C63.10: Clause 6.9 & DA 00-705	PASS
Carrier Frequencies Separated	FCC PART 15 C section 15.247(a)(1)	DA 00-705	PASS
Hopping Channel Number	FCC PART 15 C section 15.247(a)(1)(iii)	DA 00-705	PASS
Dwell Time	FCC PART 15 C section 15.247(a)(1)(iii)	DA 00-705	PASS
Pseudorandom Frequency Hopping Sequence	FCC PART 15 C section 15.247(a)(1)	DA 00-705	PASS
Maximum Peak Output Power	FCC PART 15 C section 15.247(b)(1)	ANSI C63.10: Clause 6.10	PASS
Conducted Spurious Emission	FCC PART 15 C section 15.247(d)	ANSI C63.10: Clause 6.7 & DA 00-705	PASS
Radiated Spurious Emission (9 kHz to 25 GHz)	FCC PART 15 C section 15.247(d)	ANSI C63.10: Clause 6.4, 6.5 and 6.6 & DA 00-705	PASS
Band Edges Measurement	FCC PART 15 C section 15.247 (d) &15.205	ANSI C63.10: Clause 6.9 & DA 00-705	PASS
Conducted Emissions at Mains	FCC PART 15 C section 15.207	ANSI C63.10: Clause 6.2 & DA 00-705	PASS

Remark:

N/A: not applicable. Refer to the relative section for the details. EUT: In this whole report EUT means Equipment Under Test. Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver. RF: In this whole report RF means Radio Frequency.

ANSI C63.10: the detail version is ANSI C63.10:2013 in the whole report.

DA 00-705: "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems"

Model No.: SPE-RA1009, SPE-RA1010, SPE-RA1064, SPE-RA1065, SPE-RA1069, SPE-RA1070, SPE-RA1071, SPE-RA1072, SPE-RA1078, SPE-RA1079, SPE-RA1080, SPE-RA1081, SPE-RA1082, SPE-RA1083, SPE-RA1085, SPE-RA1086, SPE-RA1087, SPE-RA1088, SPE-RA2010, SPE-RA2011, SPE-RA2012, SPE-RA2016, SPE-RA2017, SPE-RA2018, SPE-RA2019, SPE-RA2020, SPE-RA2021, SPE-RA2022, SPE-RA2023, SPE-RA2025

According to the confirmation from the applicant, all models are totally the same in and electrical and mechanical construction, except model No., speaker's size.

Therefore only one model SPA-RA1078 was tested in this report.

TRF:HST-F-Q071 B/0 Page 5 of 89

Page 6 of 89

Report Number: HST201701-0096-FCC

2 General Information

2.1 General Description of E.U.T.

Operating Frequency: 2402 MHz to 2480 MHz Channels: 79 channels with 1MHz step Type of Modulation GFSK,($\pi/4$) DQPSK, 8DPSK

Dwell time less than 0.4s.
Antenna Type PCB antenna

Antenna gain: 0dBi

Speciality: Bluetooth 2.1with EDR

Function: Speaker with BT function to receive audio signal.

2.2 Details of E.U.T.

EUT Power Supply: 120 Vac, 3Vdc by UM1*2 batteries, 64x32x22mm square

4V800mA rechaegeable storage battery, 1W

Rated power: 1W

Test mode: The program used to control the EUT for staying in continuous

transmitting mode is programmed.

Channel lowest (2402MHz), middle (2441MHz) and highest

(2480MHz) are chosen for full testing.

Normal mode: the Bluetooth has been tested on the Modulation of

GFSK;

EDR mode: the Bluetooth has been tested on the Modulation of $(\pi/4)$ DQPSK and 8DPSK, compliance test and record the worst case

on 8DPSK.

Power cord/ signal

cord:

Power cable: 150cm; The USB port is only for U-disk.

2.3 Description of Support Units

The EUT has been tested as an independent unit for fixed frequency by testing lab.

Page 7 of 89

Report Number: HST201701-0096-FCC

2.4 Test Location

I-Test Laboratory

1-2 floor, South Block, Building A2 , No 3 Keyan Lu, Science City, Guangzhou, Guangdong

Province, P.R. China

Tel: 86-20-32209330 Email: lbz@i-testlab.com

CNAS(Lab code:L4957) FCC (Registration No.:935596) IC (Registration NO.:8368A)

2.5 Deviation from Standards

Biconical and log periodic antennas were used instead of dipole antennas.

2.6 Abnormalities from Standard Conditions

None.

2.7 Other Information Requested by the Customer

None.

2.8 Measurement Uncertainty

Parameter	Uncertainty
Conducted Emission (9KHz-150KHz)	± 2.88 dB
Conducted Emission (150KHz-30MHz)	± 2.67 dB
RF power,conducted	± 0.70 dB
Spurious emissions, conducted	±1.19dB
All emissions,radiated (<30M) (9KHz-30MHz)	± 2.45 dB
All emissions,radiated(<1G) 30MHz-200MHz	± 2.83 dB
All emissions,radiated(<1G) 200MHz-1000MHz	± 2.94 dB
All emissions,radiated(>1G)	\pm 3.03dB
Temperature	$\pm 0.5^{\circ}$ C
Humidity	± 2%

TRF:HST-F-Q071 B/0 Page 7 of 89

Page 8 of 89

Report Number: HST201701-0096-FCC

3 Test Results

range:

3.1 E.U.T. test conditions

Test Voltage: Input: AC 120V, 60 Hz

 Temperature:
 20.0 -25.0 °C

 Humidity:
 38-50 % RH

Atmospheric Pressure: 1000 -1010 mbar

Test frequencies According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed

and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in

each band specified in the following table:

According to the 15.33 (a) For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least

the frequency shown in the following table:

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range in which device operates	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	1 MHz to 10 MHz 2	
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

Frequency range of radiated emission measurements

Lowest frequency generated	Upper frequency range of measurement		
in the device			
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40		
	GHz, whichever is lower		
At or above 10 GHz to below	5th harmonic of highest fundamental frequency or to 100		
30 GHz	GHz, whichever is lower		
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200		
	GHz, whichever is lower, unless otherwise specified		

EUT channels and frequencies list:

Channel Frequency		Channel Frequency		Channel	Frequency
	(MHz)		(MHz)		(MHz)
0	2402	11	2413	22	2424
1	2403	12	2414	23	2425
2	2404	13	2415	24	2426
3	2405	14	2416	25	2427
4	2406	15	2417	26	2428
5	2407	16	2418	27	2429
6	2408	17	2419	28	2430
7	2409	18	2420	29	2431
8	2410	19	2421	30	2432
9	2411	20	2422	31	2433
10	2412	21	2423	32	2434
33	2435	49	2451	65	2467
34	2436	50	2452	66	2468
35	2437	51	2453	67	2469
36	2438	52	2454	68	2470
37	2439	53	2455	69	2471

Report No.: HST201701-0096-FCC

38	2440	54	2456	70	2472
39	2441	55	2457	71	2473
40	2442	56	2458	72	2474
41	2443	57	2459	73	2475
42	2444	58	2460	74	2476
43	2445	59	2461	75	2477
44	2446	60	2462	76	2478
45	2447	61	2463	77	2479
46	2448	62	2464	78	2480
47	2449	63	2465		
48	2450	64	2466		

Test frequencies are the lowest channel: 0 channel(2402 MHz), middle channel: 39 channel(2441 MHz) and highest channel: 78 channel(2480 MHz).

3.2 Antenna equirement

Standard requirement

15.203 requirement:

For intentional device. According to 15.203. an intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz bands that are used exclusively for fixed.

Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

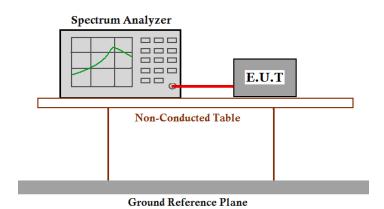
EUT Antenna

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Test result: The unit does meet the FCC requirements.

3.3 Occupied Bandwidth

Test Requirement: FCC Part 15 C section 15.247


(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Method: ANSI C63.10: 2013 & DA 00-705

Test Status: Pre-test the EUT in continuous transmitting mode at

the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data package. Compliance test in normal mode (DH5) and EDR mode (3DH5) as the worst case was found.

Test Configuration:

Test Procedure:

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

TRF:HST-F-Q071 B/0 Page 12 of 89

2. Set the spectrum analyzer: Span = approximately 2 to 3 times the 20dB bandwidth, centring on a hopping channel;

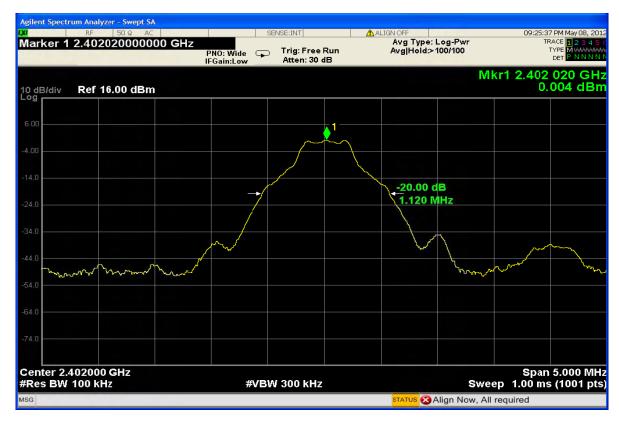
- Set the spectrum analyzer: RBW >= 1% of the 20dB bandwidth VBW >= RBW. Sweep = auto; Detector Function = Peak. Trace = Max Hold.
- 4. Mark the peak frequency and -20dB points bandwidth.

TRF:HST-F-Q071 B/0 Page 13 of 89

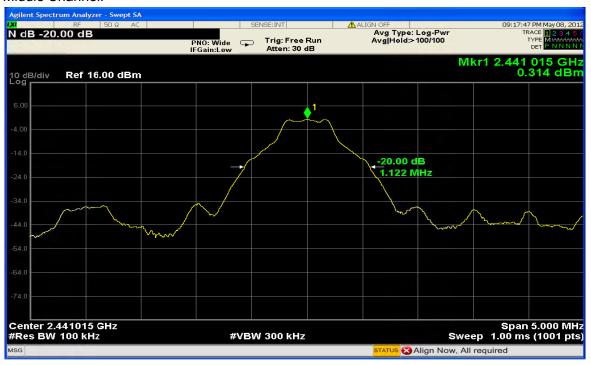
Test result:

Normal mode:

Test Channel	20dB Bandwidth(MHz)	2/3 bandwidth(MHz)	
Lowest	1.120	0.747	
Middle	1.122	0.748	
Highest	1.098	0.732	


EDR mode:

Test Channel	20dB Bandwidth(MHz)	2/3 bandwidth(MHz)	
Lowest	1.396	0.931	
Middle	1.398	0.932	
Highest	1.395	0.930	


TRF:HST-F-Q071 B/0 Page 14 of 89

Result plot as follows: DH5:worse case

Lowest Channel:

Middle Channel:

Highest Channel:

3DH5:

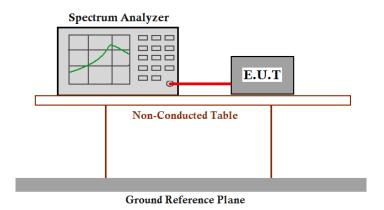
Lowest channel:

Middle channel:

Highest channel:

3.4 Carrier Frequencies Separated

Test Requirement: FCC Part 15 C section 15.247


(a),(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Method: DA 00-705

Test Status:

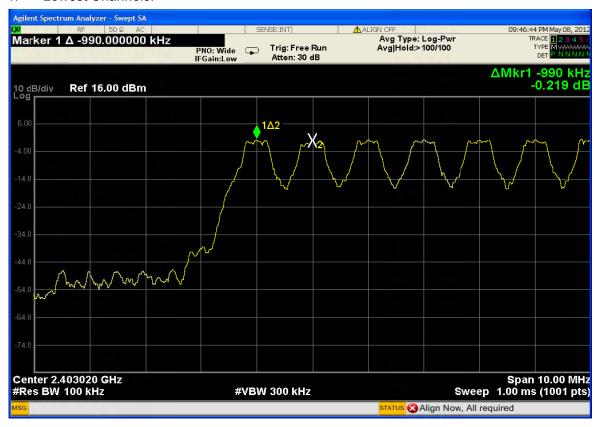
Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel and hopping mode with different data packet. Compliance test in hopping with normal mode (DH5) as the worst case was found.

Test Configuration:

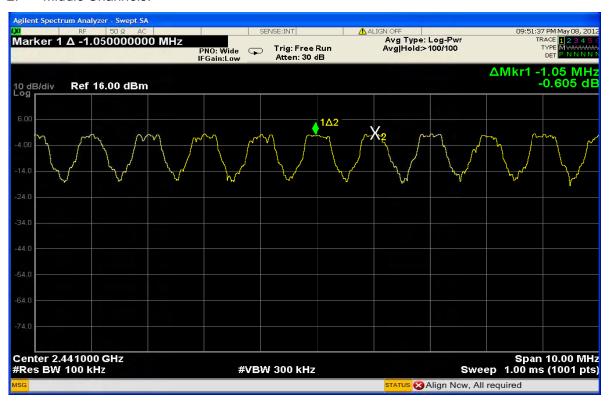
Test Procedure:

 Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum. 2. Set the spectrum analyzer: RBW \geq 1% of the span, VBW \geq RBW,. Sweep = auto; Detector

Function = Peak. Trace = Max, hold.


Allow the trace to stabilize. Use the marker-delta function to determine
the separation between the peaks of the adjacent channels. The limit
is specified in one of the subparagraphs of this Section. Submit this plot.

Test result:


Test Channel	Carrier Frequencies Separated	Pass/Fail			
Lower Channels (channel 0 and channel 1)	0.99MHz	Pass			
Middle Channels (channel 39 and channel 40)	1.05MHz	Pass			
Upper Channels (channel 77 and channel 78)	1.01MHz	Pass			
Remark: The limit is maximum two-thirds of the 20 dB bandwidth: 0.932 MHz					

Carrier Frequencies Separated plot:

Lowest Channels:

2. Middle Channels:

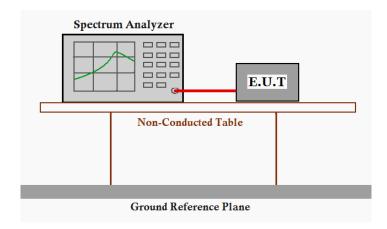
3. Highest Channels

3.5 Hopping Channel Number

Test Requirement: FCC Part15 C section 15.247

(a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.


Test Method: DA 00-705

Test Status: Pre-test the EUT in hopping mode with different data

packet. Compliance test in hopping with normal mode

(DH5) as the worst case was found.


Test Configuration:

Test Procedure:

- Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 300 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: start frequency = 2400 MHz. stop frequency = 2483.5 MHz. Submit the test result graph.

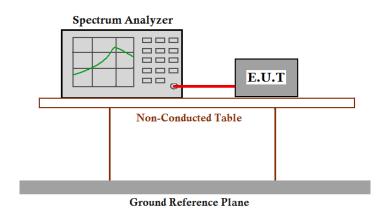
Test result: Total channels are 79 channels.

Test result: The unit does meet the FCC requirements.

3.6 Dwell Time

Test Requirement: FCC Part 15 C section 15.247

(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.


Test Method: DA 00-705

Test Status: Pre-test the EUT in continuous transmitting

mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in hopping with EDR mode

(3DH1, 3DH3 and 3DH5) as the worst case was found.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set spectrum analyzer span = 0. centered on a hopping channel;

3. Set RBW = 1 MHz and VBW = 1 MHz. Sweep = as necessary to capture the entire dwell time per hopping channel. Detector Function = Peak. Trace = View;

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.). Repeat this test for each variation.

The limit is specified in one of the subparagraphs of this Section. Submit this plot(s). An oscilloscope may be used instead of a spectrum analyzer.

TRF:HST-F-Q071 B/0 Page 25 of 89

Test Result:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

1. **Channel 0:** 2.402GHz

3DH1 time slot = 0.40(ms) * (1600/(2*79)) * 31.6 = 128.0ms 3DH3 time slot = 1.64 (ms) * (1600/(4*79)) * 31.6 = 262.4ms 3DH5 time slot = 2.92 (ms) * (1600/(6*79)) * 31.6 = 311.5ms

2. **Channel 39:** 2.441GHz

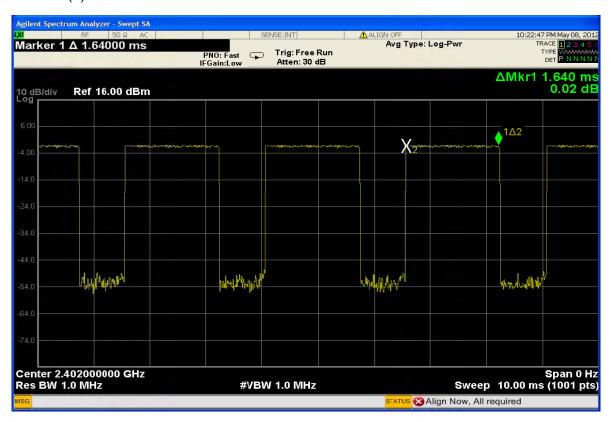
3DH1 time slot = 0.40 (ms) * (1600/(2*79)) * 31.6 = 128.0ms 3DH3 time slot = 1.62 (ms) * (1600/(4*79)) * 31.6 = 259.2ms 3DH5 time slot = 2.90 (ms) * (1600/(6*79)) * 31.6 = 309.3ms

3. **Channel 78:** 2.480GHz

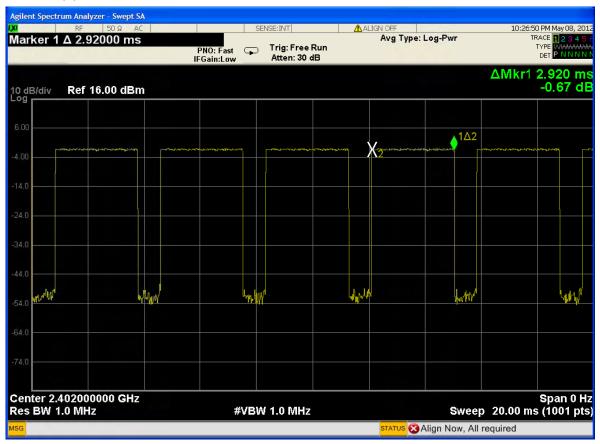
3DH1 time slot = 0.41 (ms) * (1600/(2*79)) * 31.6 = 131.2ms 3DH3 time slot = 1.66 (ms) * (1600/(4*79)) * 31.6 = 265.6ms 3DH5 time slot = 2.92(ms) * (1600/(6*79)) * 31.6 = 311.5ms

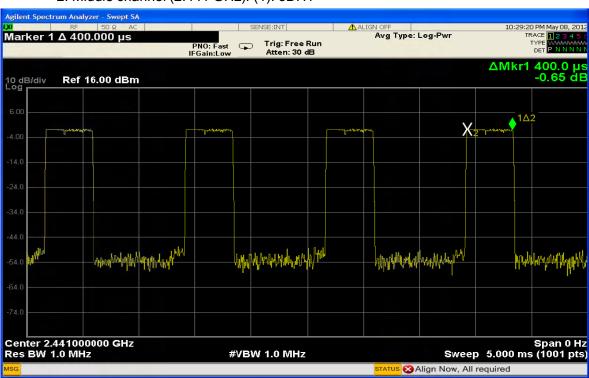
The results are not greater than 0.4 seconds

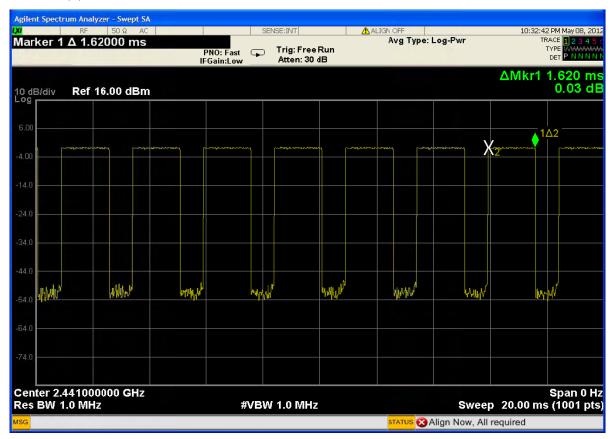
The unit does meet the FCC requirements.

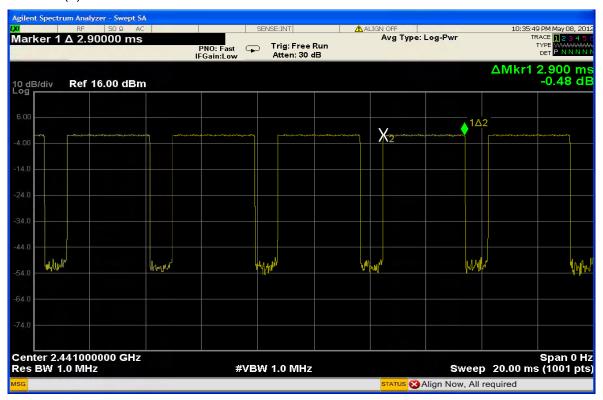

TRF:HST-F-Q071 B/0 Page 26 of 89

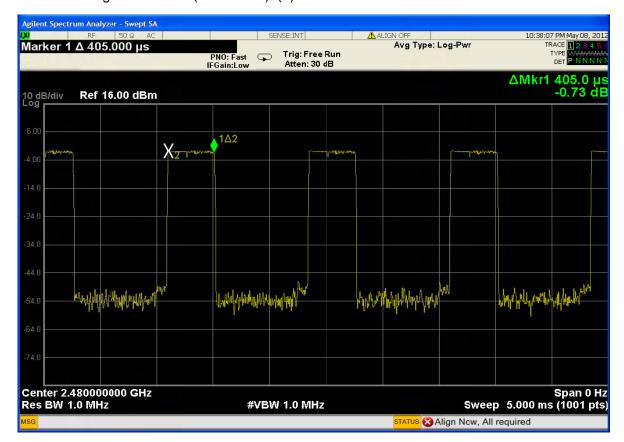
Please refer the graph as below:


1. Lowest channel (2.402 GHz): (1). 3DH1

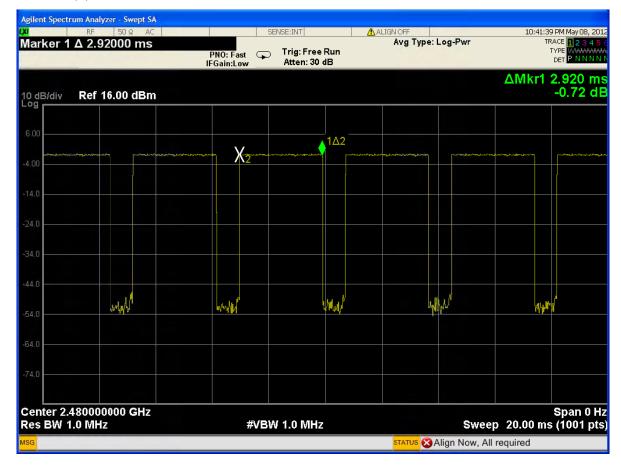

(2) 3DH3


(3) 3DH5


2. Middle channel (2.441 GHz): (1). 3DH1


(2) 3DH3

(3) 3DH5


3. Highest channel (2.480 GHz): (1). 3DH1

(2) 3DH3

(3) 3DH5

Remark:

In communication data link mode (expect inquiry or page mode) the hopping rate is 1600 per second, the 79 channels will be randomly selected for RF channel, and each channel have equal probability to be selected. The hop selection scheme is defined in Clause 2.6 of Part B of Volume

2 of core specification of Bluetooth.

The Dwell time must be calculated via following formula:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period Period = 0.4 (seconds/ channel) x 79 (channel) = 31.6 seconds

So

Dwell time DH1= slot time * (1600/2/79) * 31.6

Dwell time DH3= slot time * (1600/4/79) * 31.6

Dwell time DH5= slot time * (1600/6/79) * 31.6

The RF channel will remain fixed for duration of a packet, that means for DH3 packet the RF frequency will remain unchanged during 3 slots (1slot=1/1600=625us), and for DH5 packet the RF frequency will remain unchanged during 5 slots, illustrated the principle as below:

BLUETOOTH SPECIFICATION Version 2.0 + EDR [vol 3]

page 85 of 814

Baseband Specification

Figure 2.14: Single- and multi-slot packets.

Therefore, in a certain period for different packet types, the quantities of hops (not hopping rate

1600) are different, accurately, the quantity of hops for DH1 is double of DH3's and triple of DH5's. "for DH1 packet, 1 hop in 1 slot; for DH3 packet, ½ hop in 1 slot; for DH5 packet, 1/3 hop in 1 slot.", explained as below:

From the

illustrated

hopping

scheme:

For DH1, in two slots, there are two hops, i.e. f(k) in Slot(k), f(k+1) in Slot(k+1), means DH1 1 hop in 1 slot;

For DH3, in four slots, there are two hops, i.e. f(k) in Slot(k) & Slot(k+1) & Slot(k+2), f(k+3) in

Slot(k+3), means DH3 2 hops in four slots $\rightarrow \frac{1}{2}$ hop in 1 slot;

For DH5, in six slots, there are two hops, i.e. f(k) in Slot(k) & Slot(k+1) & Slot(k+2) & Slot(k+3) & Slot(k+4), f(k+5) in Slot(k+5), means DH3 2 hops in six slots -> 1/3 hop in 1 slot.

The Hopping rate in the formula should not be fixed value, for DH1, it is 1600/2; for DH3, it is

1600/4; for DH5, it is 1600/6.

To calculate Dwell time of data transmission of Bluetooth system, the worst case is for Bluetooth PICONET that contains two devices only (although Bluetooth PICONET can support up to eight devices), and for Bluetooth data transmission, after device A sending a packet to device B, device A must get response packet from device B to continue data transmission;

For DH1 packet: assume device A is EUT, the worst case is after device A sending a DH1 packet to device B, device A gets a DH1 response packet from device B, that means device A needs 1 time slot for transmitting and 1 time slot for receiving, therefore, the actual hopping rate of device A is half of 1600, i.e. 800 hops per second for EUT;

For DH3 packet: assume device A is EUT, the worst case is after device A sending a DH3 packet to device B, device A gets a DH1 response packet from device B, that means device A needs 3 time slots for transmitting and 1

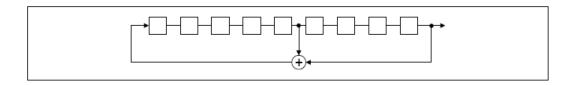
time slot for receiving, therefore, the actual hopping rate of device A is quarter of 1600, i.e. 400 hops per second for EUT;

For DH5 packet: assume device A is EUT, the worst case is after device A sending a DH5 packet to device B, device A gets a DH1 response packet from device B, that means device A needs 5 time slots for transmitting and 1 time slot for receiving, therefore, the actual hopping rate of device A is sixth of 1600, i.e. 1600/6=266.7 hops per second for EUT;

3.7 Pseudorandom Frequency Hopping Sequence

Standard requirement

15.247(a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

	0	2	4	6	62	2 64	78	1	73 75 77
1									
1					1		- 1		
- L					l			L)	

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

3.8 Maximum Peak Output Power

Test Requirement: FCC Part 15 C section 15.247

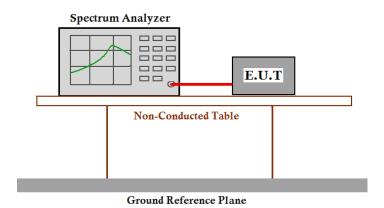
(b)(1)For frequency hopping systems operating

in the 2400-2483.5

MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

Refer to the result "Hopping channel number" of this document. The 1 watt (30.0 dBm) limit applies.

Test Method: ANSI C63.10: Clause 6.10 & DA 00-705


Test Limit:

Test mode: Pre-test the EUT in continuous transmitting mode at the

lowest (2402

MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with normal (DH5) and EDR mode (3DH5) as the worst case was found.

Test Configuration:

Test Procedure:

- Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 2 MHz. VBW = 2 MHz. Sweep = auto;

Detector Function =Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

TRF:HST-F-Q071 B/0 Page 38 of 89

Test Result:

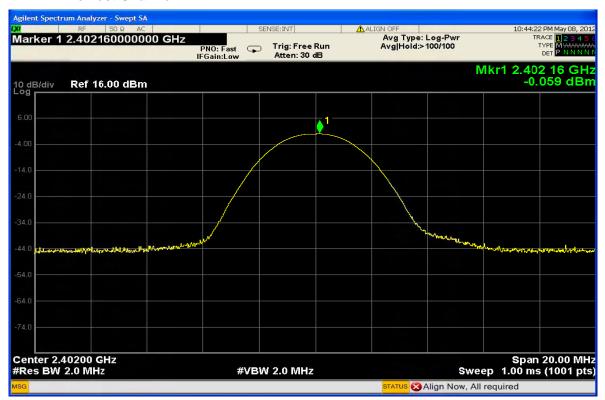
Normal mode:

Test Channel	Fundamental Frequency (MHz)	Reading value Output Power(dBm)	cable lose	Output Power (dBm)	Limit (dBm)	Result
Lowest	2402	-0.059	2.8	2.741	30.0	Pass
Middle	2441	0.197	2.8	2.997	30.0	Pass
Highest	2480	0.249	2.8	3.049	30.0	Pass

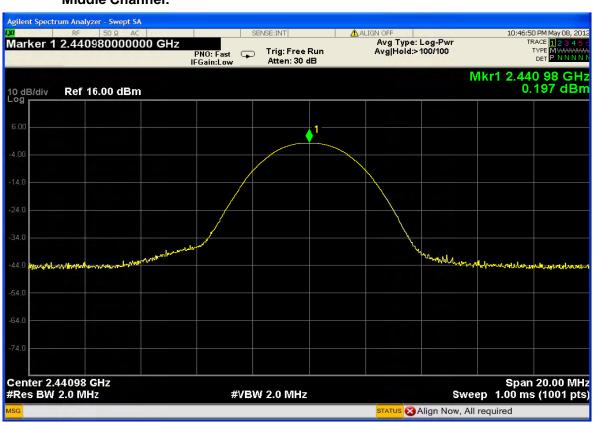
EDR mode:

Test Channel	Fundamental Frequency (MHz)	Reading value Output Power(dBm)	cable lose	Output Power (dBm)	Limit (dBm)	Result
Lowest	2402	-0.607	2.8	2.193	30.0	Pass
Middle	2441	-0.252	2.8	2.548	30.0	Pass
Highest	2480	-0.213	2.8	2.587	30.0	Pass

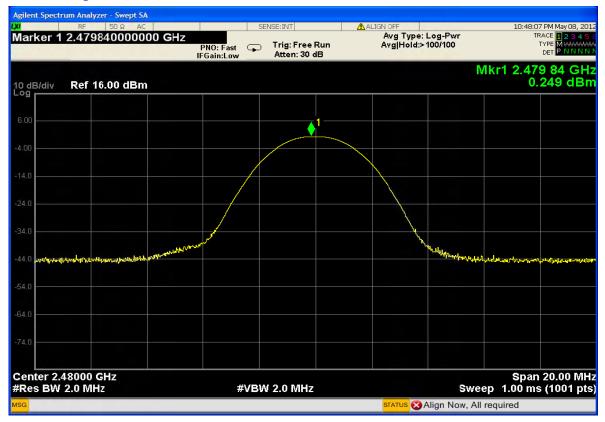
Remark:

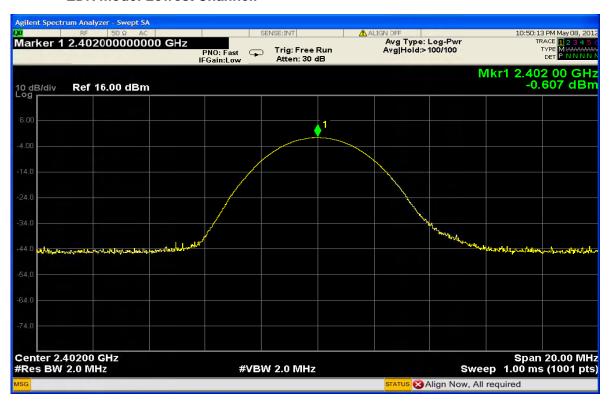

cable lose=2.8dB

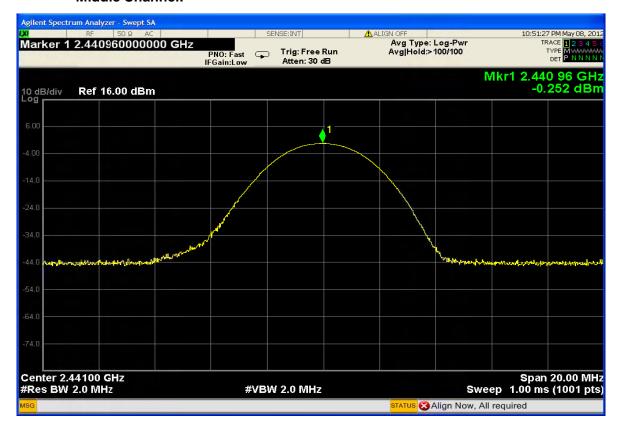
Test result: The unit does meet the FCC requirements.

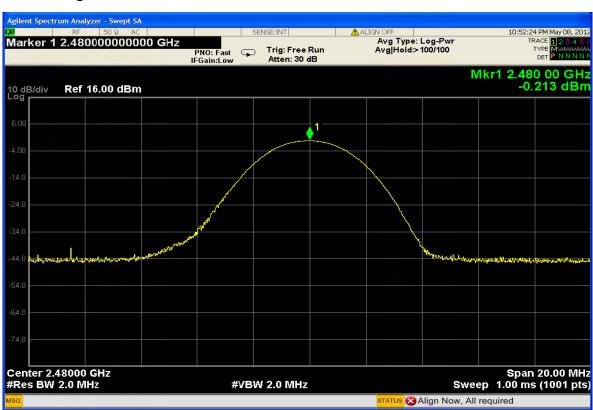

Test result plot as follows:

Normal mode:


Lowest Channel:


Middle Channel:


Highest Channel:


EDR mode: Lowest Channel:

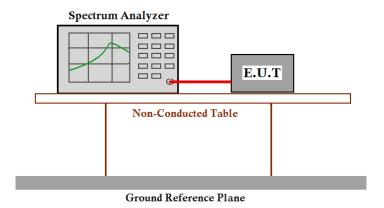
Middle Channel:

Highest Channel:

3.9 Conducted Spurious Emissions

Test Requirement: FCC Part15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.

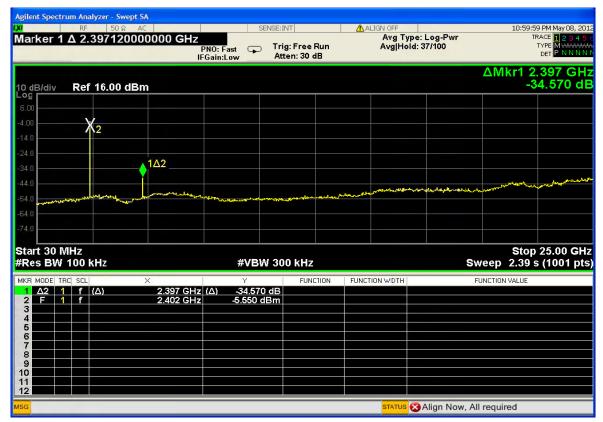

Test Method: ANSI C63.10: 2013& DA 00-705

Test Status: Pre-test the EUT in continuous transmitting mode at the

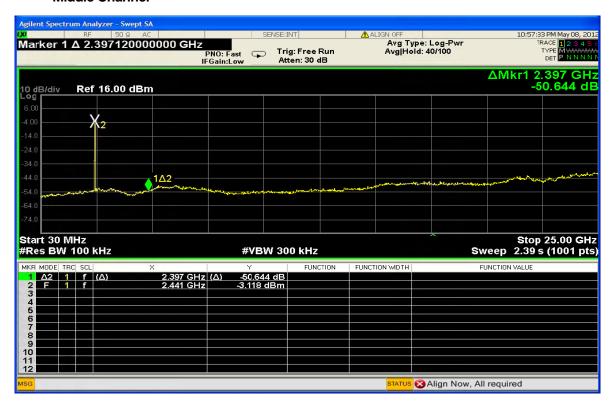
lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with

normal mode (DH5) as the worst case was found.

Test Configuration:


Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW >= RBW. Sweep = auto; Detector Function = Peak (Max. hold).


TRF:HST-F-Q071 B/0 Page 43 of 89

Test result plot as follows:

Lowest Channel:

Middle Channel

Highest channel

3.10 Radiated Spurious Emissions

Test Requirement: FCC Part15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that Contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, and provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Method: ANSI C63.10: 2013 & DA 00-705

Test Status: lowest (2402

Pre-test the EUT in continuous transmitting mode at the

MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with normal mode (DH5) as the worst case was found.

Detector: For PK value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 9kHz for

<30MHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

For AV value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 9kHz for

<30MHz

VBW =10 Hz

Sweep = auto

Detector function = peak

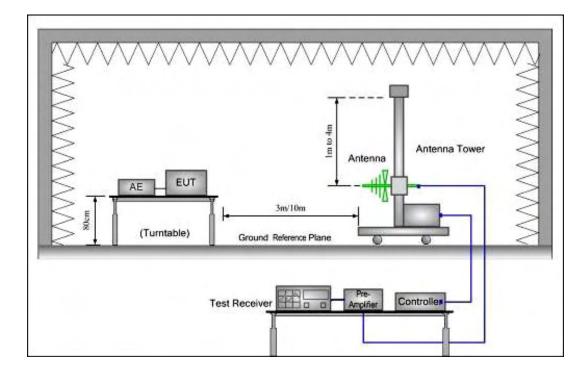
Trace = max hold

15.209 Limit: 40.0 dBμV/m between 30MHz & 88MHz

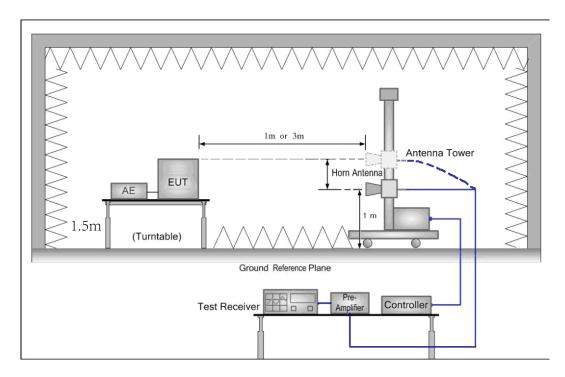
 $43.5 \text{ dB}\mu\text{V/m}$ between 88MHz & 216MHz

 $46.0~dB\mu V/m$ between 216MHz~&~960MHz

 $54.0 \text{ dB}\mu\text{V/m}$ above 960MHz


TRF:HST-F-Q071 B/0 Page 47 of 89

Test Configuration:


1) 9kHz to 30MHz emissions:

2) 30 MHz to 1 GHz emissions:

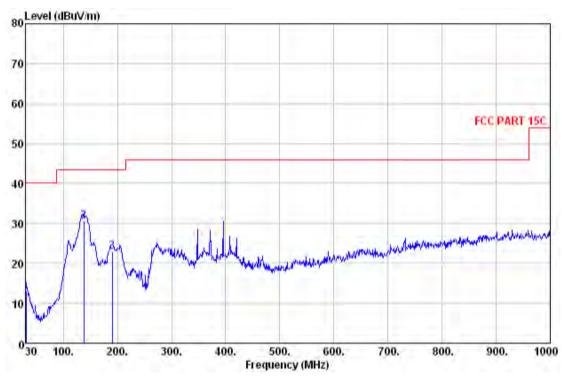
3) 1 GHz to 40 GHz emissions:

Test Procedure: The procedure used was ANSI Standard C63.4:2003. The receiver was scanned from 30MHz to 25GHz.When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from

20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

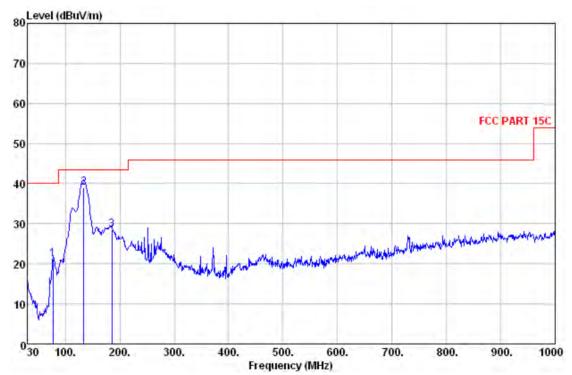
Harmonic and other spurious emissions


9kHz~30MHz Test result

The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

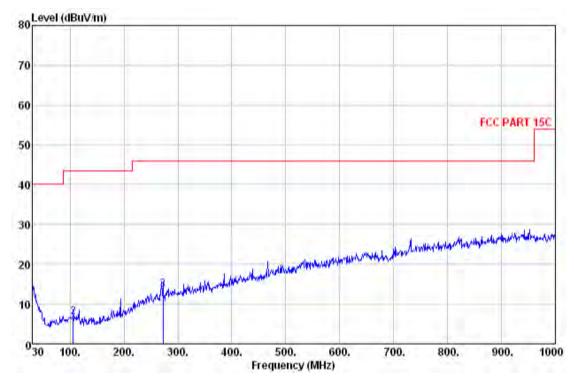
30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

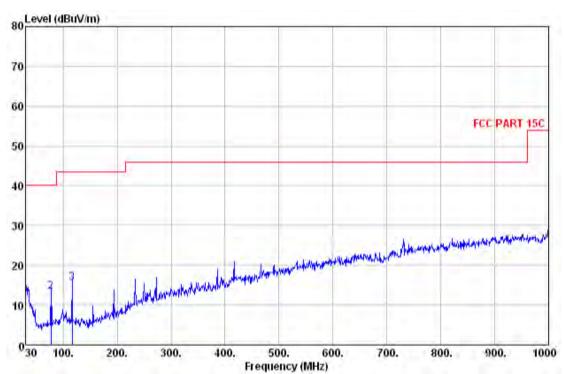
1)Pretest in low/ middle/ high channels, and choose the middle channel test result as the worst case for the final measurement.



Quasi Peak measurement

	I			ı		I	ı
Emission	Read	Cable	Antenna	Pre-amplifier	Ture	Limit/	
Frequency	value	Loss	Factor	'	value	(dBuV/m)	Margin(dB)
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(ubu v/III)	
31.0	-4.7	0.6	17.4	0	13.3	40	-26.7
137.7	21.7	1.4	7.4	0	30.5	43.5	-13.0
190.1	12.4	1.7	8.8	0	22.9	43.5	-20.6
345.2	11.6	1.9	13.8	0	27.3	46	-18.7
374.3	10.6	1.9	15.1	0	27.6	46	-18.4
397.6	11.7	1.9	15.9	0	29.5	46	-16.5




Emission	Read	Cable	Antenna	Pre-amplifier	Ture	Limit/	
Frequency	value	Loss	Factor	(dB)	value	(dBuV/m)	Margin(dB)
(MHz)	(dBuV/m)	(dB)	(dB)	(ub)	(dBuV/m)	(ubuv/III)	
77.5	12.9	1.0	7.3	0	21.2	40	-18.8
133.8	30.1	1.4	7.4	0	38.9	43.5	-4.6
185.2	18.6	1.6	8.4	0	28.6	43.5	-14.9
249.5	14.6	1.7	11.8	0	28.1	46	-17.9
368.7	8.2	1.9	14.9	0	25.0	46	-21.0
724.3	3.9	2.3	21.1	0	27.3	46	18.7

3) Test on FM receiving mode:

Horizontal: Peak scan

Vertical: Peak scan

Quasi Peak measurement

Horizontal: Peak scan

Emission Frequency (MHz)	Read value (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB)	Pre-amplifier (dB)	Ture value (dBuV/m)	Limit/ (dBuV/m)	Margin(dB)
30.0	-5.2	0.6	17.7	0	13.1	40	-26.9
105.7	-3.1	1.2	8.6	0	6.7	43.5	-36.8
272.5	-1.0	2.0	12.7	0	13.7	46	-32.3

Vertical: Peak scan

Emission Frequency	Read value	Cable Loss	Antenna Factor	Pre-amplifier	Ture value	Limit/	Margin(dB)
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	
30.0	-4.4	0.6	17.7	0	13.9	40	-26.1
77.5	5.2	1.0	7.3	0	13.5	40.0	-26.5
116.3	6.3	1.3	8.0	0	15.6	43.5	-27.9

TRF:HST-F-Q071 B/0 Page 53 of 89

4) AM band: 530-1600 kHz, SW band: 8.0-16.0 MHz

Not applicable, since the EUT was an AM and SW receiver only, and the bands was less than 30 MHz, more details please refer to FCC part 15.101b) and 15.5 as the followings:

Section 15.5 General conditions of operation.

- (a) Persons operating intentional or unintentional radiators shall not be deemed to have any vested or recognizable right to continued use of any given frequency by virtue of prior registration or certification of equipment, or, for power line carrier systems, on the basis of prior notification of use pursuant to Section 90.63(g) of this chapter. [Should reference Section 90.35(g).]
- (b) Operation of an intentional, unintentional, or incidental radiator is subject to the conditions that no harmful interference is caused and that interference must be accepted that may be caused by the operation of an authorized radio station, by another intentional or unintentional radiator, by industrial, scientific and medical (ISM) equipment, or by an incidental radiator.
- (c) The operator of a radio frequency device shall be required to cease operating the device upon notification by a Commission representative that the device is causing harmful interference. Operation shall not resume until the condition causing the harmful interference has been corrected.
- (d) Intentional radiators that produce Class B emissions (damped wave) are prohibited.

Section 15.101 Equipment authorization of unintentional radiators.

(b) Only those receivers that operate (tune) within the frequency range of 30-960 MHz, CB receivers and radar detectors are subject to the authorizations shown in paragraph (a) of this section.

However, receivers indicated as being subject to Declaration of Conformity that are contained within a transceiver, the transmitter portion of which is subject to certification, shall be authorized under the verification procedure. Receivers operating above 960 MHz or below 30 MHz, except for radar detectors and CB receivers, are exempt from complying with the technical provisions of this part but are subject to § 15.5.

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

1)Test at low channel

Peak Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4804.000	31.53	6.20	33.48	59.61	63.86	74.00	V
7206.000	36.47	7.20	32.76	49.21	60.12	74.00	V
9608.000	38.08	8.56	34.08	48.22	60.78	74.00	V
4804.000	31.53	6.20	33.48	59.45	63.7	74.00	Н
7206.000	36.47	7.20	32.76	48.28	59.19	74.00	Н
9608.000	38.08	8.56	34.08	48.43	60.99	74.00	Н

Average Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4804.000	31.53	6.20	33.48	44.61	48.86	54.00	V
7206.000	36.47	7.20	32.76	39.18	50.09	54.00	V
9608.000	38.08	8.56	34.08	36.23	48.79	54.00	V
4804.000	31.53	6.20	33.48	43.79	48.04	54.00	Н
7206.000	36.47	7.20	32.76	38.75	49.66	54.00	Н
9608.000	38.08	8.56	34.08	36.86	49.42	54.00	Н

TRF:HST-F-Q071 B/0 Page 55 of 89

2)Test at middle channel

Peak Measurement:

Frequency (MHz)	Antenna factors	Cable loss (dB)	Preamp factor	Reading Level	Emission Level	Limit (dBµV/m)	Antenna polarization
	(dB/m)		(dB)	(dBµV)	(dBµV/m)		
4882.000	31.57	6.27	33.15	49.78	54.47	74.00	V
7323.000	36.50	7.68	32.61	49.45	61.02	74.00	V
9764.000	38.51	8.66	34.17	45.32	58.32	74.00	V
4882.000	31.57	6.27	33.15	48.13	52.82	74.00	Н
7323.000	36.50	7.68	32.61	47.62	59.19	74.00	Н
9764.000	38.51	8.66	34.17	45.39	58.39	74.00	Н

Average Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level	Emission Level	Limit (dBµV/m)	Antenna polarization
				(dBµV)	(dBµV/m)		
4882.000	31.57	6.27	33.15	37.62	42.31	54.00	V
7323.000	36.50	7.68	32.61	38.46	50.03	54.00	V
9764.000	38.51	8.66	34.17	35.69	48.69	54.00	V
4882.000	31.57	6.27	33.15	38.32	43.01	54.00	Н
7323.000	36.50	7.68	32.61	38.77	50.34	54.00	Н
9764.000	38.51	8.66	34.17	35.31	48.31	54.00	Н

TRF:HST-F-Q071 B/0 Page 56 of 89

3)Test at high channel

Peak Measurement:

Frequency	Antenna	Cable loss	Preamp	Reading	Emission	Limit	Antenna
(MHz)	factors	(dB)	factor	Level	Level	(dBµV/m)	polarization
	(dB/m)		(dB)	(dBµV)	(dBµV/m)		
4960.000	31.70	6.20	32.82	50.62	55.70	74.00	V
7440.000	36.60	7.47	32.46	45.05	56.66	74.00	V
9920.000	38.68	8.75	34.26	45.39	58.56	74.00	V
4960.000	31.70	6.20	32.82	49.42	54.50	74.00	Н
7440.000	36.60	7.47	32.46	45.88	57.49	74.00	Н
9920.000	38.68	8.75	34.26	46.38	59.55	74.00	Н

Average Measurement:

Frequency	Antenna	Cable loss	Preamp	Reading	Emission	Limit	Antenna
(MHz)	factors	(dB)	factor	Level	Level	(dBµV/m)	polarization
	(dB/m)		(dB)	(dBµV)	(dBµV/m)		
4960.000	31.70	6.20	32.82	37.38	42.46	54.00	V
7440.000	36.60	7.47	32.46	38.03	49.64	54.00	V
9920.000	38.68	8.75	34.26	36.72	49.89	54.00	V
4960.000	31.70	6.20	32.82	39.32	44.40	54.00	Н
7440.000	36.60	7.47	32.46	38.67	50.28	54.00	Н
9920.000	38.68	8.75	34.26	36.02	49.19	54.00	н

Remark:

1). The field strength is calculated by adding the Antenna Factor. Cable Factor &

Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Peccinar Boading + Antenna Factor + Cable Less - Preampli

Final Test Level =Receiver Reading + Antenna Factor + Cable Loss -Preamplifier Factor.

- 2). As shown in Section, for frequencies above 1000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 3). The test only perform the EUT in transmitting status since the test frequencies were over 1GHz only required transmitting status.

 All modes have been tested, only worse case is reported.

Test result: The unit does meet the FCC requirements.

3.11 Radiated Emissions which fall in the restricted bands

Test Requirement: FCC Part15 C Section 15.247

(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section

15.205(c)).

Test Method: ANSI C63.10: 2013 & DA 00-705

Test Status: Pre-test the EUT in continuous transmitting mode at

the lowest (2402

MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with normal mode (DH5) as the worst case was found.

Measurement Distance: 3m (Semi-Anechoic Chamber)

Limit: Section 15.209(a)

40.0 dBµV/m between 30MHz & 88MHz;

43.5 dBµV/m between 88MHz & 216MHz;

46.0 dBµV/m between 216MHz & 960MHz;

54.0 dBµV/m above 960MHz.

Detector: For PK value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW≥RBW Sweep=auto

Detector function = peak

Trace = max hold

For AV value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW =10 Hz Sweep = auto

Detector function = peak

Trace = max hold

Test Result:

1. Low Channel

Antenna polarization: Vertical

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor (dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	27.93	4.23	35.60	48.16	37.89	44.72	34.45
2390.000	27.61	4.30	35.60	49.37	38.21	45.68	34.52
2500.000	27.55	4.40	35.60	47.33	37.66	43.68	34.01
2483.500	27.55	4.40	35.60	48.18	37.99	44.53	34.34

Antenna polarization: Horizontal

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor (dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	27.93	4.23	35.60	48.52	37.22	45.08	33.78
2390.000	27.61	4.30	35.60	48.63	38.23	44.94	34.54
2500.000	27.55	4.40	35.60	49.55	39.24	45.90	35.59
2483.500	27.55	4.40	35.60	48.30	39.38	44.65	35.73

2. Middle Channel

Antenna polarization: Vertical

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor (dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	27.93	4.23	35.60	47.38	38.17	43.94	34.73
2390.000	27.61	4.30	35.60	48.47	38.26	44.78	34.57
2500.000	27.55	4.40	35.60	48.74	39.74	45.09	36.09
2483.500	27.55	4.40	35.60	50.19	38.89	46.54	35.24

Antenna polarization: Horizontal

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor (dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)	
2310.000	27.93	4.23	35.60	49.61	37.69	46.17	34.25	
2390.000	27.61	4.30	35.60	48.65	38.07	44.96	34.38	
2500.000	27.55	4.40	35.60	48.15	39.16	44.50	35.51	
2483.500	27.55	4.40	35.60	49.39	37.31	45.74	33.66	

TRF:HST-F-Q071 B/0 Page 59 of 89

3. High Channel

Antenna polarization: Vertical

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor (dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)	
2310.000	27.93	4.23	35.60	49.05	37.28	45.61	33.84	
2390.000	27.61	4.30	35.60	49.44	37.18	45.75	33.49	
2500.000	27.55	4.40	35.60	50.17	39.27	46.52	35.62	
2483.500	27.55	4.40	35.60	50.24	39.34	46.59	35.69	

Antenna polarization: Horizontal

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor (dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	27.93	4.23	35.60	49.17	39.17	45.73	35.73
2390.000	27.61	4.30	35.60	50.26	38.57	46.57	34.88
2500.000	27.55	4.40	35.60	49.23	37.12	45.58	33.47
2483.500	27.55	4.40	35.60	48.24	37.63	44.59	33.98

Remark: No any other emission which falls in restricted bands can be detected and be reported. All modes have been tested , only worse case is reported.

Test result: The unit does meet the FCC requirements.

TRF:HST-F-Q071 B/0 Page 60 of 89

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section. Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

TRF:HST-F-Q071 B/0 Page 61 of 89

²Above 38.6.

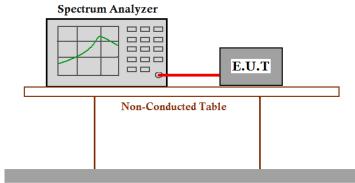
3.12 Band Edges Requirement

Test Requirement: FCC Part15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Frequency Band: 2400 MHz to 2483.5 MHz

Test Method: ANSI C63.10: Clause 6.9 & DA 00-705


Test Status: Pre-test the EUT in continuous transmitting mode at

the lowest (2402 MHz), and highest (2480 MHz) channel and hopping mode with different data packet. Compliance test in continuous transmitting mode with normal (DH5) and EDR mode (3DH5) as the worst

case was found.

Test Configuration:

TRF:HST-F-Q071 B/0 Page 62 of 89

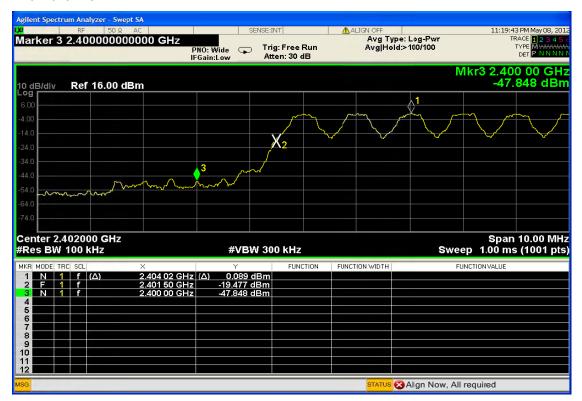
Ground Reference Plane

Test Procedure:

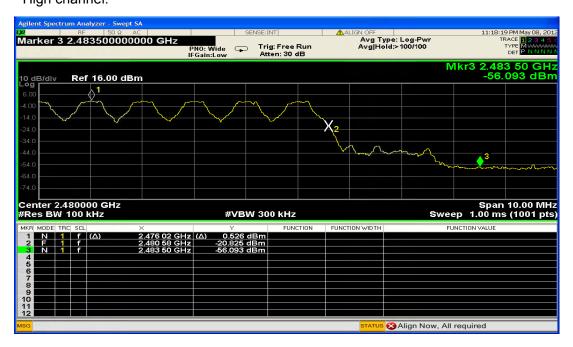
Set RBW of spectrum analyzer to 100 kHz and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100 kHz bandwidth from band edge.

The band edges was measured and recorded

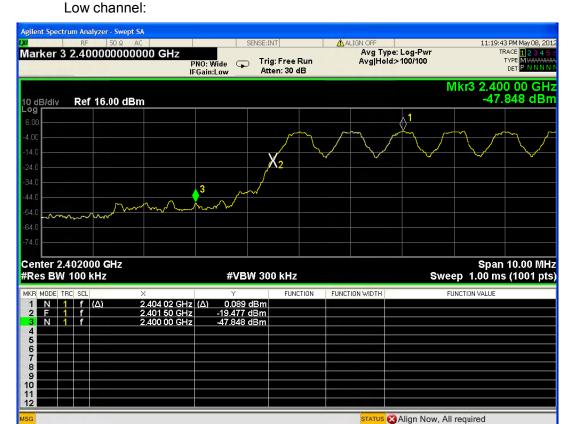
Result:


The Lower Edges attenuated more than 20dB. The Upper Edges attenuated more than 20dB.

TRF:HST-F-Q071 B/0 Page 63 of 89


The graph as below. Represents the emissions take for this device.

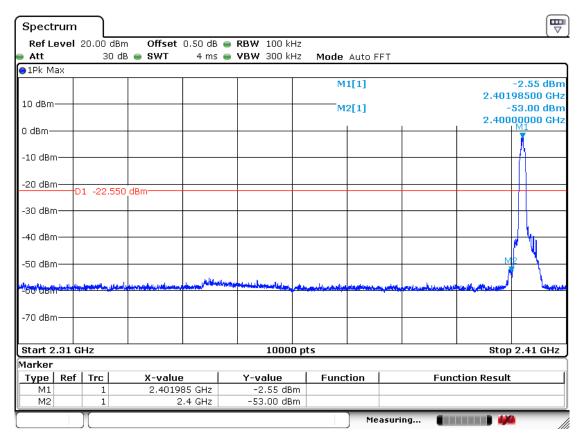
DH5:


Low channel:

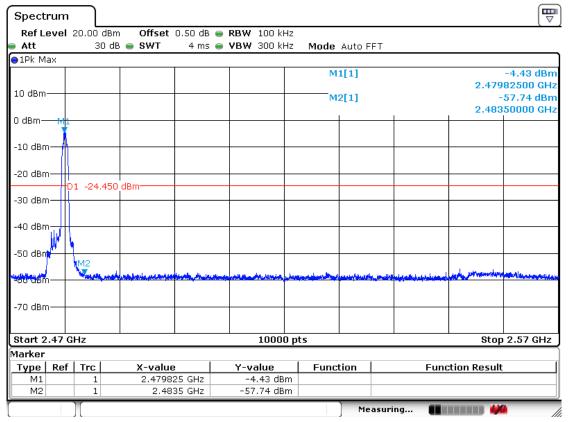
DH5: High channel:

3DH5:

High channel:



Test result: The unit does meet the FCC requirements.


DH5, Hopping off mode: Low channel: Spectrum Ref Level 20.00 dBm Offset 0.50 dB 🍙 RBW 100 kHz Att 30 dB 🅌 SWT 4 ms 🅌 VBW 300 kHz Mode Auto FFT ●1Pk Max M1[1] 0.63 dBm 2.40199500 GHz 10 dBm-M2[1] -44.47 dBm 2.40000000 GHz 0 dBm--10 dBm -20 dBm-D1 -19.370 dBm -30 dBm--40 dBm--50 dBm· -70 dBm Stop 2.41 GHz Start 2.31 GHz 10000 pts Marker Type | Ref | Trc X-value Y-value Function **Function Result** 2.401995 GHz 0.63 dBm -44.47 dBm М2 2.4 GHz 1 Measuring... 44 High channel: Spectrum Ref Level 20.00 dBm Offset 0.50 dB e RBW 100 kHz Att 30 dB 🅌 SWT 4 ms 🁄 **VBW** 300 kHz Mode Auto FFT ●1Pk Max M1[1] 1.20 dBm 2.47982500 GHz 10 dBm -58.08 dBm M2[1] 2.48350000 GHz 0 dBm--10 dBm -20 dBm-D1 -21.200 dBm= -30 dBm 40 dBm -50 dBm -70 dBm-Start 2.47 GHz 10000 pts Stop 2.57 GHz Marker Type | Ref | Trc Function **Function Result** X-value Y-value 2.479825 GHz М1 -1.20 dBm М2 1 2.4835 GHz -58.08 dBm Measuring...

3DH5, Hopping off mode:

Low channel:

High channel:

Test result: The unit does meet the FCC requirements.

3.13 Conducted Emissions at Mains Terminals 150 kHz to 30 MHz

Test Requirement: FCC Part 15 C section 15.207

Test Method: ANSI C63.10: 2013 & DA 00-705

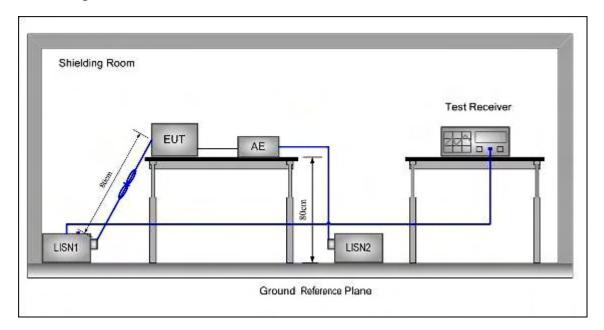
Frequency Range: 150 kHz to 30 MHz

Detector: Peak for pre-scan (9 kHz Resolution Bandwidth)

Test Limit

Limits for conducted disturbance at the mains ports of class

	Class B Limit dB(µV)				
Frequency Range	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			


NOTE 1 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0.50 MHz

EUT Operation:

Test in normal operating mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

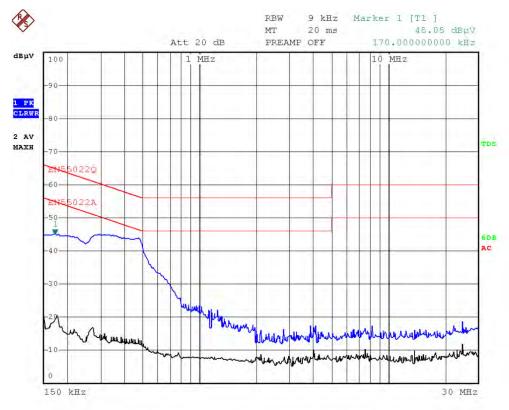
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Test Configuration:

Test procedure:

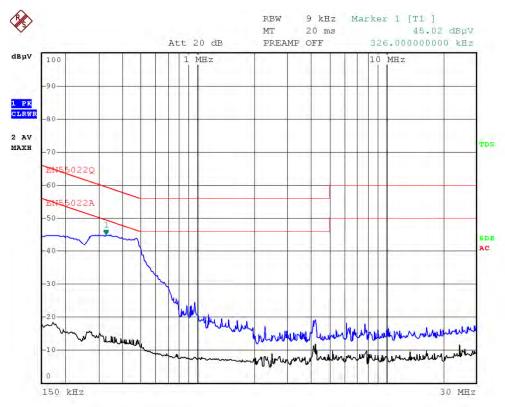
- 1. The mains terminal disturbance voltage test was conducted in a shielded room.
- 2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1

and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.


Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected. For EUT the communicating was worst case mode.


The following Quasi-Peak and Average measurements were performed on the EUT:

Live line

Date: 16.JAN.2017 05:33:16

Neutral Line

Date: 16.JAN.2017 05:33:56

Quasi-peak and Average measurement

Freq. (MHz)	Line	LISN factor (dB)	Cable loss (dB)	QP (dBµV)	QP limit (dBµV)	Margin (dB)	ΑV (dBμV)	AV limit (dΒμV)	Margin (dB)
0.170	Live	0.1	0.1	43.2	65.0	-21.8	20.2	55.0	-34.8
0.302	Live	0.1	0.1	43.5	60.2	-16.7	15.3	50.2	-34.9
0.500	Live	0.1	0.1	38.1	56	-17.9	12.5	46	-33.5
1.024	Live	0.1	0.1	20.3	56	-35.7	8.3	46	-37.7
8.036	Live	0.2	0.2	16.3	60	-43.7	8.7	50	-41.3
24.67	Live	0.2	0.3	16.8	60	-43.2	12.3	50	-37.7
0.172	Neutral	0.1	0.1	43.5	64.9	-21.4	18.3	54.9	-36.6
0.326	Neutral	0.1	0.1	42.8	59.6	-16.8	15.3	49.6	-34.3
0.500	Neutral	0.1	0.1	38.4	56	-17.6	12.1	46	-33.9
0.978	Neutral	0.1	0.1	22.5	56	-33.5	8.0	46	-38.0
7.732	Neutral	0.2	0.2	16.3	60	-43.7	9.8	50	-40.2
29.31	Neutral	0.2	0.3	16.2	60	-43.8	10.1	50	-39.9

4 APPENDIX

4.1 Photographs of the Test Arrangement

TRF:HST-F-Q071 B/0 Page 73 of 89

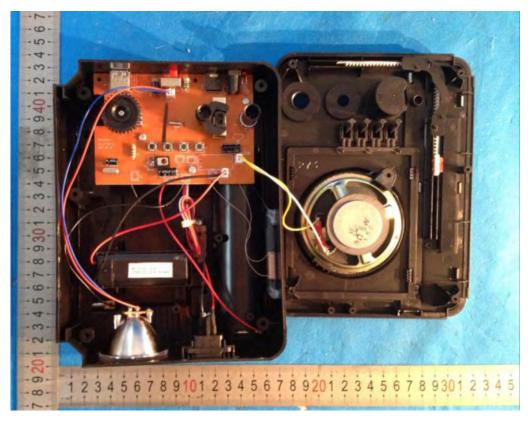
Re, Tested by Active Loop Antenna

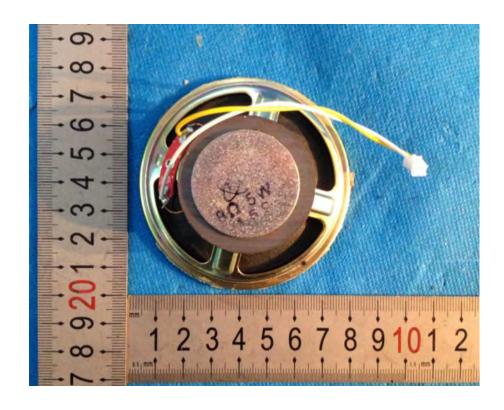
TRF:HST-F-Q071 B/0 Page 74 of 89

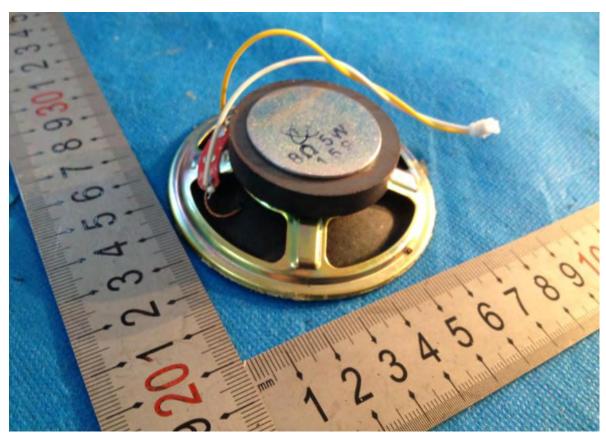
Re (30M-1GHz)

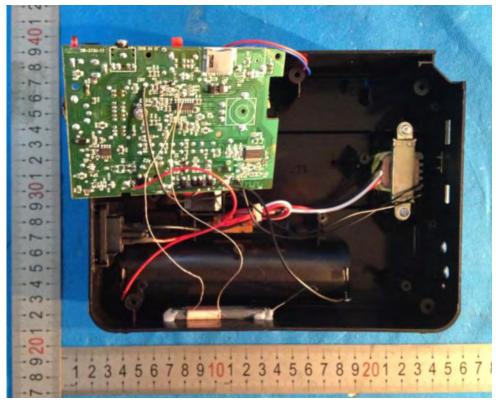
Re (Above1GHz)

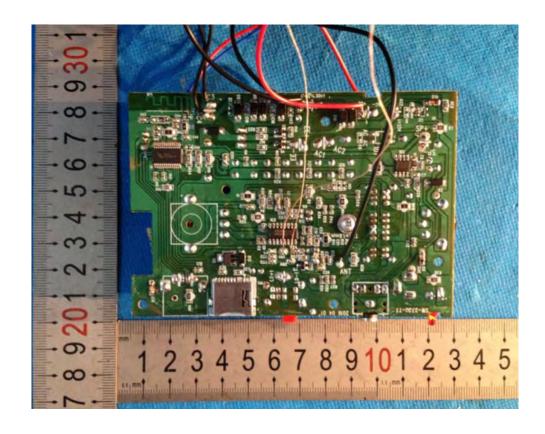
4.2 Photographs of EUT Constructional Details

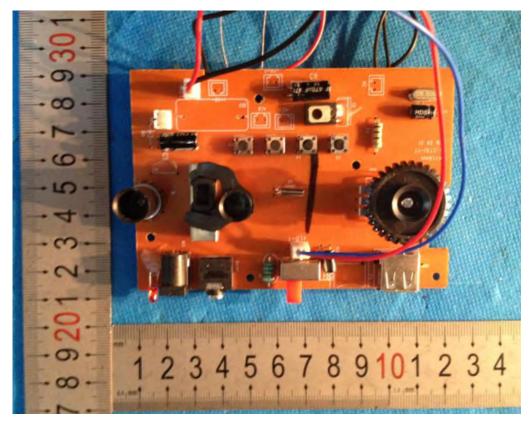


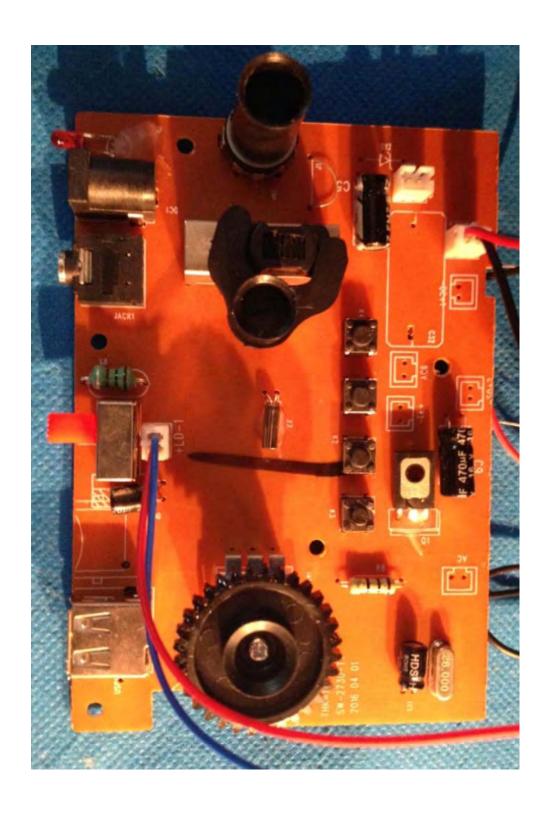


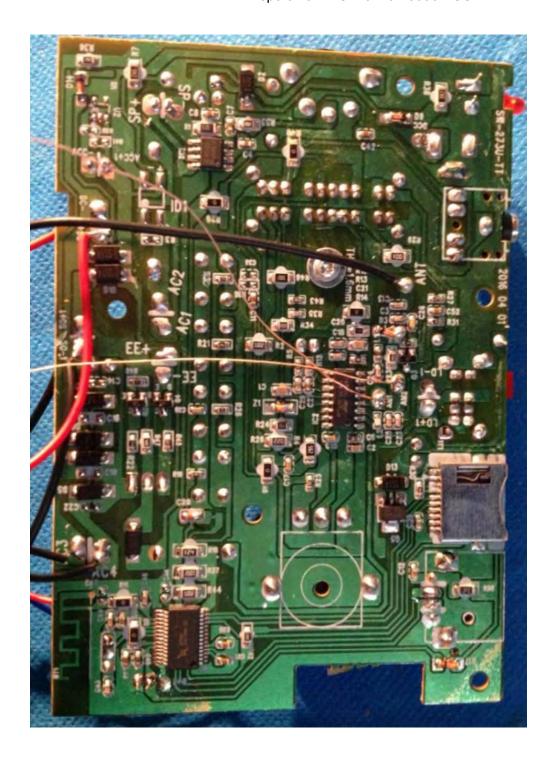




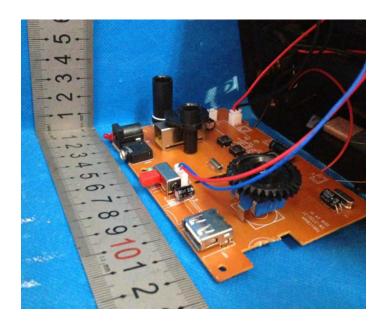




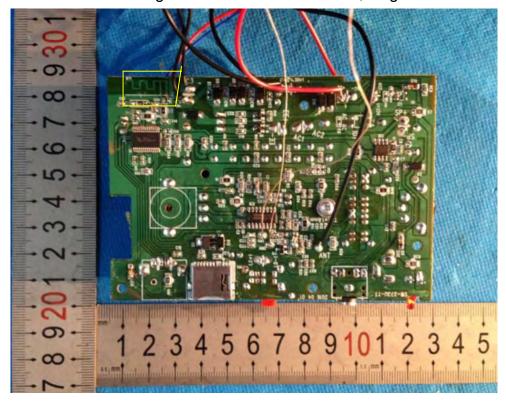








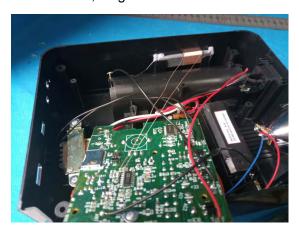
Power cable length : 153cm



4.3 Antenna Photo


BT Antenna Integrated on the Bluetooth PCB, length: 15mm

Yellow block: wireless chip, model: CW6632B-1@U3, Red block: BT antenna


Yellow block: 26MHz crystal@Y1

AM antenna, length: 150mm

AM antenna, length: 150mm

5 Equipments Used during Test

Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date	Cal. Due date
1	Signal Analyzer	Agilent	N9010A	MY51250936	2016.04.16	2017.04.16
2	Low Noise Pre Amplifier	Tsj	MLA-10K01-B01-27	1205323	2016.09.06	2017.09.06
3	Low Noise Pre Amplifier	Tsj	MLA-0120-A02-34	2648A04738	2016.04.07	2017.04.07
4	Biconilog Antenna	ETS•Lindgren	3142D	00108096	2016.01.28	2017.01.28
5	Horn Antenna	EMCO	3115	6124	2016.06.08	2017.06.08
6	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2016.09.06	2017.09.06
7	EMI Test Receiver	R&S	ESCI	100124	2016.09.17	2017.09.17
8	LISN	R&S	ENV216	8-837-4	2016.05.04	2017.05.04
9	LISN	Kyoritsu	KNW-407	8-1789-3	2016.04.06	2017.04.06
10	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2016.09.06	2017.09.06
11	Loop Antenna	ZHINAN	ZN30900A	002489	2016.01.22	2017.01.22
12	Semi-Anechoic chamber	ETS•Lindgren	FACT3 2.0 ITL-100	1	2016.04.10	2017.04.10
13	Active loop antenna	BJ 2nd Factory	ZN30900A	EMC6001	2016.09.24	2017.09.24

End of report*

TRF:HST-F-Q071 B/0 Page 89 of 89

Report Statement

- 1. This test report is invalid if altered, additions and deletions.
- 2. This test report is responsible for tested samples only.
- 3. Objections to the test report must be submitted to Guangdong Huesent Testing & Inspection Technology Co., Ltd. within 15 days.
- 4. The test report is invalid without the signatures of tester, reviewer, approver, and official stamp of test unit.
- 5. Without permission of Guangdong Huesent Testing & Inspection Technology Co., Ltd., This report is not permitted to be duplicated in extracts.
- 6.P"= Pass=Test item conform to the requirement
- "F"= Fail=Test item not conform to the requirement
- "N"= Not Applicable =Test item Not Applicable to the test object

TRF:HST-F-Q071 B/0 Page 2 of 89