

RF exposure test exclusion evaluation report

Product:	Pet Water Fountain
Model no.:	PWF10
FCC ID:	2AK4CPWF10
Rating:	5VDC, 2A or by 1 or 2 pcs 2600mAh 3.7V rechargeable Li-ion battery
RF Transmission Frequency:	10500MHz-10550MHz
Modulation:	FMCW
Antenna Type:	Microstrip planar antenna
Max Antenna Gain:	3.35dBi
Description of the EUT:	The Equipment Under Test (EUT) is a pet water fountain which operates in 10500MHz-10550MHz by radar function.
Reference Report	68.950.25.0019.01

1. RF Exposure Requirements

An estimation of MPE in this application for product is used to ensure if it complies with the rules of the standard in the regulation list above.

Maximum permissible exposure (MPE) refers to the RF energy that is acceptable for human exposure. It is broken down into two categories, Occupational/controlled and General population/uncontrolled.

Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

A rough estimation of the expected exposure in power flux density on a given point can be made with the following equation:

$$S = \frac{P \times G}{4 \times \pi \times R^2}$$

Where:

S = power density

P = power input to the antenna

G = numeric gain of the antenna in the direction of interest relative to an isotropic radiator

R= distance to the centre of radiation of the antenna

EIRP = P*G

The antenna of the product, under normal use condition is at least 20 cm away from the body of the user.

Warning statement to the user for keeping at least 20cm separation distance and the prohibition of operating to a person has been printed on the user's manual. Therefore, the S of the device is calculated with R=20cm, and if it is below the

limit S, then we can conclude the device complies with the rules.

2. FCC MPE Limits

We analysis if it comply with the limits for General population/uncontrolled exposure. The FCC MPE limits for field strength and power density are given in 47CFR 1.1310(Table below). These limits are generally based on recommended exposure guidelines published by the National Council on Radiation Protection and Measurements (NCRP), and also partly based on guidelines recommended by the American National Standards Institute (ANSI) in Section 4.1 of ANSI/IEEE C95.1.

(A) Limits for Occupational/controlled Exposure				
Frequency Range(MHz)	Electric Field Strength(E)(V/m)	Magnetic Field Strength(H)(A/m)	Power Density (S)(mW/cm ²)	Averaging Time (minute) E ^2, H ^2 or S
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500	--	--	f/300	6
1500-100,000	--	--	5	6

(B) Limits for General Population/uncontrolled Exposure				
Frequency Range(MHz)	Electric Field Strength(E)(V/m)	Magnetic Field Strength(H)(A/m)	Power Density (S)(mW/cm ²)	Averaging Time (minute) E ^2, H ^2 or S
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f=frequency in MHz

*Plane-wave equivalent power density

3. RF Exposure Evaluation

Frequency (MHz)	Max Field Strength (dBuV/m@3m)	Max Field Strength (V/m)	R (m)	S (mW/cm ²)	Limit (mW/cm ²)
10500MHz	59.63	0.00096	0.2	2.44x10 ⁻¹⁰	1.0

4. Conclusion

According to the table above, we can conclude that the limit percentage of above supporting frequency bands calculation results are less than 1, therefore, the product meets the requirements.

TUV SUD China, Shenzhen Branch

Reviewed by:

Prepared By:

John Zhi/Project Manager
Date: 2025-04-19

Sanvin Zheng/Project Engineer
Date: 2025-04-19