

FCC Test Report

Report No.: AGC12971220707FE10

FCC ID : 2AJYRNM01302285

APPLICATION PURPOSE Original Equipment

PRODUCT DESIGNATION: Base One Magsafe Charger

BRAND NAME : NOMAD

MODEL NAME : NM01302285, NM01311485

APPLICANT: Nomad Goods, Inc

DATE OF ISSUE : Sep. 01. 2022

STANDARD(S) : FCC Part 15 Subpart C

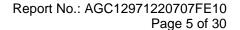
REPORT VERSION: V 1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

Page 2 of 30

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Sep. 01. 2022	Valid	Initial Release


TABLE OF CONTENTS

1. GENERAL INFORMATION	5
2. PRODUCT INFORMATION	5
2.1 PRODUCT TECHNICAL DESCRIPTION	6
2.2 TEST FREQUENCY LIST	6
2.3 RELATED SUBMITTAL(S) / GRANT (S)	7
2.4 TEST METHODOLOGY	7
2.5 SPECIAL ACCESSORIES	7
2.6 EQUIPMENT MODIFICATIONS	7
2.7 ANTENNA REQUIREMENT	7
3. TEST ENVIRONMENT	8
3.1 ADDRESS OF THE TEST LABORATORY	8
3.2 TEST FACILITY	8
3.3 ENVIRONMENTAL CONDITIONS	9
3.4 MEASUREMENT UNCERTAINTY	9
3.5 LIST OF EQUIPMENTS USED	
4.SYSTEM TEST CONFIGURATION	11
4.1 EUT CONFIGURATION	11
4.2 EUT EXERCISE	11
4.3 CONFIGURATION OF TESTED SYSTEM	11
4.4 EQUIPMENT USED IN TESTED SYSTEM	11
4.5 SUMMARY OF TEST RESULTS	12
5. DESCRIPTION OF TEST MODES	13
6. FIELD STRENGTH OF FUNDAMENTAL	14
6.1 PROVISIONS APPLICABLE	14
6.3 FIELD STRENGTH CALCULATION	16
6.4 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION)	17
6.5 MEASUREMENT RESULTS	18
7. 20 DB BANDWIDTH	24
7.1 PROVISIONS APPLICABLE	24
7.2 MEASUREMENT PROCEDURE	24
7.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION)	24
7.4 MEASUREMENT RESULTS	24
8. AC POWER LINE CONDUCTED EMISSION TEST	26
8.1 LIMITS OF LINE CONDUCTED EMISSION TEST	26
8.2 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION)	26

Page 4 of 30

APPENDIX I: PHOTOGRAPHS OF TEST SETUP APPENDIX II: PHOTOGRAPHS OF TEST EUT	
8.5 MEASUREMENT RESULTS	28
8.4 FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	2
8.3 PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	27

1. GENERAL INFORMATION

Applicant	Nomad Goods, Inc		
Address	1187 Coast Village Rd., #638, Santa Barbara, CA 93108, United States		
Manufacturer	NuVolta Technologies (Heifei) Co., Ltd.		
Address	Room 605/606, No.2800, Building F-1, Innovation Industrial Park Phase 2, Innovation Avenue, High-tech Zone, Hefei, Anhui, PRC.		
Factory	HUIZHOU MIKI TECHNOLOGY CO., LTD.		
Address 2F, 1# Building MIKI Industrial Park, Guangtaibei Road 39, Huinan Hi-Teo Industrial Park, Huizhou, Guangdong.			
Product Designation	Designation Base One Magsafe Charger		
Brand Name NOMAD			
Test Model NM01302285			
Series Model NM01311485			
Difference description All the same except appearance color			
Deviation from Standard No any deviation from the test method			
Date of Test Aug. 11, 2022~Aug. 24, 2022			
Test Result Pass			
Test Report Form No AGCTR-ER-FCC-WPTV1.0			

Reviewed By

Calvin Liu
(Reviewer)

Aug. 30, 2022

Calvin Liu
(Reviewer)

Sep. 01. 2022

Max Zhang
(Authorized Officer)

Sep. 01. 2022

Page 6 of 30

2. PRODUCT INFORMATION

2.1 PRODUCT TECHNICAL DESCRIPTION

Hardware Version	820-02692-A
Software Version	1.74
Operation Frequency	360KHz
Modulation Type	ASK
Number of channels	1
Field Strength of Fundamental	57.34dBuV/m (Max)
Antenna Designation	Coil Antenna
Wireless Charging Output Power	15W (12V/1.25A)
Wireless Charging Input Power	20W (9V/2.22A) (PD adapter)

2.2 TEST FREQUENCY LIST

Frequency Band	Channel Number	Frequency
360KHz	01	360 KHz

Page 7 of 30

2.3 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: **2AJYRNM01302285**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 TEST METHODOLOGY

The tests were performed according to following standards:

No.	Identity	Document Title	
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations	
2	FCC 47 CFR Part 15	Radio Frequency Devices	
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices	

2.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2.7 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antennathat uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a brokenantenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 0 dBi.

Page 8 of 30

3. TEST ENVIRONMENT

3.1 ADDRESS OF THE TEST LABORATORY

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

Page 9 of 30

3.3 ENVIRONMENTAL CONDITIONS

	NORMAL CONDITIONS	EXTREME CONDITIONS		
Temperature range ($^{\circ}$ C)	15 - 35	-20 - 50		
Relative humidty range	20 % - 75 %	20 % - 75 %		
Pressure range (kPa)	86 - 106	86 - 106		
Power supply				
<u> </u>				

Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer.

3.4 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 3.1 \text{ dB}$
Uncertainty of Radiated Emission below 150kHz	$U_c = \pm 4.2 \text{ dB}$
Uncertainty of Radiated Emission below 30MHz	$U_c = \pm 3.8 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 4.0 \text{ dB}$
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$
Uncertainty of spurious emissions, conducted	U _c = ±2 %
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$

Page 10 of 30

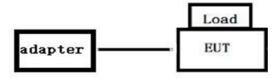
3.5 LIST OF EQUIPMENTS USED

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Mar. 28, 2022	Mar. 27, 2023
LISN	R&S	ESH2-Z5	100086	Jun. 08, 2022	Jun. 07, 2023
Test Software	R&S	ES-K1(Ver.V1.71)	N/A	N/A	N/A
TEST RECEIVER	R&S	ESCI	10096	Mar. 28, 2022	Mar. 27, 2023
EXA Signal Analyzer	Aglient	N9010A	MY5347050 4	Nov. 17, 2021	Nov. 16, 2022
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Mar. 12, 2022	Mar. 11, 2024
ANTENNA	SCHWARZBECK	VULB9168	494	Jan. 08, 2021	Jan. 07, 2023
Test Software	FARA	EZ-EMC(Ver.RA-0 3A)	N/A	N/A	N/A

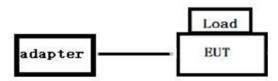
Page 11 of 30

4.SYSTEM TEST CONFIGURATION

4.1 EUT CONFIGURATION


The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT EXERCISE


The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 CONFIGURATION OF TESTED SYSTEM

Radiated Emission Configure:

Conducted Emission Configure:

4.4 EQUIPMENT USED IN TESTED SYSTEM

The Following Peripheral Devices And Interface Cables Were Connected During The Measurement:

☐ Test Accessories Come From The Laboratory

Item	Equipment	Model No.	Identifier	Note
1	Huawei Adapter	HW-200325CP0	Input:AC 100-240V, Max0.6A Output:DC 12V, Max3.0A	Accessories

☐ Test Accessories Come From The Manufacturer

Item	Equipment	Model No.	Identifier	Note
1	Base One Magsafe Charger	NM01302285	2AJYRNM01302285	EUT
2	Apple Mobile Phone	iPhone 12	N/A	Accessories

Page 12 of 30

4.5 SUMMARY OF TEST RESULTS

Item	FCC Rules	Description Of Test	Result
1	§15.203	Antenna Equipment	Pass
2	§15.209(a)(f)	Radiated Spurious Emission	Pass
3	§15.215(c)	20dB Bandwidth	Pass
4	§15.205(a)	Restricted Bands of Operation	Pass
5	§15.207	AC Power Line Conducted Emission	Pass

Page 13 of 30

5. DESCRIPTION OF TEST MODES

	Summary table of Test Cases				
Test Item	Equipment type / Modulation				
rest item	WPT_(TX:360KHz)/ ASK				
Radiated&Conducted Test Cases	Mode 1: AC/DC Adapter + EUT + Mobile Phone (Battery Status: <1%) Mode 2: AC/DC Adapter + EUT + Mobile Phone (Battery Status: <50%) Mode 3: AC/DC Adapter + EUT + Mobile Phone (Battery Status: 100%)				
AC Conducted Emission	Mode 1: AC/DC Adapter + EUT + Mobile Phone (Battery Status: <1%) Mode 2: AC/DC Adapter + EUT + Mobile Phone (Battery Status: <50%) Mode 3: AC/DC Adapter + EUT + Mobile Phone (Battery Status: 100%)				

Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. The battery is full-charged during the test.
- 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

Page 14 of 30

6. FIELD STRENGTH OF FUNDAMENTAL

6.1 PROVISIONS APPLICABLE

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 1GHz						
Test site:	Measurement Distance: 3m						
	Frequency	Detector	RBW	VBW	Value		
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak		
Receiver setup:	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak		
ixeceiver setup.	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak		
	Above 4CHz	Peak	1MHz	3MHz	Peak		
	Above 1GHz	Peak	1MHz	10Hz	Average		

Limits for frequency below 30MHz

Frequency	Limit (uV/m)	Measurement Distance(m)	Remark
0.009-0.490	2400/F(kHz)	300	Quasi-peak Value
0.490-1.705	24000/F(kHz)	30	Quasi-peak Value
1.705-30	30	30	Quasi-peak Value

Limits for frequency Above 30MHz

Frequency	Limit (dBuV/m @3m)	Remark
30MHz-88MHz	40.00	Quasi-peak Value
88MHz-216MHz	43.50	Quasi-peak Value
216MHz-960MHz	46.00	Quasi-peak Value
960MHz-1GHz	54.00	Quasi-peak Value
Above 1GHz	54.00	Average Value
	74.00	Peak Value

Remark: (1) Emission level dB μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Page 15 of 30

6.2 MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Page 16 of 30

6.3 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any), Average Factor (optional) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG - AV

where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB/m AG = Amplifier Gain in dB AV = Average Factor in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

FS = RR + LF where FS = Field Strength in $dB\mu V/m$ RR = RA - AG - AV in $dB\mu V$ LF = CF + AF in dB

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB/m and cable factor of 1.6 dB are added. The amplifier gain of 29 dB and average factor of 5 dB are subtracted, giving a field strength of 27 dB μ V/m.

This value in dBµV/m was converted to its corresponding level in µV/m.

 $RA = 52.0 dB\mu V/m$

AF = 7.4 dB/m RR = 18.0 dB μ V

CF = 1.6 dB LF = 9.0 dB

AG = 29.0 dBAV = 5.0 dB

FS = RR + LF

 $FS = 18 + 9 = 27 dB\mu V/m$

Level in μ V/m = Common Antilogarithm [(27 dB μ V/m)/20] = 22.4 μ V/m

Magnetic field strength calculation (9 kHz – 30 MHz)

When the limit is in terms of magnetic field, the following equation applies:

 $H[dB(\mu A/m)] = V[dB(\mu V)] + LC[dB] - GPA[dB] + AFH[dB(S/m)]$

Where,

H is the magnetic field strength (to be compared with the limit),

V is the voltage level measured by the receiver or spectrum analyzer,

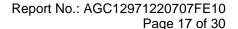
LC is the cable loss,

GPA is the gain of the preamplifier (if used), and

AFH is the magnetic antenna factor.

If the "electrical" antenna factor is used instead, the above equation becomes:

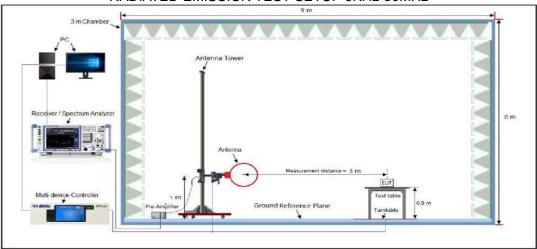
 $H[dB(\mu A/m)] = V[dB(\mu V)] + LC[dB] - GPA[dB] + AFE[dB(m-1)] - 51.5[dB\Omega]$

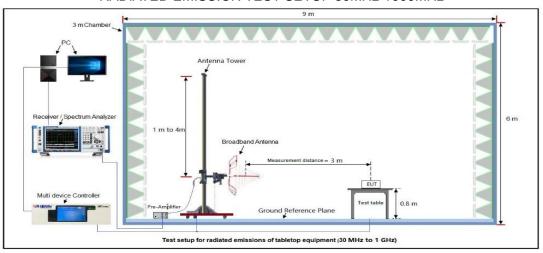

where AFE is the "electric" antenna factor, as provided by the antenna calibration laboratory.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd

Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

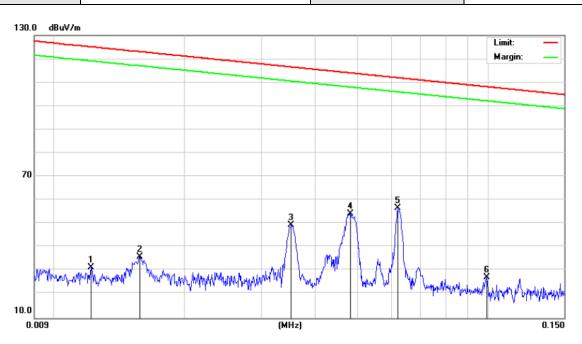

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/



6.4 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION)

RADIATED EMISSION TEST SETUP 9KHz-30MHz

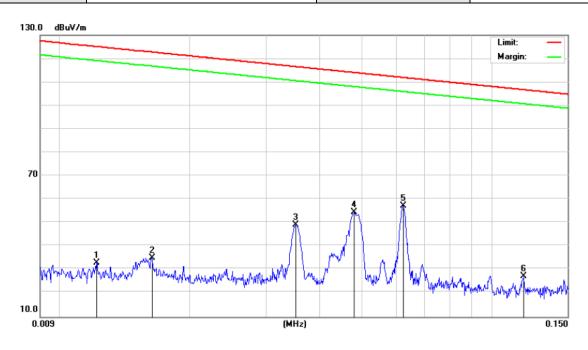
RADIATED EMISSION TEST SETUP 30MHz-1000MHz


The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.205 limits.

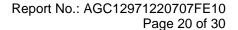
6.5 MEASUREMENT RESULTS

ELECTRIC FIELD TEST IN THE FREQUENCY RANGE 9KHz-150KHz

EUT	Base One Magsafe Charger	Model Name	NM01302285
Temperature	22° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Face

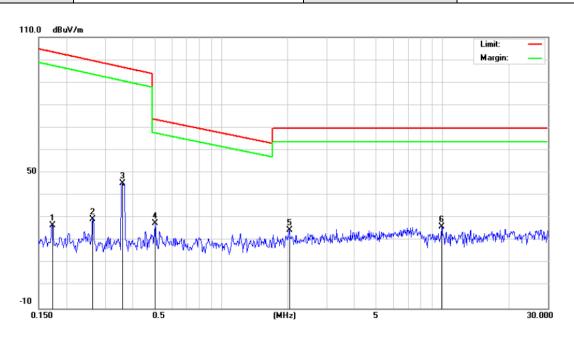

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	0.0122	3.28	28.18	31.46	125.1	-93.64	peak
2	0.0158	8.13	27.91	36.04	123.0	-86.97	peak
3	0.0352	22.92	26.46	49.38	116.5	-67.15	peak
4	0.0483	28.80	25.48	54.28	113.9	-59.69	peak
5 *	0.0620	32.22	24.46	56.68	111.9	-55.27	peak
6	0.0995	5.54	21.66	27.20	108.1	-80.92	peak

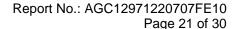
RESULT: PASS


ELECTRIC FIELD TEST IN THE FREQUENCY RANGE 9KHz-150KHz

EUT	Base One Magsafe Charger	Model Name	NM01302285
Temperature	22° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Side

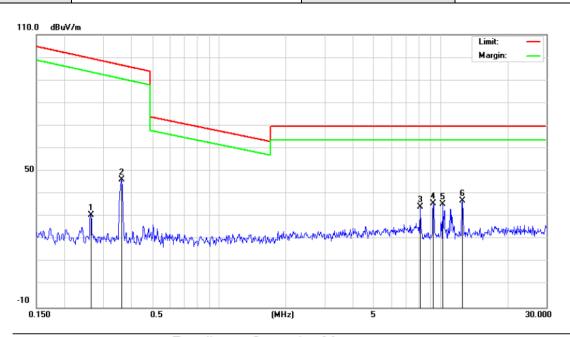
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	0.0122	4.78	28.18	32.96	125.1	-92.14	peak
2	0.0163	7.15	27.88	35.03	122.7	-87.73	peak
3	0.0352	22.77	26.46	49.23	116.5	-67.30	peak
4	0.0480	29.11	25.51	54.62	114.0	-59.40	peak
5 *	0.0624	32.91	24.43	57.34	111.8	-54.55	peak
6	0.1188	5.68	21.59	27.27	106.6	-79.41	peak


RESULT: PASS


ELECTRIC FIELD TEST IN THE FREQUENCY RANGE 150KHz-30MHz

EUT	Base One Magsafe Charger	Model Name	NM01302285
Temperature	22° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Face

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	0.1731	5.32	21.48	26.80	103.4	-76.66	peak
2	0.2630	8.21	21.32	29.53	99.58	-70.05	peak
3	0.3595	24.26	21.14	45.40	96.67	-51.27	peak
4	0.5047	6.75	20.88	27.63	73.54	-45.91	peak
5	2.0333	2.53	22.12	24.65	69.54	-44.89	peak
6 *	9.9130	1.92	24.36	26.28	69.54	-43.26	peak

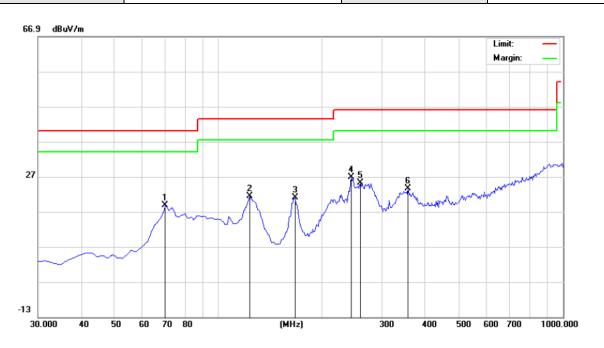

RESULT: PASS

ELECTRIC FIELD TEST IN THE FREQUENCY RANGE 150KHz-30MHz

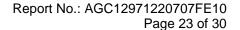
EUT	Base One Magsafe Charger	Model Name	NM01302285
Temperature	22° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Side

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	0.2644	9.44	21.32	30.76	99.53	-68.77	peak
2	0.3634	25.08	21.13	46.21	96.57	-50.36	peak
3	8.1052	10.30	23.86	34.16	69.54	-35.38	peak
4	9.2531	11.67	24.18	35.85	69.54	-33.69	peak
5	10.2332	10.95	24.40	35.35	69.54	-34.19	peak
6 *	12.5155	12.25	24.56	36.81	69.54	-32.73	peak

RESULT: PASS

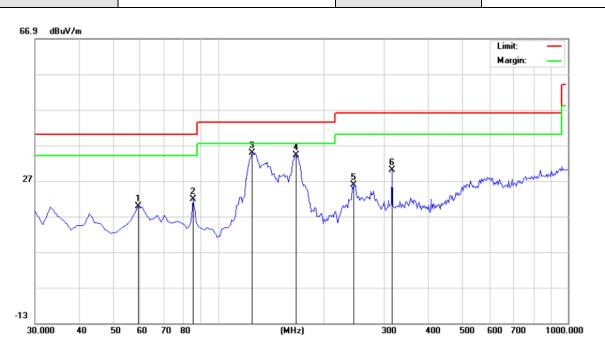

NOTES:

- 1. Quasi-Peak detector is used for frequency below 30MHz.
- 2. Negative value in the margin column shows emission below limit.
- 3. All measurements were made with 0.6m loop antenna at 3m distance. All emissions are below the QP limit.
- 4. Corr. Factor= Antenna Factor (dB/m) + Cable Loss (dB)
- 5. Loop antenna is used for the emission under 30MHz.


RADIATED EMISSION BELOW 1GHz

EUT	Base One Magsafe Charger	Model Name	NM01302285
Temperature	22° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		70.4167	-0.29	19.02	18.73	40.00	-21.27	peak
2		123.7667	10.45	10.97	21.42	43.50	-22.08	peak
3		167.4167	13.25	7.75	21.00	43.50	-22.50	peak
4	*	243.4000	8.28	18.60	26.88	46.00	-19.12	peak
5		257.9500	6.91	18.35	25.26	46.00	-20.74	peak
6		356.5667	6.68	16.84	23.52	46.00	-22.48	peak


RESULT: PASS

RADIATED EMISSION BELOW 1GHz

RADIATED EMISSION BELOW 1912						
EUT	Base One Magsafe Charger	Model Name	NM01302285			
Temperature	22° C	Relative Humidity	55%			
Pressure	960hPa	Test Voltage	Normal Voltage			
Test Mode	Mode 1	Antenna	Vertical			

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		59.1000	2.20	17.55	19.75	40.00	-20.25	peak
2		84.9666	5.91	15.96	21.87	40.00	-18.13	peak
3	*	125.3833	14.45	20.39	34.84	43.50	-8.66	peak
4		167.4166	16.71	17.54	34.25	43.50	-9.25	peak
5		245.0166	6.31	19.57	25.88	46.00	-20.12	peak
6		314.5332	9.66	20.40	30.06	46.00	-15.94	peak

RESULT: PASS

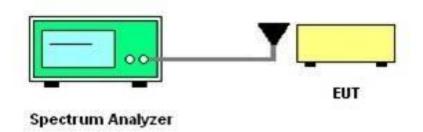
Note: 1. Factor=Antenna Factor + Cable loss, Over=Measurement-Limit.

- 2. All test modes had been pre-tested. The mode 1 is the worst case and recorded in the report.
- 3. The "Factor" value can be calculated automatically by software of measurement system.

Page 24 of 30

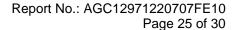
7. 20 dB BANDWIDTH

7.1 PROVISIONS APPLICABLE


N/A

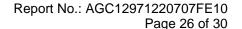
7.2 MEASUREMENT PROCEDURE

Set the parameters of SPA as below:

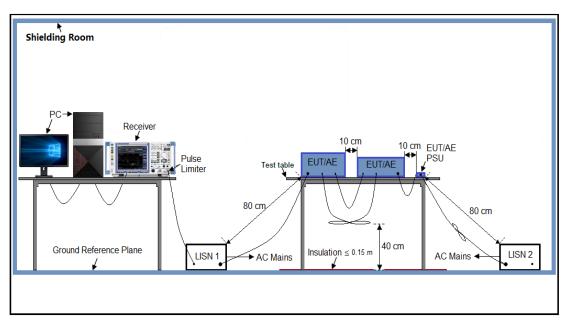

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. Centre frequency = Operation Frequency
- 3. The resolution bandwidth of 300 Hz and the video bandwidth of 1 kHz were used.
- 4. Span: 3kHz, Sweep time: Auto
- 5. Set the EUT to continue transmitting mode. Allow the trace to stabilize. Use the "N dB down" function of SPA to define the bandwidth.
- 6. Measured the spectrum width with power higher than 20dB below carrier.
- 7. Measured the 99% OBW.
- 8. Record the plots and Reported.

7.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION)

7.4 MEASUREMENT RESULTS


Test Data of Occupied Bandwidth and -20dB Bandwidth					
Test Mode	Test Channel (MHz)	99% Occupied Bandwidth (kHz)	-20dB Bandwidth (kHz)	Limits (MHz)	Pass or Fail
ASK	0.360	0.780	0.912	N/A	Pass

8. AC POWER LINE CONDUCTED EMISSION TEST


8.1 LIMITS OF LINE CONDUCTED EMISSION TEST

Francis	Maximum RF	Line Voltage
Frequency	Q.P. (dBμV)	Average (dBμV)
150kHz~500kHz	66-56	56-46
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

8.2 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Report No.: AGC12971220707FE10 Page 27 of 30

8.3 PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 12V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

8.4 FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

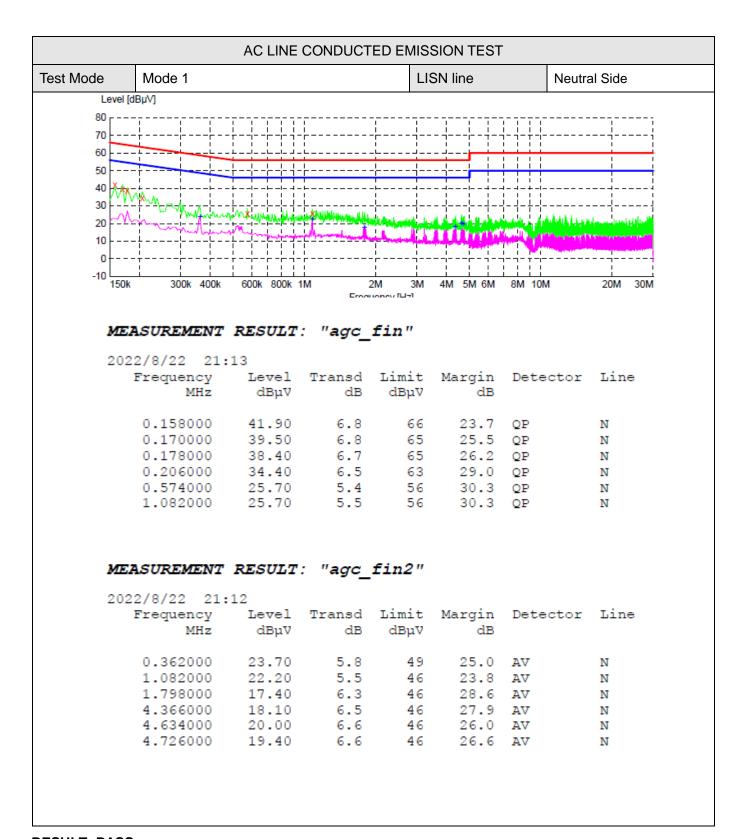
8.5 MEASUREMENT RESULTS

Mode	Mode 1	LISN line	Hot Side
Leve	I [dBμV]		
80 ୮ -			
70			
60			
50			
40			i
30	VXI		!!
20	my my man and many the fill of the factor of the fill of the factor of t		in in the state of
10	manufacture and a second and a	William Bry VIVI PARTER	TELEPTER PARTY TO THE PROPERTY OF THE
0			
-10 <u>-</u> 15	0k 300k 400k 600k 800k 1M 2M	3M 4M 5M 6M 8M 10N	1 20M 30M
	Frequency	Hz]	

MEASUREMENT RESULT: "agc_fin"

2022/8/22 21:09

2022/8/22 21:(J 9					
Frequency				_	Detector	Line
MHz	dΒμV	dB	dΒμV	dB		
0.162000	41.40	6.8	65	24.0	QP	L1
0.194000	36.50	6.6	64	27.4	QP	L1
0.210000	34.10	6.5	63	29.1	QP	L1
0.218000	33.60	6.4	63	29.3	QP	L1
0.518000	29.40	5.4	56		QP	L1
1.450000	30.20	6.0	56	25.8	OP	T.1


MEASUREMENT RESULT: "agc_fin2"

2022/8/22 21:08

Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line
0.362000 1.082000 1.778000 1.802000 1.822000 4.726000	25.00 23.20 18.40 20.20 18.30 16.60	5.8 5.5 6.3 6.3 6.6	49 46 46 46 46	27.6	AV AV AV AV AV	L1 L1 L1 L1 L1

RESULT: PASS

RESULT: PASS

Page 30 of 30

APPENDIX I: PHOTOGRAPHS OF TEST SETUP

Refer to the Report No.: AGC12971220701AP02

APPENDIX II: PHOTOGRAPHS OF TEST EUT

Refer to the Report No.: AGC12971220701AP03

----END OF REPORT----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd. (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.