

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053

Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com

Report No.: SZEM160900829101

Page: 1 of 43

FCC REPORT

Application No.:

SZEM1609008291CR

Applicant:

Non Typical, Inc

Manufacturer:

SEA Electronics Ltd.

Product Name:

CuddeLink RF-CAP

Model No.(EUT):

2092

FCC ID:

2AJYQ-17R1-0915M-01

Standards:

47 CFR Part 15, Subpart C (2015)

Date of Receipt:

2016-09-28

Date of Test:

2016-10-12 to 2016-12-28

Date of Issue:

2016-12-30

Test Result:

PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang
EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

2 Version

Revision Record				
Version	Chapter	Date	Modifier	Remark
00		2016-12-30		Original

Authorized for issue by:			
Tested By		 (Peter Geng) /Project Engineer	2016-12-28
Checked By		 (Eric Fu) /Reviewer	2016-12-30

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

4 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENTS	4
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	5
5.2 GENERAL DESCRIPTION OF EUT	5
5.3 RF MODULE OPERATION DESCRIPTION:	6
5.4 TEST ENVIRONMENT	7
5.5 DESCRIPTION OF SUPPORT UNITS	7
5.6 TEST LOCATION	7
5.7 MEASUREMENT UNCERTAINTY	8
5.8 TEST FACILITY	9
5.9 DEVIATION FROM STANDARDS	9
5.10 ABNORMALITIES FROM STANDARD CONDITIONS	9
5.11 OTHER INFORMATION REQUESTED BY THE CUSTOMER	9
5.12 EQUIPMENT LIST	10
6 TEST RESULTS AND MEASUREMENT DATA	12
6.1 ANTENNA REQUIREMENT	12
6.2 CONDUCTED PEAK OUTPUT POWER	13
6.3 20DB OCCUPY BANDWIDTH	16
6.4 CARRIER FREQUENCIES SEPARATION	19
6.5 HOPPING CHANNEL NUMBER	22
6.6 DWELL TIME	24
6.7 BAND-EDGE FOR RF CONDUCTED EMISSIONS	26
6.8 SPURIOUS RF CONDUCTED EMISSIONS	29
6.9 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	33
6.10 RADIATED SPURIOUS EMISSION AND RESTRICTED BAND	35
6.10.1 Radiated Emission below 1GHz	38
6.10.2 Transmitter Emission above 1GHz	40
7 PHOTOGRAPHS - EUT TEST SETUP	43
7.1 RADIATED EMISSION	43
7.2 RADIATED SPURIOUS EMISSION	43
8 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	43

5 General Information

5.1 Client Information

Applicant:	Non Typical, Inc
Address of Applicant:	PO Box 10447 Green Bay WI 54307
Manufacturer:	SEA Electronics Ltd.
Address of Manufacturer:	Unit G-F, 10/F, Blk A, LianjianBldg, Chanping Railway Station, Dongguan, Guangdong

5.2 General Description of EUT

Product Name:	CuddeLink RF-CAP
Model No.:	2092
Operation Frequency:	903.103638-926.896362MHz
Modulation Type:	2-GFSK
Channel number:	179
Channel separation:	133.667kHz
Antenna Type:	GSM antenna
Antenna Gain:	2dBi
Test Voltage:	DC 5V

5.3 RF module operation description:

The RF module uses a non-standard protocol with 179 channels and 133.667kHz channel separation. The 1st channel is centered at 903.1MHz and the 179th channel is centered at 926.9MHz. The RF module has 16 groups of channels and each group containing 53 channels.

Group Channel Allocation	
Group #1	Channels 1-5, 7-13, 15-21, 23-37, 39-45, 47-53, 55-59
Group #2	Channels 9-13, 15-21, 23-29, 31-45, 47-53, 55-61, 63-67
Group #3	Channels 17-21, 23-29, 31-37, 39-53, 55-61, 63-69, 71-75
Group #4	Channels 25-29, 31-37, 39-45, 47-61, 63-69, 71-77, 79-83
Group #5	Channels 33-37, 39-45, 47-53, 55-69, 71-77, 79-85, 87-91
Group #6	Channels 41-45, 47-53, 55-61, 63-77, 79-85, 87-93, 95-99
Group #7	Channels 49-53, 55-61, 63-69, 71-85, 87-93, 95-101, 103-107
Group #8	Channels 57-61, 63-69, 71-77, 79-93, 95-101, 103-109, 111-115
Group #9	Channels 65-69, 71-77, 79-85, 87-101, 103-109, 111-117, 119-123
Group #10	Channels 73-77, 79-85, 87-93, 95-109, 111-117, 119-125, 127-131
Group #11	Channels 81-85, 87-93, 95-101, 103-117, 119-125, 127-133, 135-139
Group #12	Channels 89-93, 95-101, 103-109, 111-125, 127-133, 135-141, 143-147
Group #13	Channels 97-101, 103-109, 111-117, 119-133, 135-141, 143-149, 151-155
Group #14	Channels 105-109, 111-117, 119-125, 127-141, 143-149, 151-157, 159-163
Group #15	Channels 113-117, 119-125, 127-133, 135-149, 151-157, 159-165, 167-171
Group #16	Channels 121-125, 127-133, 135-141, 143-157, 159-165, 167-173, 175-179

Operation Frequency each of channel

Channel	Frequency
The Lowest channel	903.103638MHz
The Middle channel	915.000000MHz
The Highest channel	926.896362MHz

5.4 Test Environment

Operating Environment:	
Temperature:	25.0 °C
Humidity:	55 % RH
Atmospheric Pressure:	1005 mbar

5.5 Description of Support Units

The EUT has been tested independent unit.

5.6 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch
No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China.
518057.
Tel: +86 755 2601 2053 Fax: +86 755 2671 0594
No tests were sub-contracted.

5.7 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25×10^{-8}
2	Timeout	2s
3	Duty cycle	0.37%
4	Occupied Bandwidth	3%
5	RF conducted power	0.75dB
6	RF power density	2.84dB
7	Conducted Spurious emissions	0.75dB
8	RF Radiated power	4.5dB (below 1GHz)
		4.8dB (above 1GHz)
9	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
		4.8dB (1GHz-18GHz)
10	Temperature test	1 °C
11	Humidity test	3%
12	Supply voltages	1.5%
13	Time	3%

5.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- **CNAS (No. CNAS L2929)**

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

- **A2LA (Certificate No. 3816.01)**

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

- **VCCI**

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

- **FCC – Registration No.: 556682**

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

- **Industry Canada (IC)**

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.9 Deviation from Standards

None.

5.10 Abnormalities from Standard Conditions

None.

5.11 Other Information Requested by the Customer

None.

5.12 Equipment List

RF connected test						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2016-05-13	2017-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2016-10-09	2017-10-09
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

**SGS-CSTC Standards Technical Services Co., Ltd.
Shenzhen Branch**

Report No.: SZEM160900829101

Page: 11 of 43

RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEM004-04	2016-04-25	2017-04-25
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
7	Horn Antenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA-0118-352810	SEM005-05	2016-10-09	2017-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

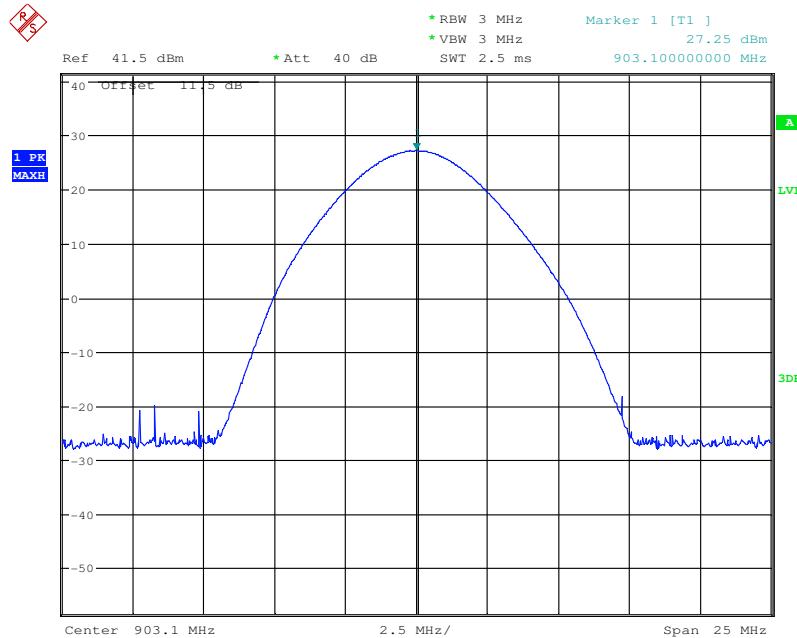
6 Test results and Measurement Data

6.1 Antenna Requirement

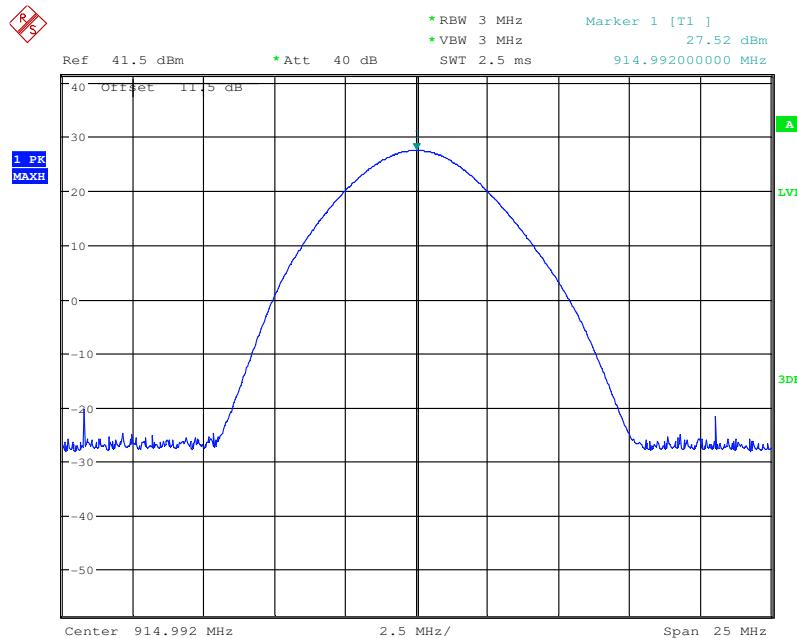
Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.	15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
EUT Antenna:	

The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user. The best case gain of the antenna is 2dBi.

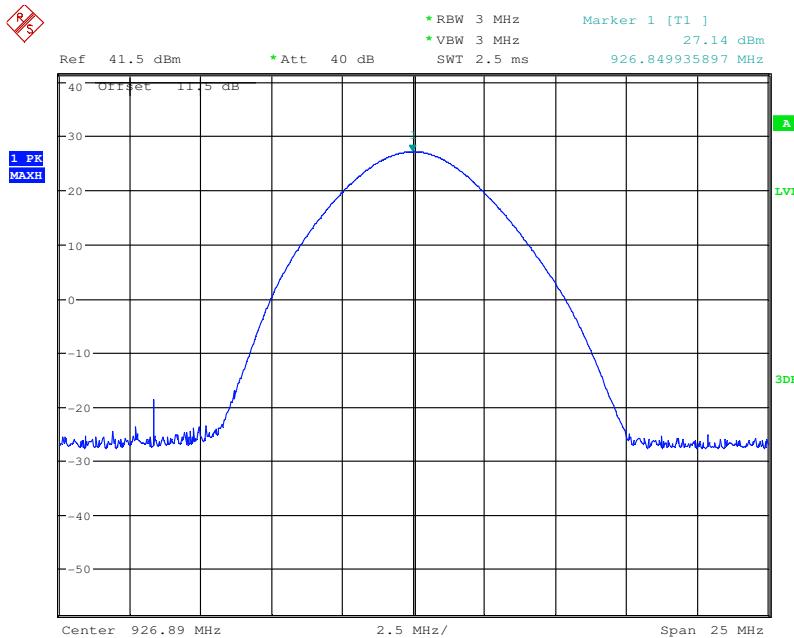
6.2 Conducted Peak Output Power

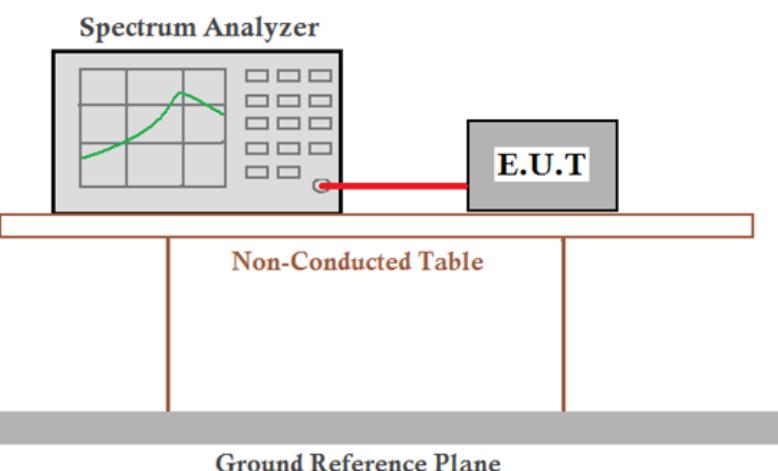

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.5
Test Setup:	<p style="text-align: center;">Spectrum Analyzer</p> <p style="text-align: center;">Non-Conducted Table</p> <p style="text-align: center;">Ground Reference Plane</p>
	<p><i>Remark:</i></p> <p><i>Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.</i></p>
Limit:	30dBm
Exploratory Test Mode:	Non-hopping transmitting with modulation
Final Test Mode:	Non-hopping transmitting with modulation
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Measurement Data


Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	27.25	30.00	Pass
Middle	27.52	30.00	Pass
Highest	27.14	30.00	Pass

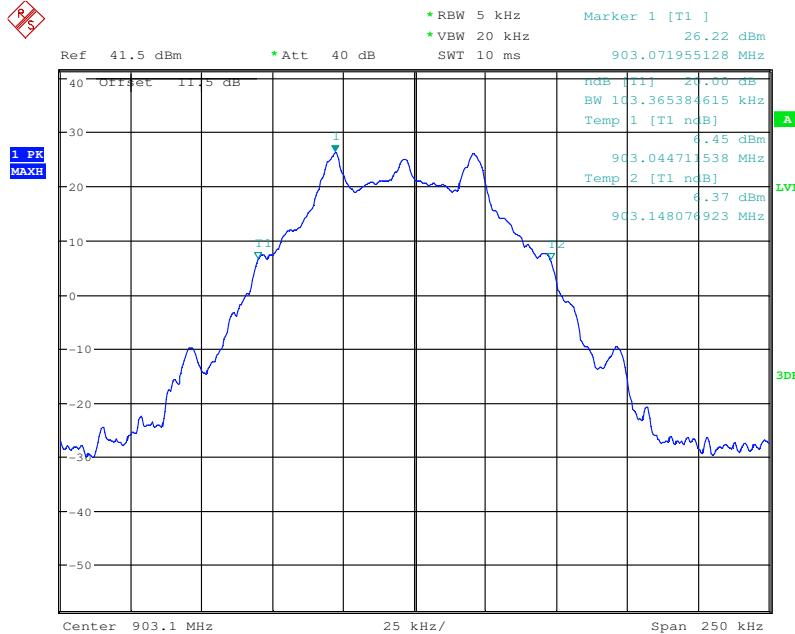
Test plot as follows:


Test mode:	Modulation	Test channel:	Lowest
------------	------------	---------------	--------

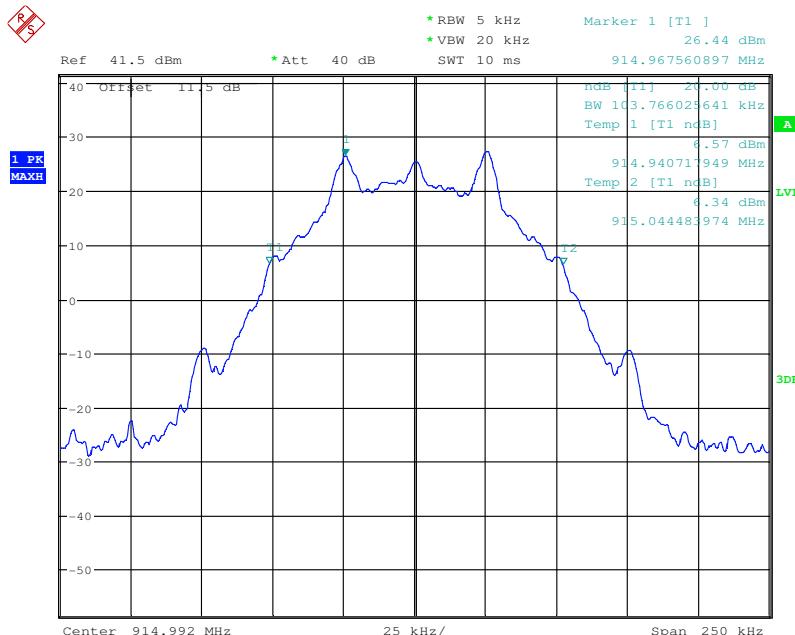

Test mode:	Modulation	Test channel:	Middle
------------	------------	---------------	--------

Test mode:	Modulation	Test channel:	Highest
------------	------------	---------------	---------

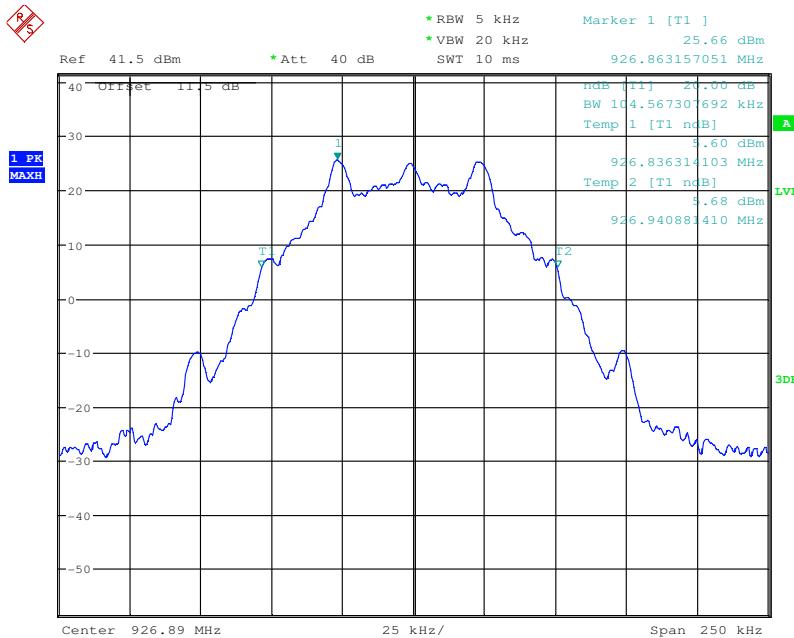
6.3 20dB Occupy Bandwidth

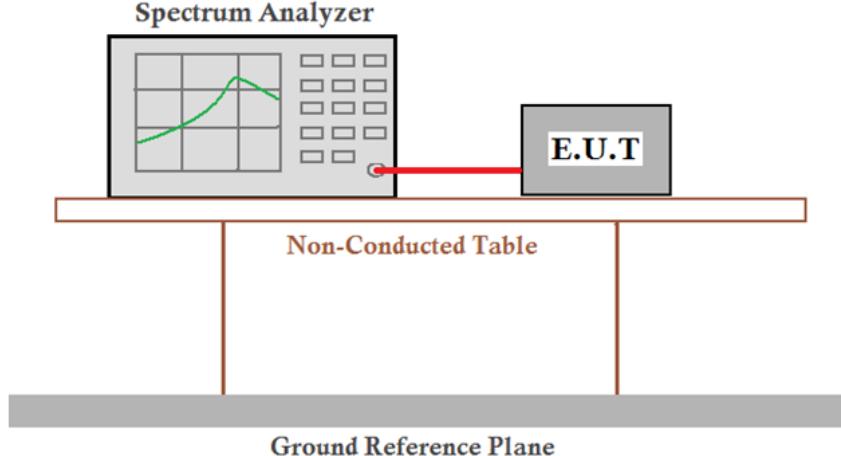

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.7
Test Setup:	
Limit:	250kHz
Exploratory Test Mode:	Non-hopping transmitting with modulation
Final Test Mode:	Non-hopping transmitting with modulation
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Measurement Data


Test channel	20dB Occupy Bandwidth (kHz)	Limit(kHz)	Result
Lowest	103.365	250	Pass
Middle	103.766	250	Pass
Highest	104.567	250	Pass

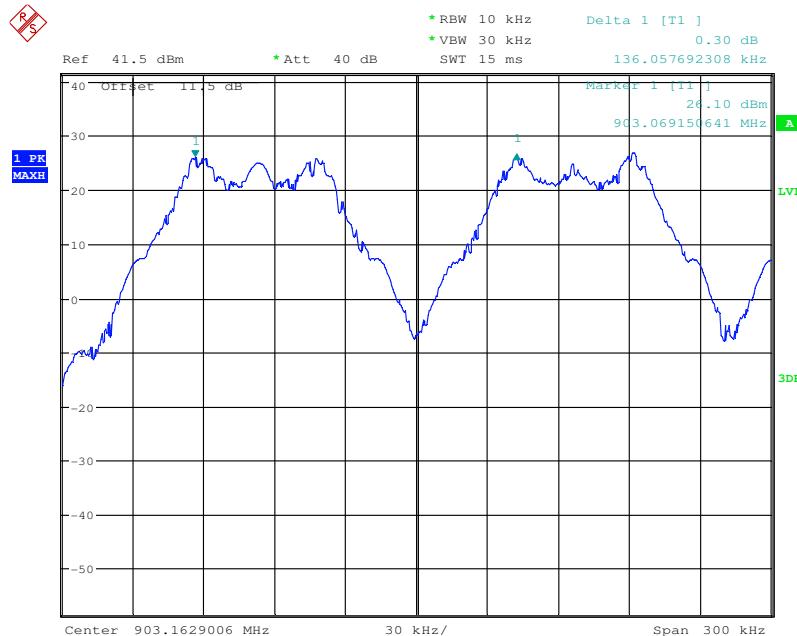
Test plot as follows:


Test mode:	modulation	Test channel:	Lowest
------------	------------	---------------	--------

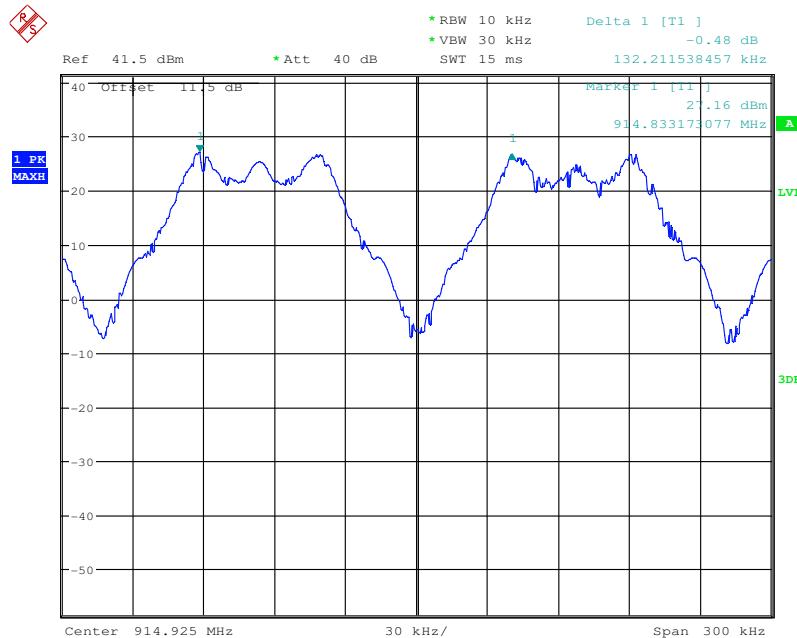

Test mode:	modulation	Test channel:	Middle
------------	------------	---------------	--------

Test mode:	modulation	Test channel:	Highest
------------	------------	---------------	---------

6.4 Carrier Frequencies Separation


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.2
Test Setup:	
Limit:	25kHz or 20 dB bandwidth, which is greater
Exploratory Test Mode:	Hopping transmitting with modulation
Final Test Mode:	Hopping transmitting with modulation
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Measurement Data


Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	136.058	104.567	Pass
Middle	132.212	104.567	Pass
Highest	132.212	104.567	Pass

Test plot as follows:

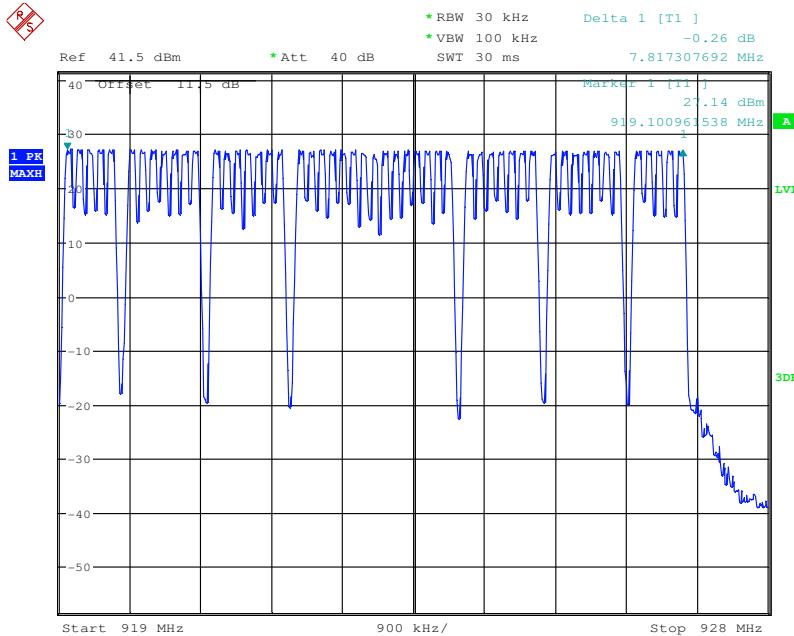
Test mode:	modulation	Test channel:	Lowest
------------	------------	---------------	--------

Test mode:	modulation	Test channel:	Middle
------------	------------	---------------	--------

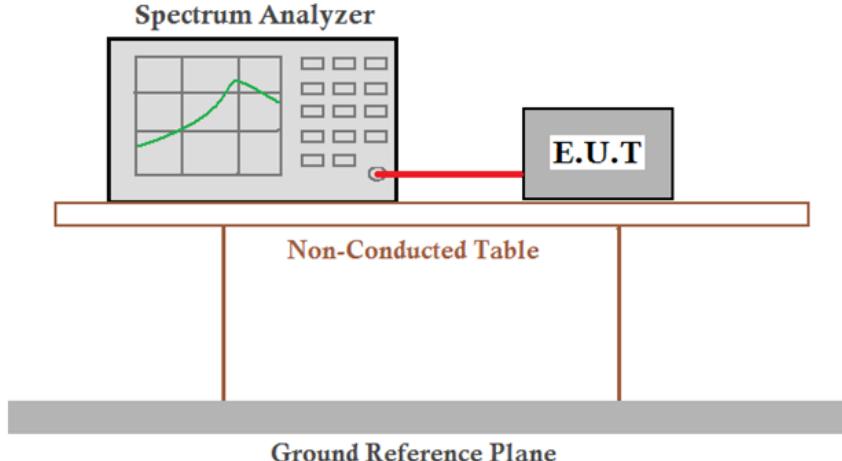
Test mode:	modulation	Test channel:	Highest
------------	------------	---------------	---------

6.5 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 Section 7.8.3	
Test Setup:		
Limit:	At least 50channels	
Test Mode:	Hopping transmitting with modulation	
Instruments Used:	Refer to section 5.10 for details	
Test Results:	Pass	


Measurement Data

Mode	Hopping channel numbers	Limit
2-GFSK	179	≥50


Remark: All groups are involved in the tests and only one (group #16) is reported.

Test plot as follows

Test mode:	2-GFSK
------------	--------

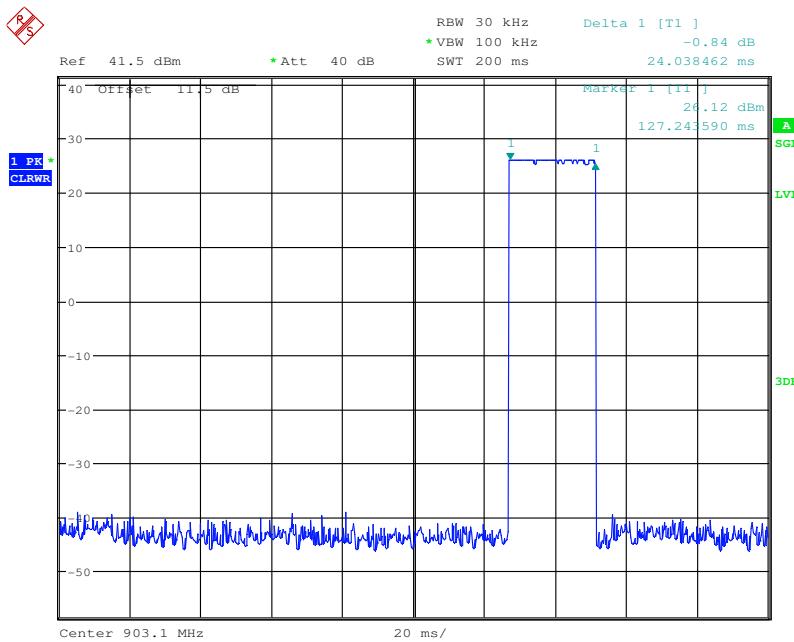
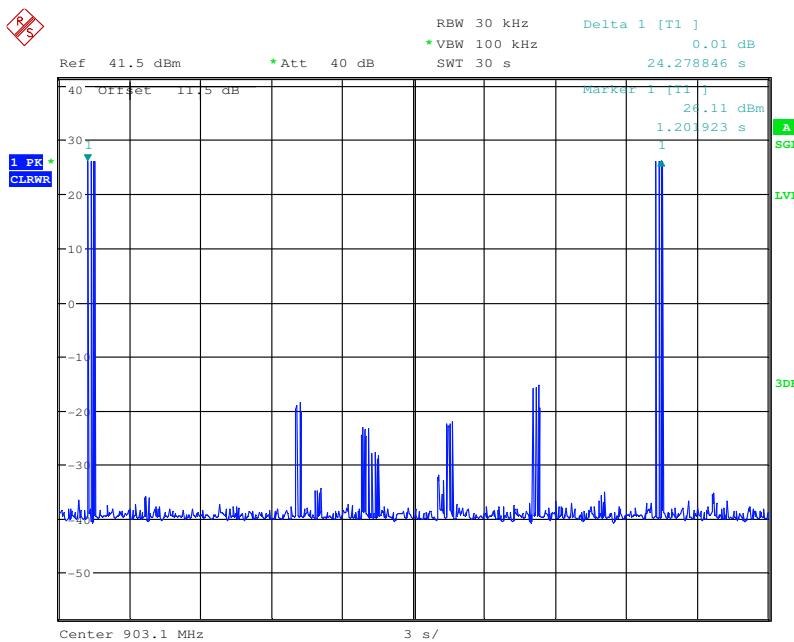
6.6 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.4
Test Setup:	
Instruments Used:	Refer to section 5.10 for details
Test Mode:	Hopping transmitting with modulation
Limit:	0.4 Second
Test Results:	Pass

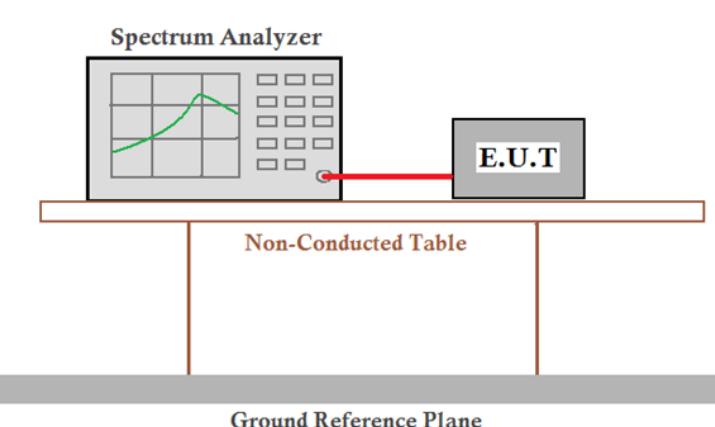
Measurement Data

Dwell time (second)	Limit (second)
0.024	≤ 0.4

Remark:

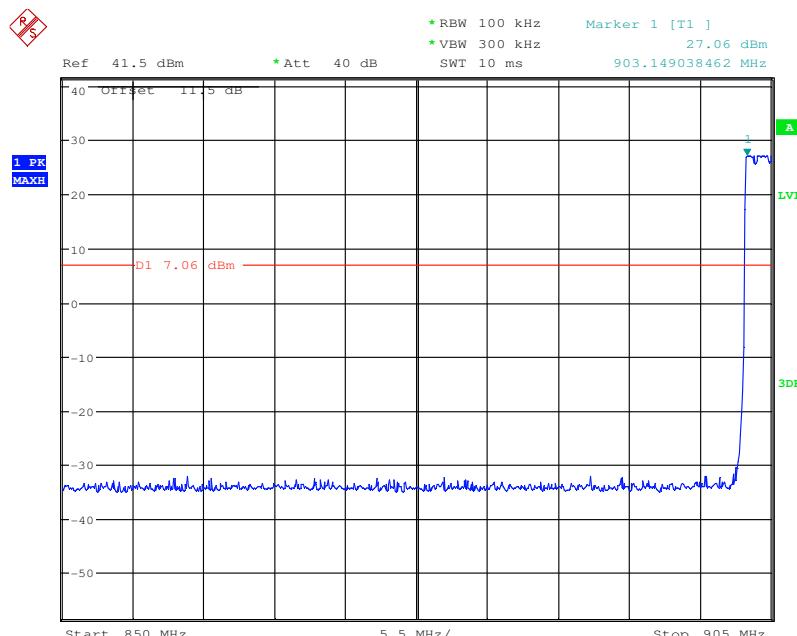
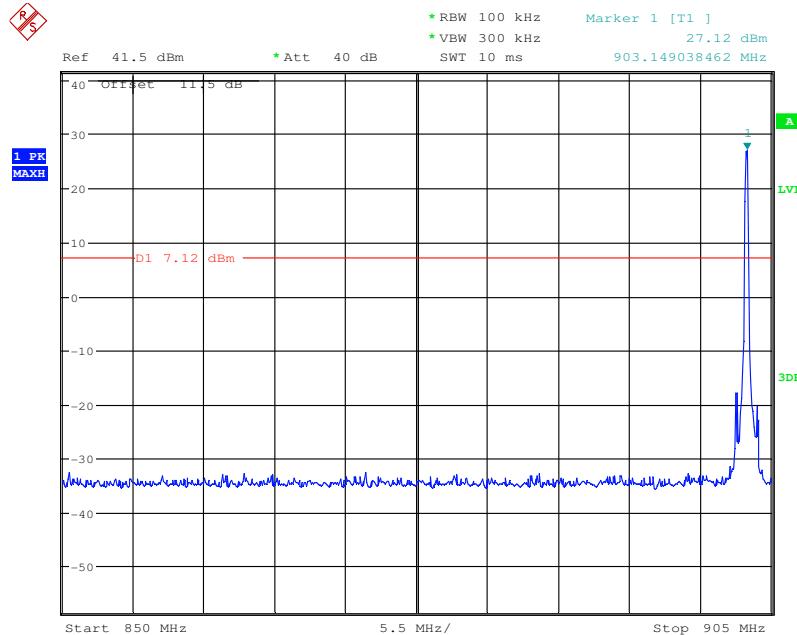


The test period: $T = 20s$

Time slot= 24ms

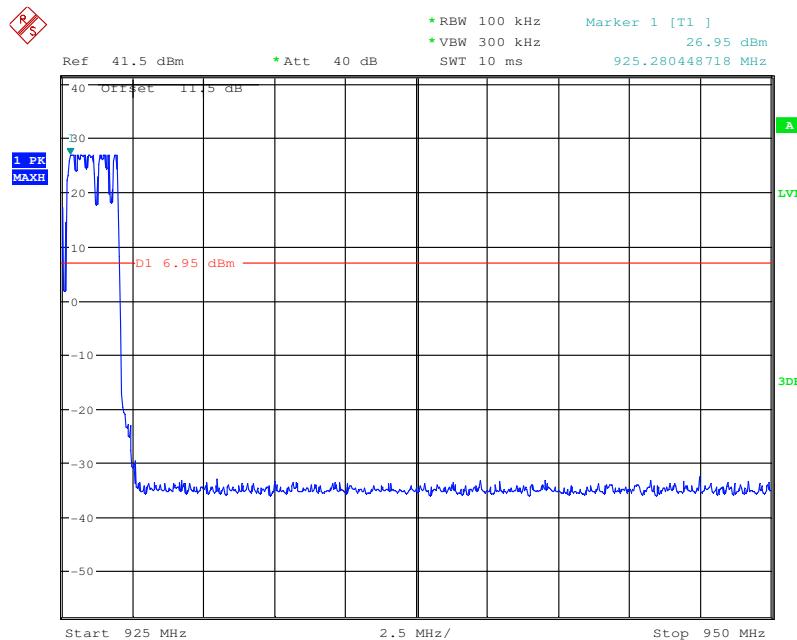
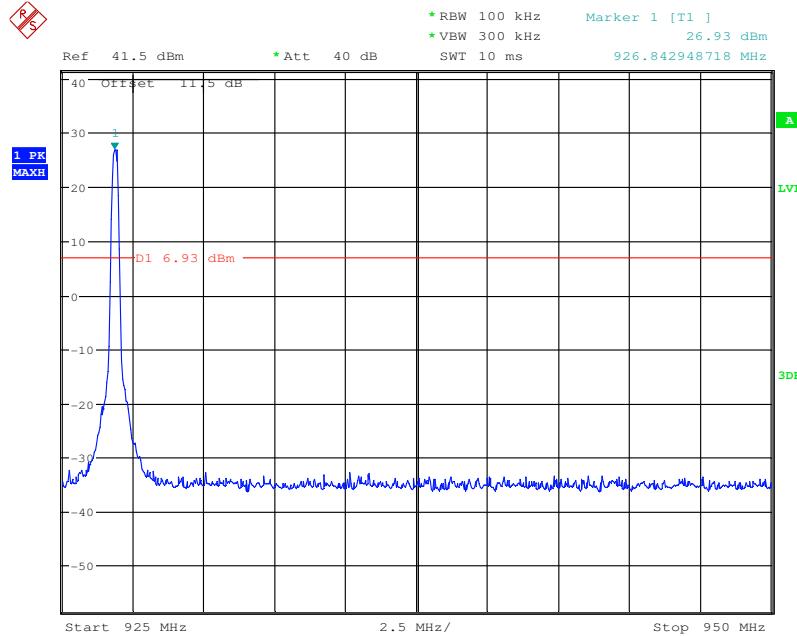

Total number: only 1burst in observe time 24s.

Test plot as follows:

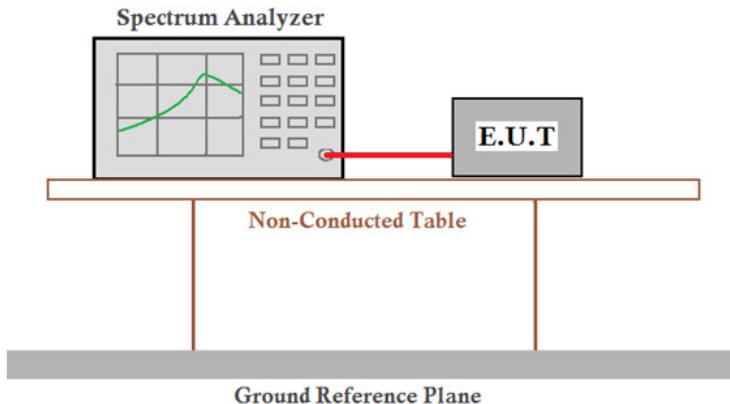
Test Packet:	DH1
--------------	-----

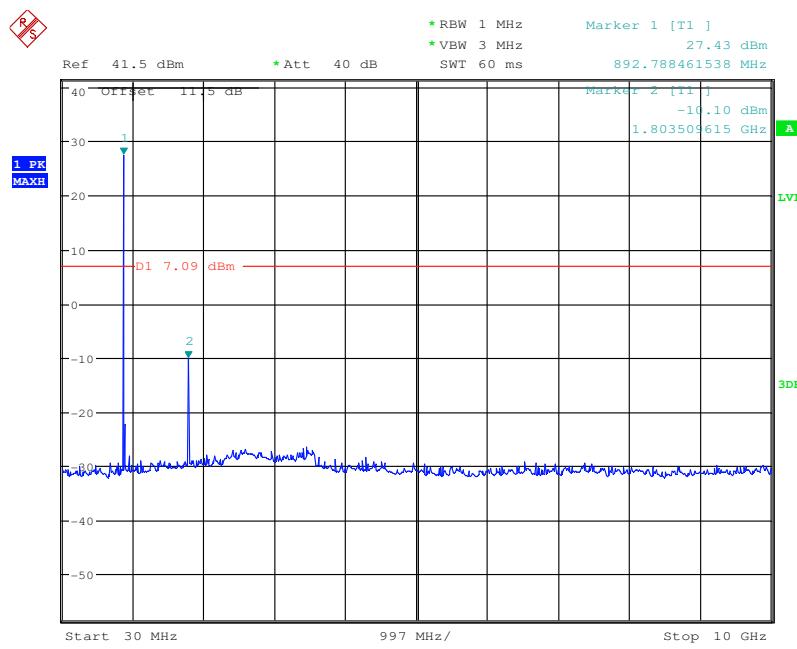
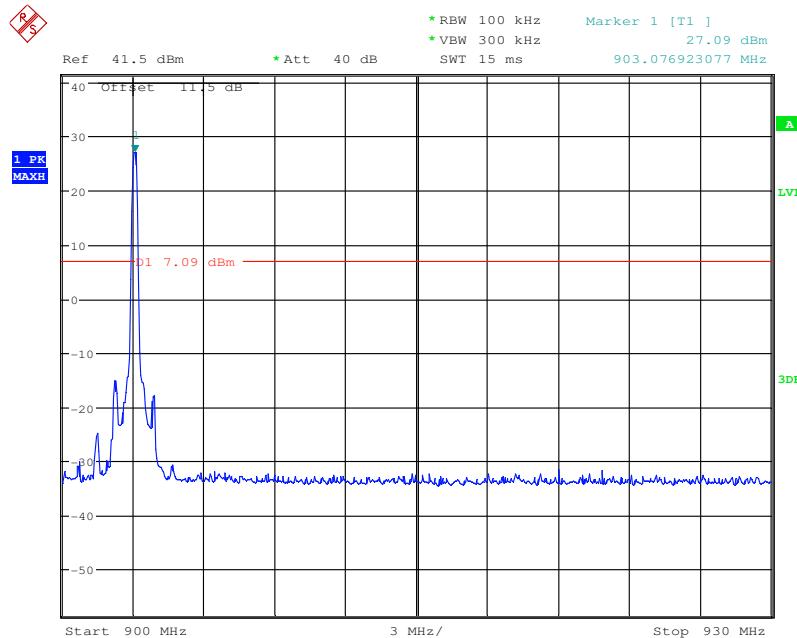
6.7 Band-edge for RF Conducted Emissions



Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 Section 7.8.6
Test Setup:	<p>The diagram illustrates the test setup for RF Conducted Emissions. A Spectrum Analyzer is connected to the E.U.T (Equipment Under Test) via a cable. The E.U.T is placed on a Non-Conducted Table. The entire setup is positioned above a Ground Reference Plane.</p>
Remark:	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Hopping and Non-hopping transmitting with modulation
Final Test Mode:	Hopping and Non-hopping transmitting with modulation
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

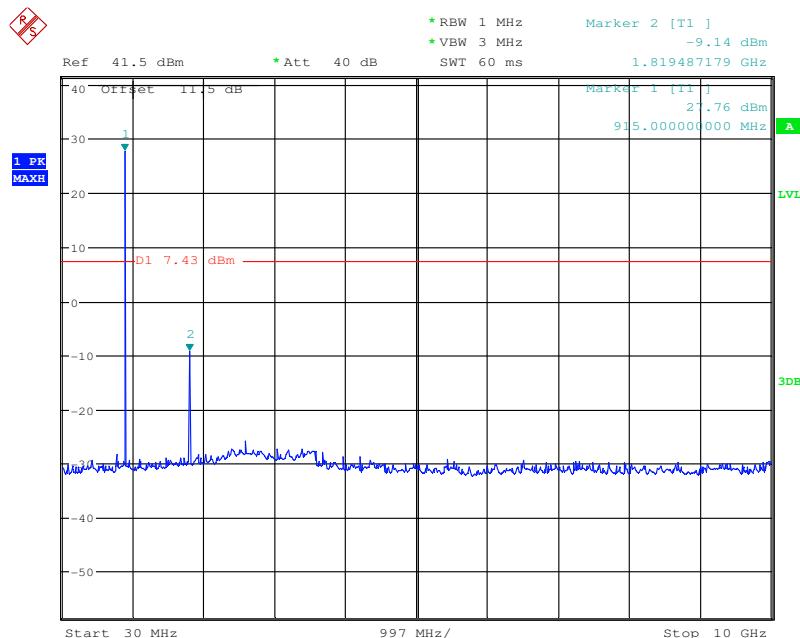
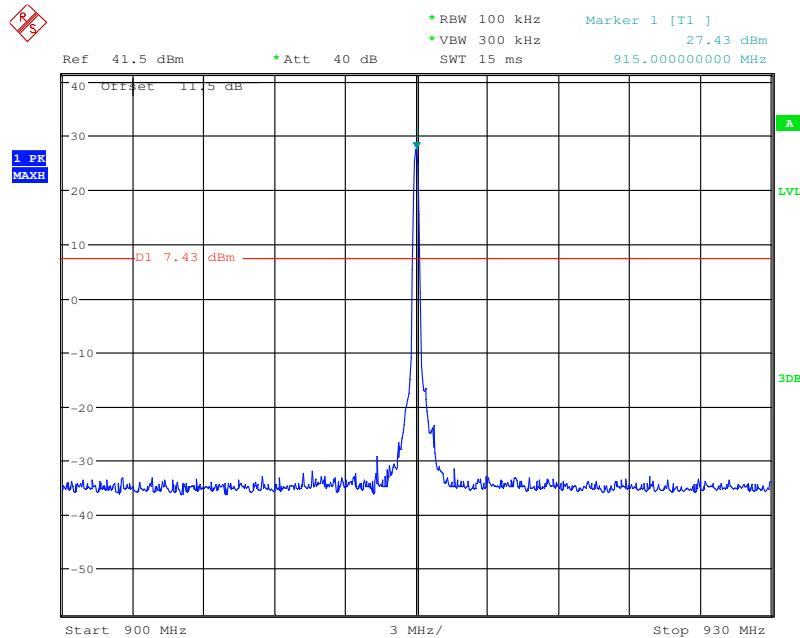
Test plot as follows:


Test mode:	Modulation	Test channel:	Lowest
------------	------------	---------------	--------

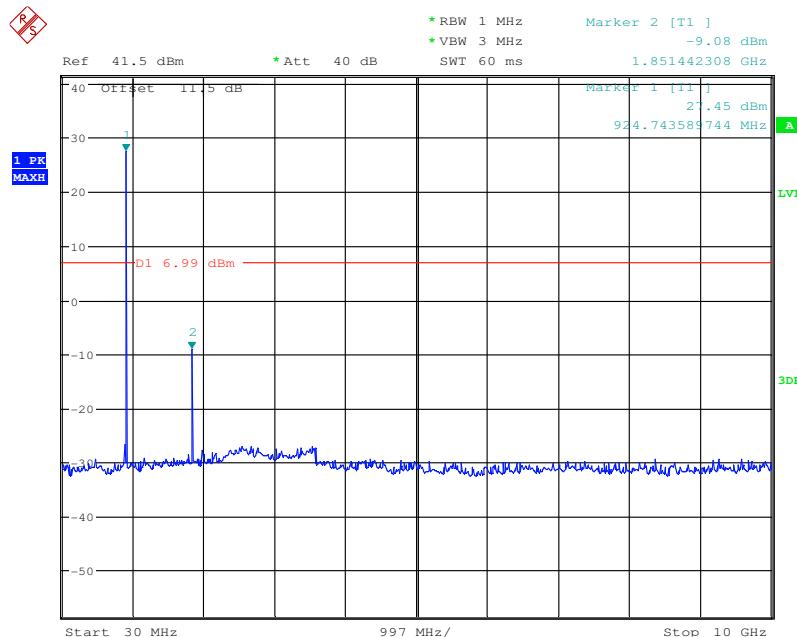
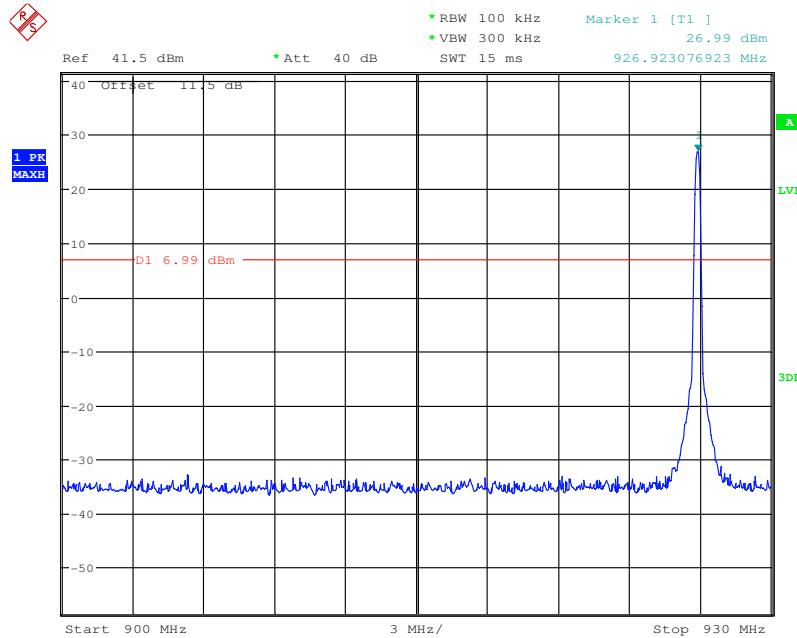
Test mode:	Modulation	Test channel:	Highest
------------	------------	---------------	---------

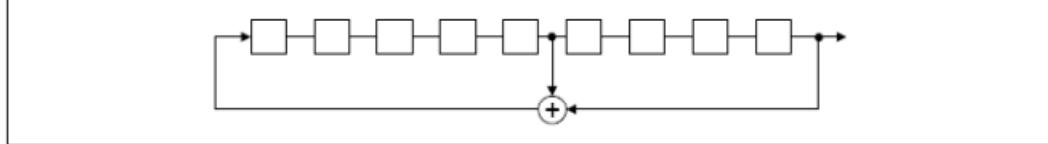
6.8 Spurious RF Conducted Emissions



Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 Section 7.8.8
Test Setup:	<p>The diagram illustrates the test setup for spurious RF conducted emissions. A Spectrum Analyzer is connected to an E.U.T (Equipment Under Test) via a cable. The E.U.T is placed on a Non-Conducted Table. The entire setup is positioned above a Ground Reference Plane.</p>
Remark:	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with modulation
Final Test Mode:	Non-hopping transmitting with modulation
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Test plot as follows:



Test mode:	Modulation	Test channel:	Lowest
------------	------------	---------------	--------

Test mode:	Modulation	Test channel:	Middle
------------	------------	---------------	--------


Test mode:	Modulation	Test channel:	Highest
------------	------------	---------------	---------

Remark:

Use 100kHz RBW to determine the relative limit in the band 900MHz to 930MHz, and Use 1MHz RBW to measure spurious emissions in the band 30MHz to 10GHz. The sweep points set to 30001.

6.9 Other requirements Frequency Hopping Spread Spectrum System

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:
	<p>The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.</p> <p>Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.</p> <p>The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.</p>
Compliance for section 15.247(a)(1)	
<p>According to Hopping RF chip Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.</p> <ul style="list-style-type: none">• Number of shift register stages: 9• Length of pseudo-random sequence: $2^9 - 1 = 511$ bits• Longest sequence of zeros: 8 (non-inverted signal)	
<p><i>Linear Feedback Shift Register for Generation of the PRBS sequence</i></p>	
<p>An example of Pseudorandom Frequency Hopping Sequence as follow: 2,5,7,12,43,23,37,9</p>	
<p>Each frequency used equally on the average by each transmitter.</p>	
Compliance for section 15.247(g)	
<p>According to Hopping RF chip Specification, the hopping system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the hopping system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.</p>	
Compliance for section 15.247(h)	
<p>According to Hopping RF chip specification, the Hopping system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to</p>	

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM160900829101

Page: 34 of 43

avoid hopping on the occupied channels.

According to the Hopping RF chip specification, the Hopping system is designed not have the ability to coordinate with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

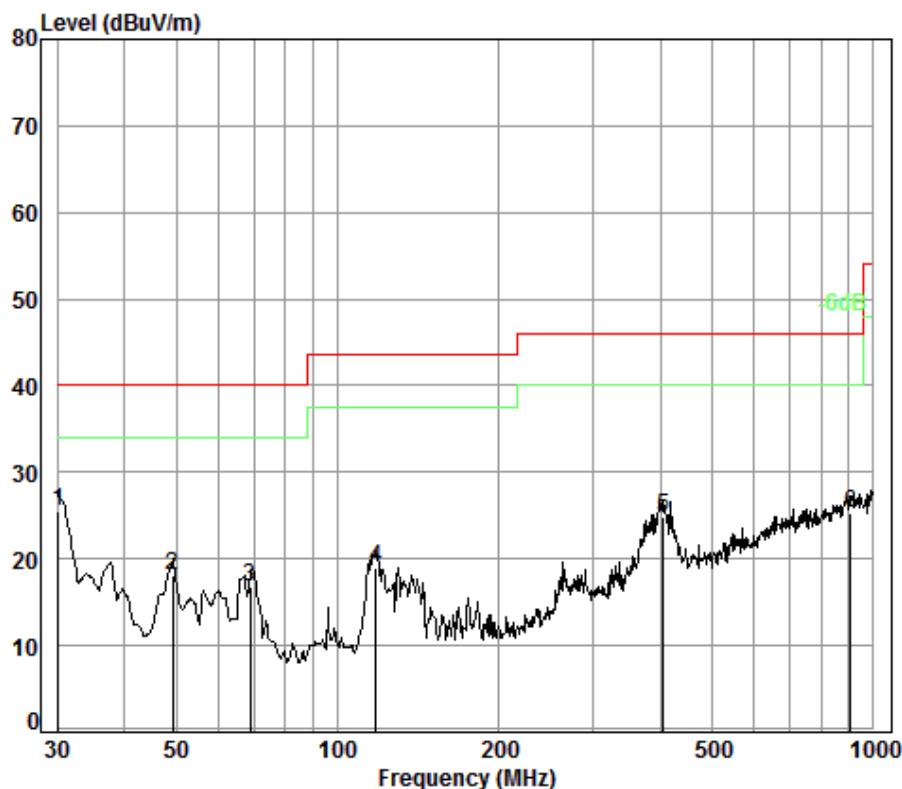
6.10 Radiated Spurious Emission and Restricted band

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205				
Test Method:	ANSI C63.10: 2013				
Test Site:	Below 1GHz: Measurement Distance: 3m (Semi-Anechoic Chamber) Above 1GHz: Measurement Distance: 3m (Full-Anechoic Chamber)				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
		Peak	1MHz	10Hz	Average
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.				

Test Setup:	
Figure 1. Below 30MHz	
Figure 2. 30MHz to 1GHz	
Figure 3. Above 1 GHz	
Test Procedure:	<ol style="list-style-type: none"> For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the

SGS-CSTC Standards Technical Services Co., Ltd.

Shenzhen Branch

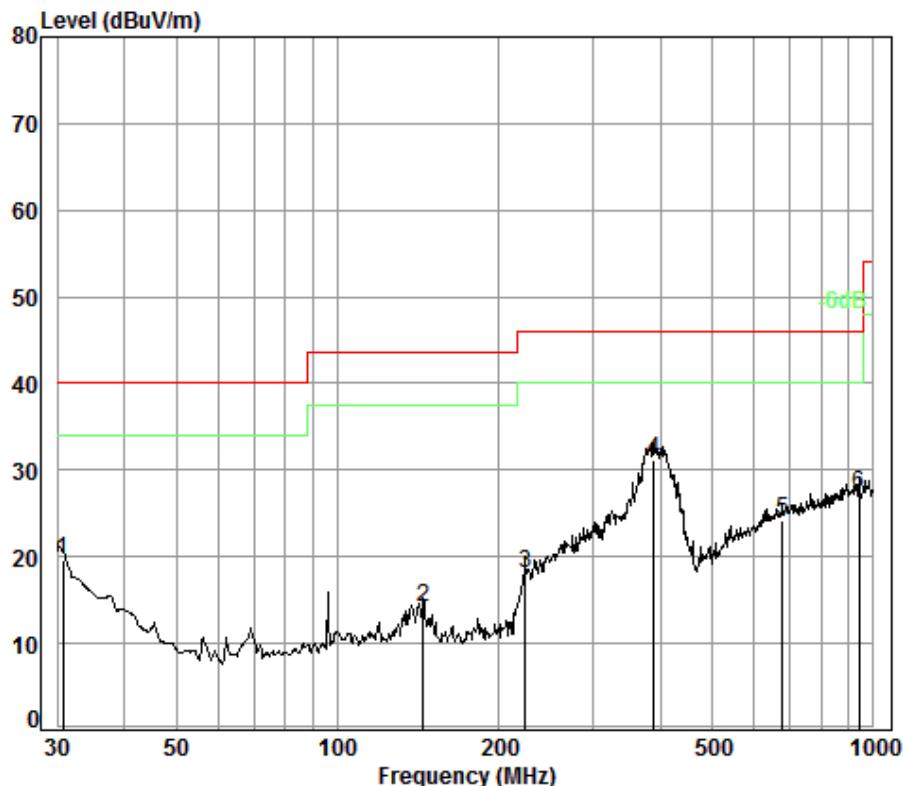

Report No.: SZEM160900829101

Page: 37 of 43

	<p>EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.</p> <p>h. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)</p> <p>i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.</p> <p>j. Repeat above procedures until all frequencies measured was complete.</p>
Exploratory Test Mode:	Non-hopping transmitting mode with modulation Transmitting mode, Charge + Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Transmitting mode which it is worse case For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

6.10.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical


Condition: 3m Vertical

Job No. : 8291CR

Test mode: TX mode

	Freq	Cable	Ant	Preamp	Read	Limit	Over	
		Loss	Factor	Factor	Level			
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	pp	30.11	0.60	18.64	27.36	33.61	25.49	40.00 -14.51
2		49.36	0.79	8.98	27.29	35.53	18.01	40.00 -21.99
3		68.87	0.80	6.93	27.25	36.27	16.75	40.00 -23.25
4		118.19	1.25	8.03	27.08	36.67	18.87	43.50 -24.63
5		406.09	2.23	16.32	27.17	33.50	24.88	46.00 -21.12
6		906.48	3.61	23.23	26.75	25.21	25.30	46.00 -20.70

Test mode:	Transmitting	Horizontal
------------	--------------	------------

Condition: 3m Horizontal

Job No. : 8291CR

Test mode: TX mode

	Cable Freq	Ant Loss	Preamp Factor	Read Level	Limit Level	Limit Line	Over Limit	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	30.75	0.60	18.28	27.35	28.10	19.63	40.00	-20.37
2	144.33	1.31	8.49	26.94	31.34	14.20	43.50	-29.30
3	223.73	1.54	11.43	26.62	31.67	18.02	46.00	-27.98
4 pp	389.35	2.17	16.17	27.07	39.92	31.19	46.00	-14.81
5	675.21	2.85	21.40	27.44	27.40	24.21	46.00	-21.79
6	938.83	3.64	23.30	26.58	26.94	27.30	46.00	-18.70

6.10.2 Transmitter Emission above 1GHz

Test mode:		Transmitting		Test channel:		Lowest		Remark:		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
1374.042	25.28	2.29	0.00	26.02	53.59	74.00	-20.41	Vertical		
1806.000	27.09	2.80	0.00	38.21	68.10	74.00	-5.90	Vertical		
2709.000	30.24	3.63	0.00	34.25	68.12	74.00	-5.88	Vertical		
3612.000	32.53	4.39	0.00	15.86	52.78	74.00	-21.22	Vertical		
4909.079	34.34	5.87	0.00	10.88	51.09	74.00	-22.91	Vertical		
6982.324	36.45	7.49	0.00	8.95	52.89	74.00	-21.11	Vertical		
1258.925	24.76	2.13	0.00	21.25	48.14	74.00	-25.86	Horizontal		
1830.000	27.18	2.83	0.00	40.25	70.26	74.00	-3.74	Horizontal		
2745.000	30.37	3.67	0.00	32.22	66.26	74.00	-7.74	Horizontal		
3660.000	32.67	4.43	0.00	27.11	64.21	74.00	-9.79	Horizontal		
5069.907	34.49	6.03	0.00	12.00	52.52	74.00	-21.48	Horizontal		
6918.310	36.28	7.44	0.00	9.64	53.36	74.00	-20.64	Horizontal		

Test mode:		Transmitting		Test channel:		Lowest		Remark:		Average
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
1806.000	27.09	2.80	0.00	22.83	52.72	54.00	-1.28	Vertical		
2709.000	30.24	3.63	0.00	18.84	52.71	54.00	-1.29	Vertical		
1830.000	27.18	2.83	0.00	22.45	52.46	54.00	-1.54	Horizontal		
2745.000	30.37	3.67	0.00	18.18	52.22	54.00	-1.78	Horizontal		
3660.000	32.67	4.43	0.00	14.57	51.67	54.00	-2.33	Horizontal		

SGS-CSTC Standards Technical Services Co., Ltd.

Shenzhen Branch

Report No.: SZEM160900829101

Page: 41 of 43

Test mode:		Transmitting		Test channel:		Middle		Remark:		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Cable Loss (dB)	Reading Level (dB μ V)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Over limit (dB)		Polarization	
1261.828	24.78	2.13	0.00	22.16	49.07	74.00	-24.93		Vertical	
1852.000	27.27	2.85	0.00	32.44	62.56	74.00	-11.44		Vertical	
2778.000	30.50	3.70	0.00	28.49	62.69	74.00	-11.31		Vertical	
3704.000	32.79	4.46	0.00	26.90	64.15	74.00	-9.85		Vertical	
5105.050	34.48	6.05	0.00	11.83	52.36	74.00	-21.64		Vertical	
6698.846	35.67	7.24	0.00	10.38	53.29	74.00	-20.71		Vertical	
1297.179	24.94	2.18	0.00	22.27	49.39	74.00	-24.61		Horizontal	
1830.000	27.18	2.83	0.00	25.59	55.60	74.00	-18.40		Horizontal	
2745.000	30.37	3.67	0.00	28.20	62.24	74.00	-11.76		Horizontal	
3660.000	32.67	4.43	0.00	27.21	64.31	74.00	-9.69		Horizontal	
5236.004	34.45	6.12	0.00	11.97	52.54	74.00	-21.46		Horizontal	
6950.243	36.37	7.47	0.00	10.11	53.95	74.00	-20.05		Horizontal	

Test mode:		Transmitting		Test channel:		Middle		Remark:		Average
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dB μ V)	Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)		Polarization	
1852.000	27.27	2.85	0.00	18.71	48.83	54.00	-5.17		Vertical	
2778.000	30.50	3.70	0.00	13.38	47.58	54.00	-6.42		Vertical	
3704.000	32.79	4.46	0.00	8.59	45.84	54.00	-8.16		Vertical	
1830.000	27.18	2.83	0.00	20.35	50.36	54.00	-3.64		Horizontal	
2745.000	30.37	3.67	0.00	16.86	50.90	54.00	-3.10		Horizontal	
3660.000	32.67	4.43	0.00	12.37	49.47	54.00	-4.53		Horizontal	

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM160900829101

Page: 42 of 43

Test mode:		Transmitting		Test channel:		Highest		Remark:		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp factor (dB)	Reading Level (dB μ V)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Over limit (dB)	Polarization		
1389.953	25.35	2.31	0.00	21.94	49.60	74.00	-24.40	Vertical		
1852.000	27.27	2.85	0.00	42.66	72.78	74.00	-1.22	Vertical		
2778.000	30.50	3.70	0.00	30.19	64.39	74.00	-9.61	Vertical		
3704.000	32.79	4.46	0.00	28.79	66.04	74.00	-7.96	Vertical		
4977.371	34.46	5.97	0.00	11.41	51.84	74.00	-22.16	Vertical		
6870.685	36.15	7.39	0.00	9.75	53.29	74.00	-20.71	Vertical		
1261.828	24.78	2.13	0.00	22.16	49.07	74.00	-24.93	Horizontal		
1852.000	27.27	2.85	0.00	32.44	62.56	74.00	-11.44	Horizontal		
2778.000	30.50	3.70	0.00	28.49	62.69	74.00	-11.31	Horizontal		
3704.000	32.79	4.46	0.00	26.90	64.15	74.00	-9.85	Horizontal		
5105.050	34.48	6.05	0.00	11.83	52.36	74.00	-21.64	Horizontal		
6698.846	35.67	7.24	0.00	10.38	53.29	74.00	-20.71	Horizontal		

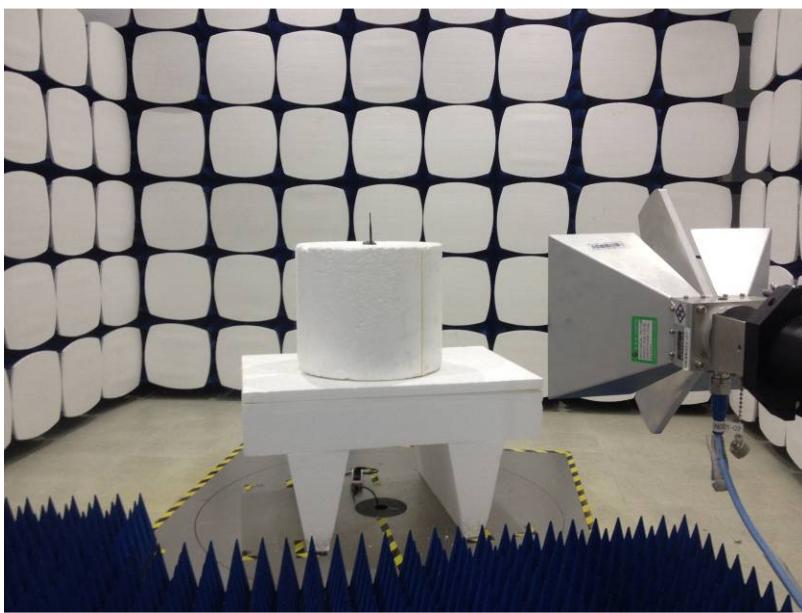
Test mode:		Transmitting		Test channel:		Highest		Remark:		Average
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dB μ V)	Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)	Polarization		
1852.000	27.27	2.85	0.00	23.19	53.31	54.00	-0.69	Vertical		
2778.000	30.50	3.70	0.00	18.18	52.38	54.00	-1.62	Vertical		
3704.000	32.79	4.46	0.00	13.69	50.94	54.00	-3.06	Vertical		
1852.000	27.27	2.85	0.00	18.71	48.83	54.00	-5.17	Horizontal		
2778.000	30.50	3.70	0.00	13.38	47.58	54.00	-6.42	Horizontal		
3704.000	32.79	4.46	0.00	8.59	45.84	54.00	-8.16	Horizontal		

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 10GHz, the disturbance above 5GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


7 Photographs - EUT Test Setup

Test Model No.: 2092

7.1 Radiated Emission

7.2 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1609008291CR.