

Canada

Exhibit: RF Exposure – FCC

Report File #: -000

© TÜV SÜD Canada Inc. This test report shall not be reproduced except in full, without written approval of TÜV SÜD Canada Inc.

Client	Utility Associates, Inc.	 Canada
Product	Smart Holster Sensor (Model: HS01)	
Standard(s)	FCC KDB 447498:2015	

RF Exposure – FCC

The device is intended for use on extremities (wrists) and the minimum separation distance from the radiating structure to any part of the body or extremity of a user is 5 mm as stated by the manufacturer during normal operation.

The EUT contains a 1.363 MHz transmitter and a modularly certified 2400 – 2483.5 MHz DTS transmitter.

General SAR test exclusion guidance:

As per FCC KDB 447498 Section 4.3.1 a), the 1-g SAR Test Exclusion Threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm is determined by:

$$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] [\sqrt{f_{(\text{GHz})}}] \leq 3.0$$

Where:

$f_{(\text{GHz})}$ is the RF channel transmit frequency in GHz

As per FCC KDB 447498 Section 4.3.1b) For 100 MHz to 6 GHz and *test separation distances* > 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following

$$\{[\text{Power allowed at numeric threshold for 50 mm in step a)}] + [(\text{test separation distance} - 50 \text{ mm}) \cdot (f_{(\text{MHz})}/150)]\} \text{ mW, for 100 MHz to 1500 MHz}$$

As per FCC KDB 447498 Section 4.3.1 c) the Threshold for frequencies below 100 MHz, at test separation distances ≤ 50 mm is determined by:

$$\frac{1}{2} [1 + \log(100/f_{(\text{MHz})})] * \text{Threshold in Section 4.3.1 b) 1)}$$

SAR Calculations: 1.363 MHz transmitter

The EUT does not have an antenna port. The field was measured at 1 m with a loop antenna; the fundamental frequency falls to the noise floor when measured with a large distance. The raw measure value is 37.58 dBuV.

The final field strength is given by

$$\begin{aligned} E (\text{dBuV/m}) &= \text{Received Signal} + \text{Antenna Factor} + \text{Cable Loss} - \text{Pre-Amp Gain} + 51.5 \\ &= 37.58 \text{ dBuV} - 6.65 + 0.118 - 33.74 + 51.5 \\ &= 48.81 \text{ dBuV/m} \end{aligned}$$

Client	Utility Associates, Inc.	 Canada
Product	Smart Holster Sensor (Model: HS01)	
Standard(s)	FCC KDB 447498:2015	

The Effective Isotropic Radiate Power in dBm is given by:

$$E.I.R.P \text{ (dBm)} = E \text{ (dBuV/m)} - 104.77 + 20\log(d)$$

where d is in meter.

Therefore, for a 1 m measurement distance:

$$E.I.R.P \text{ (dBm)} = 48.81 - 104.77 + 20\log(1) = -55.96 \text{ dBm} (2.53 \times 10^{-6} \text{ mW})$$

Peak E.I.R.P was measured to be 2.53×10^{-6} mW.

As per FCC KDB 447498 Section 4.3.1 a) the power allowed with numerical threshold of 3 and at a separation distance of 50 mm and 100 MHz is:

$$[P \text{ (mW)} / 50 \text{ mm}] * [\sqrt{0.1 \text{ GHz}}] = 3.0$$

$$P(@50 \text{ mm}) = 474.3 \text{ mW}$$

As per FCC KDB 447498 Section 4.3.1 c)2) the power allowed is

$$\frac{1}{2} [1 + \log(100/1.363)] * 474.3 = 679.6 \text{ mW}$$

The measured peak E.I.R.P of 2.53×10^{-6} mW is below the power allowed for a 1.363 MHz transmitter. SAR Exclusion Threshold condition is met with peak E.I.R.P.

Simultaneous Transmission SAR Calculations

As per FCC 2.1093 (d)(2): The SAR limits for general population/uncontrolled exposure are 0.08 W/kg, as averaged over the whole body.

Simultaneous transmission is evaluated as per FCC KDB 447498 Section 4.3.2. The equation used is:

$$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] * [\sqrt{f_{\text{GHz}}/x}] \text{ W/kg, for test separation distances} \leq 50 \text{ mm};$$

where $x = 7.5$ for 1-g SAR.

The 1.363 MHz transmitter have a Peak E.I.R.P of 2.53×10^{-6} mW and the 2.4 GHz transmitter (FCC ID: HSW2832) have a maximum power of 1.216 mW.

For 1.363 MHz Transmitter

$$(2.53 \times 10^{-6} \text{ mW} / 5 \text{ mm}) * (\sqrt{0.001363/7.5}) = 2.5 \times 10^{-9} \text{ W/kg}$$

Client	Utility Associates, Inc.
Product	Smart Holster Sensor (Model: HS01)
Standard(s)	FCC KDB 447498:2015

For 2.4 GHz transmitter

$$(1.216 \text{ mW}/5) * (\sqrt{2.4835}/7.5) = 0.05 \text{ W/kg}$$

The sum of the 1-g SAR $0.05 \text{ W/kg} + 2.5 \times 10^{-9} \text{ W/kg} = 0.05 \text{ W/kg}$ which is less than 0.08 W/kg .